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Abstract—Time series classifiers based on deep neural net-
works (DNNs) are highly vulnerable to carefully crafted per-
turbations called adversarial attacks, which are capable of
completely degrading their accuracy. The primary challenge in
detecting such adversarial samples is the difficulty in disentan-
gling the underlying signal from the added perturbations. In this
work, we propose a novel technique for detecting adversarial
attacks against deep timeseries classifiers. Firstly, we show that
a recurrence plot (RP) representation can effectively disentangle
adversarial perturbations in time series data as local artifacts in
the image domain. Secondly, we demonstrate that these artifacts
can be easily amplified or suppressed using image morpholog-
ical operations, without impacting the true signal information.
Consequently, the distributions of RP features (before and after
morphological operations) do not change for benign samples,
while they begin to diverge for adversarial samples. Finally, we
train a normalcy model to encode the distribution of RP features
of benign samples and employ outlier detection in the parameter
space to detect adversarial samples. Evaluations based on four
adversarial attacks (FGSM, BIM, MIM and PGD) and on all 85
datasets in the 2015 UCR TS archive, show that the proposed
method outperforms the state-of-the-art and is 3.65× faster on
average.

I. INTRODUCTION

Deep learning models for computer vision are vulnerable to
specially-crafted perturbations that interfere with their opera-
tion [1]. Such perturbations are called adversarial attacks and
can completely degrade the accuracy of such models. It has
also been established that attacks crafted for some model may
also significantly affect other unseen models [2]. Recently,
adversarial attacks were also shown to exist for deep timeseries
classification models [3]. Because of their transferability and
accuracy degradation, adversarial attacks are a clear danger to
virtually all DNN models, especially those used in sensitive
applications. Furthermore, this danger is more acute for non-
visual modalities such as timeseries signals, which are natively
hard to interpret and therefore easier to corrupt. Hence, there
is a strong need for defense mechanisms against adversarial
attacks in the timeseries domain.

Though a multitude of methods exist for timeseries analysis
including statistical (e.g., moment estimation), time-domain
(e.g., autoregressive modelling) and frequency-domain tech-
niques (e.g., the Fourier transform), these approaches fail
to detect adversarial samples because of the infinitesimal
magnitude of the perturbations. However, the fact that such

seemingly-insignificant perturbations can affect deep classi-
fiers even in transfer scenarios intuitively suggests that they
affect some fundamental property/dimension of the data it-
self. This motivates further investigation into other timeseries
analysis techniques in a bid to identify a suitable domain for
adversarial detection.

One common characteristic of most timeseries data is the
existence of recurrence relationships, which can be represented
using a recurrence plot [4]. In this work, we propose a
novel approach for detecting adversarial attacks against deep
timeseries classifiers using recurrence plots. Firstly, we show
that adversarial perturbations get disentangled as local artifacts
in the recurrence plots and these artifacts can be directly
amplified or suppressed in the image domain. Secondly, we
build a normalcy model based on the distributions of the
recurrence plots of benign samples and use an outlier detector
for adversarial sample detection.

II. PRELIMINARIES AND RELATED WORK

a) Adversarial Attacks on Timeseries Data: Let a time-
series sample of length T be denoted as x, such that x(t) gives
the value of the timeseries at some timestep t ∈ [1 · · ·T ]. In
deep timeseries classification, this sample is fed into classifier
f parameterized by weights θ to produce a predicted label
ŷ i.e. ŷ = fθ(x). An adversary generates an adversarial
perturbation η, which is computed using some attack technique
(e.g. FGSM [1]), and adds it pointwise to the given signal
(i.e. x̂(t) = x(t) + η(t)) to obtain its adversarial counter-
part x̂ [3]. The magnitude of the adversarial perturbation is
usually bounded under some norm p in order to keep it as
imperceptible as possible i.e. ||η||p≤ ϵ, where ϵ represents the
maximum magnitude of the perturbation. Note that adding the
perturbation η causes misclassification i.e. fθ(x) ̸= fθ(x̂).

b) Adversarial Attack Detection in Timeseries Data: The
goal of adversarial attack detection is to determine if the given
signal has been adversarially perturbed or not. To the best of
our knowledge, there are only two approaches for detecting
adversarial attacks against deep timeseries classifiers. [5] for-
mulated the problem as an instance of unsupervised outlier
detection. Their approach involved computing complexity and
chaotic measures of adversarially-unperturbed samples, then
learning a normalcy model over such features. The learned
model was then subsequently used to distinguish between
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normal and adversarial samples. In an evaluation involving
85 datasets and two attack methods, they obtain results on 72
datasets and report detection accuracies reaching 97%. The
other approach was proposed by [6], where they considered the
adversarial detection problem in 3 supervised settings: binary
classification (i.e. normal vs adversarial), 2n-classification
(i.e. n normal and n adversarial) and an ensemble approach
combining the two. They also evaluate their method on the
same datasets, reporting higher accuracy in most cases.

c) Recurrence Plots for Timeseries Analysis: In the time-
series domain, recurrence plots have also been used for time-
series classification in [7]. Their approach involves converting
timeseries data into recurrence plots, and using a nearest-
neighbor scheme involving a compression-based distance,
outperform Euclidean Distance and Dynamic Time Warping.
They further investigate the use of traditional texture extrac-
tion techniques on recurrence plots in [8] and obtain results
outperforming comparable timeseries classification techniques.
Similarly, [9], [10] have applied convolutional neural networks
to recurrence plots also for classification purposes. These
works report generally improved accuracy over some state of
the art baselines, albeit at additional computational cost. To
the best of our knowledge, our proposed approach is the first
ever attempt to use recurrence relationships for the detection
of adversarial attacks in the timeseries domain.

III. PROPOSED APPROACH

The first step of the proposed approach is to disentangle
a given timeseries sample into signal and perturbation com-
ponents. Based on the assumption that the timeseries sample
x contains some underlying structure, we consider recurrence
plot (RP) [4] as our representation method due to its simplicity
and widespread amenability. Moreover, a RP directly provides
a semi-interpretable visualization of the underlying structure
in the timeseries. Therefore, an arbitrary timeseries x can be
mapped to a 2-dimensional recurrence plot [R]T×T via the
following relation:

R = ||xT (t)− xT (u)||. (1)

The above equation is evaluated for all timesteps (t, u) ∈
[1 · · ·T ]. As shown in Figure 1, adversarial perturbations show
up as small local artifacts in a recurrence plots.

For adversarial sample detection, the perturbation com-
ponent η is of primary interest. Specifically, we propose
two abstract operations to amplify it and suppress it. These
operations can be expressed concisely as:

x̂ = x+ α.η, (2)

where the amplification operation is analogous to setting α
greater than 1 and the suppression operation sets α to less
than 1. In the case of a benign sample (which lacks any
perturbation), these operations have virtually no effect on
the sample. Conversely, for adversarial samples, the ampli-
fication operation will enhance the perturbation, making it
more observable/perceptible while the suppression operation

Fig. 1: Recurrence plots of unperturbed sample (left) vs
perturbed sample (right). The perturbed sample clearly shows
small local artifacts representing adversarial perturbations.

will make it more stealthy. Therefore, analyzing the output
of these two operations can differentiate between a benign
sample x and an adversarial sample x̂. However, the design
of such amplification and suppression operators must be such
that they do not negatively impact the legitimate information
in the sample, but rather only affect the adversarial perturba-
tion/noise. Although some candidate functions exist for this
purpose in the timeseries domain (e.g. low-pass filters), they
must be specifically designed and tuned to guarantee that they
do not harm the underlying information in the timeseries.

Since the recurrence plot is two-dimensional, it can there-
fore be treated as an image. This also enables the use of image
processing operations to implement the suppression and am-
plification operators. In particular, morphological opening and
closing are designed to de-emphasize or amplify small artifacts
in images, directly corresponding to the functionality/behavior
of the suppression and amplification operators proposed. Also
note that the morphological operations have locality, which
ensures that they better preserve information in local regions
as opposed to filtering operations in the time domain, which
are more concerned with global preservation. In this work,
given some sample x, we compute its recurrence plot R and
obtain two variants RO and RC by applying morphological
opening and closing on it, respectively.

The recurrence plots of benign samples can be considered
as samples drawn from distribution fR i.e. R ∼ fR. For the
adversarial counterpart of x i.e. x̂, its resulting recurrence plot
R̂ will have a slightly different distribution f̂R due to the pres-
ence of the adversarial perturbation i.e. R̂ ∼ f̂R. Moreover,
this difference can be (de)emphasized through the use of the
suppression and amplification operators described previously.
To model fR, we select the generalized Gaussian distribution
(GGD) due to its simplicity (e.g. it is parameterized by just
two values: mean β and variance γ) and flexibility. However,
we first preprocess the recurrence plot by computing mean-
subtracted contrast-normalized (MSCN) coefficients from it.
The MSCN coefficients better capture the behavior of the
plot in different local regions and are known to correlate to
perceptual quality [11], [12]. For pixel position (t, u) in R,
the MSCN coefficients are computed as:
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Rp(t, u) =
R(t, u)− µ(t, u)

σ(t, u) + C
, (3)

where R(t, u) is the recurrence plot value at position (t, u)
and C = 1 to prevent numerical degeneracy. The local mean
µ and local contrast σ are given as:

(4)

µ(t, u) =

K∑
k=−k

L∑
l=−L

wk,lIk,l(t, u)

σ(t, u) =

√√√√ K∑
k=−k

L∑
l=−L

wk,l(Ik,l(t, u)− µ(t, u))2

where w = {wk,l|k = −K, . . . ,K, l = −L, . . . , L} is a 7x7
2D Gaussian function rescaled to unit volume.

Next, we fit a GGD model to the preprocessed recur-
rence plot Rp, yielding mean β and variance γ, representing
fR. We also perform feature extraction on the two variants
RO and RC as well, yielding a total of 6 features i.e.[
β, γ, βO, γO, βC , γC

]
. We adopt this approach rather than

simply taking the differences between the parameters because
different datasets behave differently under the amplification
and suppression operators. By using the raw parameters di-
rectly, the downstream method learns dataset-specific behav-
iors, allowing for better adaptation. It must be emphasized that
the proposed approach can also extend to the multivariate case
i.e. each axis/variable can be considered separately for feature
extraction, after which all the features can be concatenated
into a single vector for later usage.

In practice, adversarial examples will not usually be avail-
able to users. Hence, we adopt a similar methodology to
[5] and frame our adversarial detection task as an instance
of outlier detection. Therefore, we perform feature extraction
over benign samples, and then use the derived features to train
the normalcy model. This model will then be used to distin-
guish between normal and adversarial samples subsequently.
We adopt the One-Class Support Vector Machine [13] as our
normalcy model due to its efficacy and low data requirements.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

A. Experimental Methodology: We consider our method in
a gray-box setting i.e. under the assumption that the attacker
is unaware of our detection technique. For fair comparison,
we select [5] as our baseline since their method is the state
of the art under the outlier detection paradigm, and is also
evaluated in a gray-box setting. We therefore evaluate the
performance of our method on the same datasets (i.e. all
85 datasets in the 2015 UCR Time Series Archive [14] and
their adversarially-perturbed versions generated by [3]). The
adversarially-perturbed datasets were generated for a ResNet
classifier using L∞-norm constrained FGSM and BIM [15]
attacks, with the maximum attack magnitude ϵ set to 0.1.
For the BIM attack, it was run for 10 iterations with a step
size (α) of 0.05. Since we use the same type of normalcy
model as in [5], we use an identical configuration i.e. we

set its contamination parameter to 0.1, use a radial-basis
function (RBF) kernel and compute the kernel coefficient in
a variance-aware manner. We consider detection accuracy as
the performance metric as in the baseline, and evaluate our
method in the same experimental settings:

1) Normal + FGSM: In this scenario, equal numbers of
previously-unseen normal samples and FGSM-perturbed
samples are fed to the normalcy model. This scenario
measures the ability of the method to distinguish be-
tween normal and FGSM-perturbed samples.

2) Normal + BIM: In this scenario, equal numbers of
previously-unseen normal samples and BIM-perturbed
samples are fed to the normalcy model. This scenario
measures the ability of the method to distinguish be-
tween normal and BIM-perturbed samples.

3) Normal + FGSM + BIM: In this scenario, equal numbers
of previously-unseen normal data, FGSM-perturbed
data and BIM-perturbed data are mixed, forming a
combination that is one-third normal and two-thirds
adversarial. This scenario measures the ability of the
model to truly characterize the normal data.

B. Evaluation Metrics: We evaluate the performance of the
proposed technique via statistical hypothesis testing. We adopt
the framework presented in [16], which involves a Friedman
test to confirm that the two methods have statistically-different
performances, followed by post-hoc analysis via a Wilcoxon
Signed Rank test to rank their (relative) performances. As the
Friedman test needs a minimum of 3 candidates, we include a
random guessing baseline as was used in [5]. We present the
results as a critical difference diagram showing the ranking of
each method relative to the competing methods. The lower the
rank of a method, the higher its performance.

We also evaluate the speed of the proposed approach
relative to the baseline, in order to illustrate the practical
feasibility of our technique. We focus on the feature
extraction time per sample since inference/classification
times are generally assumed to be insignificant. We compute
the feature extraction time by randomly selecting a fixed
number of samples (20), timing the feature extraction process
across the chosen samples and computing the average feature
extraction time per sample. We repeat this procedure five times
per dataset, and compute the average time taken across these
five trials. This experiment is carried out on a consumer-grade
laptop with a dual-core 2.1GHz processor and 12GB of RAM.

C. Results: The resulting critical difference diagram is shown
in Figure 2. It can be seen that the proposed technique
significantly outperforms both baselines. Notably, it works on
all 85 datasets. This is in contrast to the baseline, which failed
(i.e. produced degenerate values as features) on 13 datasets.
This further confirms the superiority and general applicability
of the proposed method relative to the baseline.

We also report the results obtained from the timing experi-
ment described in Section III. We compute speedup as the ratio
of the mean per-sample feature extraction time using the base-
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Fig. 2: Critical Difference Diagram showing rank of Proposed Method relative to Baselines on FGSM, BIM and FGSM+BIM
attacks (Lower rank is better).

Fig. 3: Critical Difference diagram for Texture descriptors, RQA and proposed method. Suffix ”˙P” used to indicate variants
with preprocessing.

line method to the mean per-sample feature extraction time
using the proposed method. The proposed method achieves
up to a 7× speedup in the best case. The obtained speedup
reduces with increased sample lengths, since the physical size
of the recurrence plot grows as the square of the sample length.
For the longest timeseries considered (2709 timesteps), the
speedup drops to around 0.62×. On average, the proposed
method delivers a 3.65× speedup relative to the baseline
method. Further optimizations are possible e.g. computing the
features for the three recurrence plots in parallel. This shows
the superior feasibility of our method in real-world scenarios,
which are often time- or compute-constrained.

D. Comparative Studies: Since the recurrence plot can also
be considered as a 2D texture pattern, we compare our
method against four common texture descriptors: Histogram
of Oriented Gradients (HOG), Local Binary Patterns (LBP),
Segmentation-based Fractal Texture Analysis (SFTA) and
Gray-Level Co-occurence Matrix (GLCM), as well as a suite
of 13 measures derived from recurrence quantification analysis
(RQA). For the former set, we evaluate the recurrence plot
alone, and the recurrence plot together with its preprocessed
versions (as described above). As seen from the results (Fig-
ure 3), the proposed method outperforms all 9 comparative
methods, justifying the proposed approach. Notably, some of
the texture-based methods compete with and in one case,
outperform the current state of the art method [5]. This can
be attributed to their use of a two-dimensional representation
(which is more informative) rather than the one-dimensional
representation used in [5].

E. Adversarial Detection Fidelity: A natural question regard-
ing the proposed method is its ability to distinguish between
genuine adversarial attacks and simple random noise. We posit
that random noise comes with a different appearance (in the
recurrence plots) than adversarial attacks, and is therefore

distinguishable by our method. To confirm this, we carry out
the following experiment: given some dataset, we consider the
samples in its testing portion and their adversarially-perturbed
counterparts. We then generate noisy versions of the benign
samples by adding Additive White Gaussian Noise (AWGN)
at the same signal-to-noise ratio as the adversarially-perturbed
samples (i.e. 20dB). This yields three sets of samples: benign,
adversarial and noisy samples. We then perform feature extrac-
tion as usual on each of these sets. We plot the feature space
in two dimensions using the IsoMap method [17] in order
to determine whether the noisy samples can be distinguished
from the adversarial (and benign) samples. The resulting plots
are shown in Figures 4a and 4b (for the 2-class “BeetleFly”
and 50-class “50words” datasets respectively). From the plots
the noisy samples can be seen to be clearly distinct from
the benign and adversarial samples, confirming the proposed
method’s ability to differentiate random noise from adversarial
attacks even in challenging scenarios.

F. Performance on More Advanced Attacks: We also
compare the performance of the proposed method to the
baseline on more advanced attacks. Specifically, we consider
the Momentum Iterative Method (MIM) [18] and Projected
Gradient Descent (PGD) [19] attacks, as these are considered
to be more powerful than the FGSM and BIM attacks. We
generate MIM and PGD attacks for each dataset using the
same parameters as those in the original set (i.e. ϵ = 0.1, 10
iterations). However, to make the attacks even more subtle,
we adjust the step size (α) to 0.01 rather than 0.05 as used by
[3]. In practice, we generate attacks for each dataset five (5)
times, and run the detectors on each set of generated samples.
Finally, we report the detectors’ performances averaged over
these 5 iterations/experiments.

The resulting critical difference diagram is shown in Figure
5. Once again, the proposed method maintains its superiority
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(a) (b)

Fig. 4: (a) shows the feature space of normal, adversarial and noisy samples for the 2-class BeetleFly dataset (b) 50-class
FiftyWords dataset. Noisy samples (green stars) are clearly distinct from normal samples (blue dots) and adversarial samples
(red crosses) (best viewed in color).

Fig. 5: Critical Difference diagram showing proposed method’s performance on MIM and PGD attacks.

even in this more challenging setting.

V. CONCLUSION & FUTURE WORK

We propose a novel method for detecting adversarial attacks
against deep timeseries classifiers, based on modeling (the
appearance of) recurrence plots. We carried out extensive
experiments involving 4 attacks and a large suite of diverse
datasets to evaluate its detection efficacy and speed of oper-
ation. We obtained results confirming the superiority of the
proposed method relative to the state of the art under both
metrics.

In future work, we intend to evaluate its efficacy in detecting
more subtle attacks (e.g the Carlini-Wagner attack) in both
gray-box and defense-aware settings.
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