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Abstract—In frequency division duplexing (FDD) systems, the
uplink and downlink transmit information in different frequency
bands, so it is difficult to use channel reciprocity to generate
secret keys. Since the reciprocity holds for the same frequency
ranges, if we consider the FDD bands very close to each
other, we can anticipate continuity between uplink and downlink
bands which can guarantee the required reciprocity. In this
paper, we use phase differences between neighboring antennas
in an antenna array to construct reciprocal channel features.
Moreover, we increase the reciprocity by applying polynomial
curve-fitting on the measurements so that two users can generate
highly similar keys in FDD systems. Exploiting an effective pre-
processing procedure, our proposed scheme achieves competitive
performance in terms of efficiency and key disagreement rate
(KDR). In addition, we present a detailed statistical analysis to
determine the error probability for generated keys from both
sides. Numerical simulation results are presented to verify the
feasibility and effectiveness of the proposed scheme.

Index Terms—Secret key generation, physical layer security,
FDD, error probability, multiple linear regression.

I. INTRODUCTION

Supporting high transmission rates for the extensive range
of wireless devices can facilitate the fast spreading of the
Internet-of-Things (IoT) for a wide collection of smart indus-
tries. The intrinsically shared nature of wireless transmissions
and large-scale IoT environments with potentially untrusted
nodes give rise to a large number of security threats and
vulnerabilities [1]. Wireless physical layer security, as the
first line of defense against eavesdropping, aims to keep
the information transmitted between legitimate partners safe
from adversarial eavesdropping and intervention. Secret key
generation (SKG) is a promising candidate which relies on
the reciprocity, spatial decorrelation, and temporal variation
of the wireless channel to generate the symmetric shared key
between two communication partners.

In FDD systems, unlike time-division duplexing (TDD) sys-
tems, the uplink and downlink transmit over different carrier
frequencies and experience different fading. Accordingly, most
of the mutually attainable channel parameters which can be
used in TDD systems, may not be the same in FDD systems
between the uplink and downlink [2]. It is thus challenging
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to find reciprocal channel parameters in FDD systems. Since
FDD is dominant in existing cellular communications, such
as narrowband IoT and Long Term Evolution (LTE), key
generation for such FDD-based systems is demandable.

Several key generation methods are developed for FDD
systems which are based on using the angle and delay of
path [3], channel covariance matrix [4], loop-back mechanisms
[5] and [6], and received signal strength indicator (RSSI) [7].
They come with some limitations such as security problems,
too large complexity, and high overhead. In this paper, in line
with our previous works [8] and [9], we directly employ the
phase differences between neighboring antennas derived from
scattering parameters S12 and S21 bidirectional measurements
between a circular antenna array and a single dipole counter-
part. Since we consider FDD bands very close to each other
and the reciprocity holds for the same frequency range, the
existing continuity between frequency bands can guarantee
the required reciprocity. The proposed idea does not need
large commputational cost or any additional reverse channel
training. In addition, we extract an error probability relation
for the presented SKG model by providing a detailed statistical
analysis and employing a multiple linear regression model.

The remainder of the paper is organized as follows. In
Section II, we describe the system setup, our testbed, and
all components of each measurement set. The proposed SKG
scheme is illustrated in Section III. In sections IV and V, error
probability relation and estimation of parameters using mul-
tiple linear regression are analyzed, respectively. Conclusions
are drawn in Section VI.

II. SYSTEM MODEL

We consider the basic key generation model in which Alice
and Bob are two legitimate counterparts intending to transmit
data securely over a wireless channel in the presence of an
adversary Eve acting as a passive attacker trying to eavesdrop
confidential information exchanged between them. In our
setup, Alice is realized as a circular antenna array with 40 an-
tenna positions. Moreover, we consider single dipoles for Bob
and Eve. Consequently, after each round of measurements, we
have 40 phase differences between consecutive neighboring
antennas and we consider each of them as a measurement set
that can generate a secret key between Alice and Bob. We
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use a standard vector network analyzer to measure scattering
parameters S12 and S21 in a remotely controlled fashion. We
considered many scenarios in wireless indoor environments
including office, home, basement, corridor, etc. In order to
construct the channel profiles, we measure S12 and S21 in
two closely neighboring ∆f = 5 MHz frequency bands on
both sides of a central (carrier) frequency of f0 = 2.19 GHz
such that the uplink and downlink frequency width, satisfies
that ∆f ≪ f0. Each FDD band separately consists of 801
frequency samples and the collection of these samples from
both sides constitutes a measurement set. After completing all
the required steps for key generation, which we will explain in
the next section, the rightmost point of S12 (frequency sample
801) and the leftmost point of S21 (frequency sample 802) can
be considered as two Gaussian random variables that based on
which quantization interval they are in can provide the keys
from Alice and Bob’s side, respectively.

III. PROPOSED SKG FOR FDD SYSTEMS

In this section, we elaborate on the proposed SKG scheme
which employs the phase differences between neighboring an-
tennas derived from scattering matrix parameters S12 and S21

bidirectional measurements for FDD systems. The proposed
scheme in its most complete form consists of five phases:
determine phase differences between neighboring antennas
from measured scattering parameters S12 and S21, pre-process
the measurements, quantization, key reconciliation, and finally
privacy amplification. In the end, identical secret keys shall be
generated.

Our comprehensive investigations on the resulting mea-
surement sets showed that the presence of 2π jumps on
the original phase differences led to generating dissimilar
keys and consequently increase the key disagreement rate
(KDR). Employing unwrapping, the most common solution
to prevent them, not only could not provide us with clean
data in the correct interval between −π to π but also caused
a dramatic increase in the variance of the data which lead to
not satisfying our threshold value for variance and reducing
the efficiency. Hence, we employ a two-stage pre-processing
step which includes a jump-removal technique that is followed
by an outlier-correction stage [8] to provide clean data with
minimum variance in comparison with both original and
unwrapped versions. Afterwards, we curve-fit the resulting
phase differences to improve channel reciprocity. Employing
second-order polynomial curve fitting can approximate the
frequency behavior of the phase difference between the trans-
mission characteristics of the neighboring antennas well [8].
Ideally, due to the reciprocity, we expect a direct continuity
between the S12 and S21 phase difference spectral segments(
S12(801) ≈ S21(802)

)
. An example of the original phase

difference measurements for S12 and S21 measured from a
circular array along with the corresponding unwrapped and
pre-processed versions are illustrated in Fig. 1. In order to
generate primary secret keys, the midpoint phase difference
estimate should be quantized. We employ a linear quantization
scheme that divides the complete 2π phase range into 2M

Figure 1. (Phase difference measurements for S12 and S21) Top: Original,
Middle: Unwrapped, Low: Pre-processed

equal quantization intervals. Applying a Gray coding scheme
leads to allocating an M -bit binary codeword to each quanti-
zation level which we interpret as primary keys between Alice
and Bob. The Gray coding ensures a single-bit change when
crossing quantization boundaries. Moreover, to reduce the key
disagreement rate, the primary keys of Alice and Bob should
be reconciled. We force the quantized measurements from one
side to be at the midpoint of the resulting quantization intervals
and consider this as the first stage of key reconciliation. This
amount of shift is publicly communicated, such that especially
the legitimate counterpart can likewise adjust the quantization
grid. Further key reconciliation steps like Slepian-Wolf coding-
based approaches and possibly following privacy amplification
can be applied to avoid leakage to an eavesdropper. Figure 2
shows the allocated Gray code after quantization and recon-
ciliation.

In order to further clarify the importance of data pre-
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Figure 2. linearly quantized phase difference measurements

processing, we consider the phase differences resulting from
a complete measuring round including 40 sets. Unusable
measurements we conclude from a very noisy phase. In our
processing, we rejected measurements when the variance of
the phase relative to the fitted polynomial exceeded ”1”
radian. Figure 3 provides a variance comparison possibility
for original, unwrapped, and pre-processed versions of the
measurements. As we can clearly see, employing unwrapping
decreases the variance in sets {2, 3, 28, 29, 30, 33, 37, 38} for
S12 and sets {24, 25} for S21, but it leads to an increase in
the variance of sets {10, 11} and {34, 35} for S12 and S21,
respectively, and consequently, the elimination of them due to
not satisfying the variance threshold. Moreover, it dramatically
increases the variance of the sets {4, 7, 8, 9, 15, 16} for S12

and {10, 11, 15, 16, 28} for S21 which were clean data origi-
nally and this causes efficiency decreasing conspicuously. The
pre-processing can correct the variance of all measurement
sets and provide a very good efficiency. To demonstrate the
performance of our reconciliation method, the resulting keys
for both, Alice and Bob, for all 40 previously considered
measurement sets are presented in Fig. 4. Presented results
in figs. 1 and 2 are related to the thirty-fifth set where one can
clearly recognize from Fig. 3 that unwrapping was not able to
correct, but as Fig. 4 shows, the pre-processed version indeed
generates the same key “011” from both sides.

IV. ERROR PROBABILITY DERIVATION

Consider X ∼ N(µx, σ
2
x) and Y ∼ N(µy, σ

2
y) as two

Gaussian random variables which represent the rightmost
point of the interpolated S12 and the leftmost point of the
interpolated S21, respectively. We determine the probability
that X and Y end up in different quantization intervals which
means an error or key disagreement. Let N be the number
of quantization levels. Then the width of each quantization
interval would be ∆ = 2π

N considering linear quantization.
The probability that a Gaussian RV X falls in between two
consecutive thresholds at (m−1) 2πN and m 2π

N , where m is an
integer between 1− N

2 to N
2 , can be computed as

P
(
(m− 1)

2π

N
≤ X ≤ m

2π

N

)
=

1

2

[
erf

(2πm−Nµx√
2Nσx

)
− erf

(2π(m− 1)−Nµx√
2Nσx

)]
. (1)

Figure 3. A variance comparison between all kinds of measurements

Figure 4. The resulting keys from Alice and Bob for all measurement sets
of a complete measuring round

Depending on which quantization interval the midpoint is
at, we have two M -tuple vectors from left and right for S12

and S21, respectively. Ending up in two different quantization
intervals usually just means a single-bit error between the
two resulted keys from left and right. Consequently, the error
probability would be equal to the probability of the situation
in which two RVs X and Y have different Gray codes, i.e.,

Perror = P (XGC ̸= YGC) . (2)

and the corresponding BER would be Perror/M .
In our case, considering 8 quantization intervals and 3 Bit

Gray coding, we have

Perror = P (XGC = 000) · P (error|XGC = 000)

+ · · ·+
P (XGC = 100) · P (error|XGC = 100) . (3)

Since the conditional probability of error given a specific Gray
sequence for X is the same as the probability that the allocated
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Gray code to Y is not equal to that specific sequence for X ,
we can express the error probability equation as

Perror = P (XGC = 000) ·
(
1− P (YGC = 000)

)
+ · · ·+
P (XGC = 100) ·

(
1− P (YGC = 100)

)
. (4)

Figure 5. A representation of two Gaussian RVs X and Y with corresponding
quantization thresholds and Gray codes

According to the Gray codes assigned to each quantization
interval in Fig. 5, the error probability relation can be written
as

Perror =

N
2∑

m=1−N
2

[
P
(
(m− 1)

2π

N
≤ X ≤ m

2π

N

)]
·

[
1− P

(
(m− 1)

2π

N
≤ Y ≤ m

2π

N

)]
. (5)

By inserting Eq. (1) into Eq. (5), the final error probability
relation can be expressed as

Perror =
N
2∑

m=1−N
2

[
1

2

[
erf

(2πm−Nµx√
2Nσx

)
− erf

(2π(m− 1)−Nµx√
2Nσx

)]]
·

[
1− 1

2

[
erf

(2πm−Nµy√
2Nσy

)
− erf

(2π(m− 1)−Nµy√
2Nσy

)]]
.

(6)

V. MULTIPLE LINEAR REGRESSION

In this section, we determine the mean and variance of both
aforementioned RVs X and Y to use in the extracted error
probability.

A. Data Model

We can consider the multiple linear regression model in the
most general case for our data as follows:

y = Xβ + ϵ , (7)

where y and X are a n × 1 vector of n observations of the
study variable and a n × (k + 1) matrix of n observations
on each of the k + 1 explanatory variables, which is often
referred to as the design matrix, respectively. Moreover, β
is a (k + 1) × 1 vector including fixed but unknown model
parameters representing regression coefficients and a n × 1
vector of ϵ is related to random error components which can
be assumed ϵ ∼ N (0, σ2In). Moreover, X is assumed as a

non-stochastic matrix such that rank(X) = k. Spelling out the
components of Eq. (7), this reads

y1
y2
...
yn

 =


1 x1 · · · xk

1

1 x2 · · · xk
2

...
...

. . .
...

1 xn · · · xk
n



β0

β1

...
βk

+


ε1
ε2
...
εn

 . (8)

B. Estimation of parameters

The general procedure for the estimation the regression
coefficient vector for k = 2 results from minimization of a
metric M

n∑
i=1

M(εi) =

n∑
i=1

M(yi − β0 − xiβ1 − x2
iβ2) . (9)

Choosing M(x) = x2 for the above metric leads to the
ordinary least-squares method. Let us consider B as the
(k + 1)−dimensional real Euclidean space consisting of the
set of all possible vectors of β. The objective is to find
a (k + 1)−tuple vector β̂ = (β̂0, β̂1, ..., β̂k) from B that
minimizes the sum of squared deviations of ϵT for given y
and X as

S(b) =

n∑
i=1

ε2i = yTy + bTXTXb− 2bTXTy. (10)

To find the desired vector, we should have ∂ S(b)
∂b = 2XTXb−

2XTy = 0 which implies that XTXb = XTy. If X is
full rank, we have rank(X) = k + 1, then XTX is positive
definite and consequently, the unique solution of (9) is

β̂ = (β̂0, β̂1, ..., β̂k) = (XTX)−1XTy = b . (11)

since ∂2 S(b)/∂b2 = 2XTX, at least, is non-negative defi-
nite, the aforementioned obtained β̂ minimizes S(b). In case
X is not full rank, the solution of Eq. (9) is as follows:

b = (XTX)g XTy + [ I− (XTX)g XTX ] w (12)

where (XTX)g represents the generalized inverse of XTX
and w can be considered as an arbitrary vector. If we consider
b as the estimate of β, then clearly the fitted values are

ŷ = Xb , (13)

and in the case of b = β̂, for the fitted values, we have

ŷ = Xβ̂ = X(XTX)−1XTy . (14)

by defining X(XTX)−1XT as a matrix H, we obtain

ŷ = Hy . (15)

The H matrix maps the vector of observed values (dependent
variable values) to the vector of fitted values, and its diagonal
elements are defined as the leverages, which describe the
influence each response value has on the fitted value for that
same observation. This matrix is symmetric and idempotent
and we have

trace(H) = trace(X(XTX)−1XT) = trace(XTX(XTX)−1)

= trace(Ik+1) = k + 1 . (16)
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Moreover, we can define the residuals as difference between
the observed and fitted values of the study variable as

e = y − ŷ = y −Hy = (I−H)y = H̄y . (17)

The matrix H̄ is symmetric and idempotent and we have

trace(H̄) = trace(In)− trace(H) = n− (k + 1) . (18)

Theorem 1: If X is full rank, then E(β̂) = β and Cov(β̂) =
σ2(XTX)−1.

proof.

E(β̂) = E[(XTX)−1XTy] = (XTX)−1XTE[y]

= (XTX)−1XTXβ = β . (19)

and

Cov(β̂) = Cov[(XTX)−1XTy]

= (XTX)−1XTCov[y]
(
(XTX)−1XT

)T
= (XTX)−1XTCov[y]X

(
(XTX)−1

)T
= (XTX)−1XTCov[y]X(XTX)−1

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1. (20)

Theorem 2: If A is an n × n matrix of constants and y
is an n-dimensional random vector such that E(y) = µ and
Cov(y) = Σ, then E(yTAy) = trace(AΣ) + µTAµ.

proof. See [10]
Theorem 3: If X is full rank, then E{S(β̂)} = σ2

(
n−(k+

1)
)
.

proof. Since

S(β̂) = (y −Xβ̂)T(y −Xβ̂)

= yTy − 2β̂
T
XTy + β̂

T
XTXβ̂

= yTy − β̂
T
XTy = yTy − yTX(XTX)−1XTy

= yTy − yTHy = yTH̄y. (21)

Using Theorem 2 implies that

E[S(β̂))] = trace
(
(In −H)(σ2I)

)
+ (Xβ)T(I−H)(Xβ)

= σ2trace(In −H) + βTXT(I−H)(Xβ)

= σ2trace(In −H) + βT
(
XTX−XTX

)
β

= σ2trace(In −H) . (22)

using Eq. (18), E{S(β̂))} = σ2
(
n− (k + 1)

)
.

Finally, σ2 can be estimated as sum of squares of the
residuals i.e.

σ̂2 =
1

n− (k + 1)

n∑
i=1

(yi − ŷi)
2 . (23)

In our case, employing second order polynomial curve
fitting we have yi = β0 + β1xi + β2x

2
i for i = 1, 2, ..., n.

Employing Theorem 1, linear regression coefficients would be
normal as β̂ ∼ N(β, σ2(XTX)−1). Hence one can determine
the required mean and variance of the resulting Gaussian
distribution at the merging point for random variable X as

X ∼ N(β0 + β1x + β2x
2, σ2

β0
+ x2σ2

β1
+ x4σ2

β2
) and the

procedure for random variable Y is same in which σ2
β0

, σ2
β1

,
and σ2

β2
are the first, second, and the third entries on the main

diagonal of covariance matrix of β̂, respectively.
From Fig. 4 we can clearly recognize that the key distri-

bution over all quantization intervals is not uniform. Using
a non-linear quantization scheme [9], this challenge could be
addressed easily. As an alternative solution, one can apply
arithmetic coding after linear quantization. Mean and variance
of the aforementioned measurement set, which is shown earlier
in Figs. 1 and 2, are µx = 1.6551, and σ2

x = 0.5847
for the rightmost point of S12 and µy = 1.8126, and
σ2
y = 0.2939 for the leftmost point of S21. Using Eq. (6)

the corresponding error probability for this set is determined
as Perror = 8.79 E − 2. The average error probability for all
40 measurement sets of Fig. 4, is determined as less than 5 %.

VI. CONCLUSIONS

This paper has provided a secret key generation scheme for
FDD systems that can simultaneously reach low complexity
and good performance metrics. Using neighboring frequency
bands very close to each other can guarantee the required
reciprocity for such systems. It was shown that employing
robust pre-processing steps on the measurements led to getting
better results in terms of efficiency and KDR. We provided
a detailed statistical analysis for the random variables at the
merging point of two FDD bands using a multiple linear
regression model. Moreover, we extracted an error probability
relation for the generated keys from both sides.
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