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Abstract—Deep matrix factorizations (deep MFs) are recent
extensions of standard MFs to several layers. This allows one
to extract hierarchical interleaved features in high-dimensional
datasets. In this paper, we present a variant of deep MF
where the input matrix is symmetric and nonnegative, dubbed
deep symmetric nonnnegative matrix factorization (DSNMF). We
compare several loss functions to tackle DSNMF and propose
different possible initialization techniques. We apply successfully
DSNMF to the extraction of several levels of communities, both
on synthetic data and on a psychiatric network, a promising
application in the medical field.

I. INTRODUCTION

Matrix factorizations (MFs) is a set of well-known unsu-
pervised learning techniques where a data matrix X ∈ Rm×n

is approximated by the product of two smaller matrices,
W ∈ Rm×r and H ∈ Rr×n, such that X ≈ WH . To
make the approximation meaningful, various constraints may
be assumed on W and H including nonnegativity [1] and
sparsity [2]. Among these variants, symmetric nonnegative
matrix factorization (symNMF) [3], [4] requires the data
matrix X to be nonnegative and symmetric, that is, X = XT

with m = n, and H = WT . This occurs when the entries of X
measure the similarities between different items, for example
a word co-occurrence matrix in topic modeling [5], or an adja-
cency matrix of an undirected graph. In this context, symNMF
extracts communities of nodes, possibly overlapping, such that
the nodes of a given community have more connections (that
is, edges) with each other than with nodes belonging to other
communities.

Recently, MFs started to scale up by considering several lay-
ers in the decomposition, following the path of deep learning.
Especially, two milestone frameworks were successively intro-
duced in the literature, namely multilayer MFs [6] and deep
MFs [7]. More precisely, L layers of successive factorizations
of ranks rl (l = 1, ..., L) are performed on X as follows:

X ≈ W1H1,

W1 ≈ W2H2,

. . .

WL−1 ≈ WLHL,

where Wl ∈ Rm×rl and Hl ∈ R+
rl×rl−1 (l = 1, . . . , L)

with r0 = n, so that the matrix X is approximated as
X ≈ WLHLHL−1 · · ·H1. In deep MF, the ranks are assumed
to be decreasing, that is, r1 > r2 > · · · > rL; see [8], [9] for
details.

Both multilayer MFs and deep MFs decompose the input
matrix through several layers, but they differ on the way

the factors are optimized. These "in-depth" factorizations
were leveraged in several applications, such as hyperspectral
unmixing [10], recommender systems [11] and multi-view
clustering [12], and allow one to extract hierarchical features.

To the best of our knowledge, combining symmetry and
depth within MFs has not yet been explored in the literature.
In this paper, we explore such a MF, namely deep symmetric
nonnegative matrix factorization (DSNMF).

Organization of the paper: In Section II, we describe
DSNMF, along with the intuition behind it, and provide an
illustration on a simple example. In Section III, we present the
loss function for DSNMF and an efficient algorithm to solve it.
We also discuss the initialization of DSNMF. Experiments on
both synthetic and real data are then performed in Section IV,
before concluding in Section V.

II. PROPOSED DSNMF MODEL

The goal of DSNMF is to leverage L levels of factorizations
to give at each layer l a nonnegative symmetric approxim-
ation of rank rl of the original matrix X ∈ Rn×n. More
precisely, at the first layer, X is approximated by W1W

T
1

where W1 ∈ Rn×r1
+ , as in symNMF (see the introduction).

Let X be the symmetric adjacency matrix of a graph. In this
case, each column of W1 can be interpreted as a community,
with W1(i, k) being the indicator of node i to belong to com-
munity k. In fact, X ≈

∑r1
k=1 W1(:, k)W1(:, k)

T means that
X is approximated as the sum of r1 communities which are
rank-one nonnegative adjacency matrices. At the second layer,
the matrix W1 is factorized as W1 ≈ W2H2 with W2 ∈ Rn×r2

+

and H2 ∈ Rr2×r1
+ , and r2 < r1. This gives a new symmetric

approximation of X , namely X ≈ W2(H2H
T
2 )W

T
2 . At the

second layer, each column of W2 indicates to which extent
the n data points belong to one of the r2 communities. The
square inner matrix H2H

T
2 ∈ Rr2×r2 indicates how strongly

the r2 communities interact with each other. In fact, the
second layer of DSNMF is a particular case of symmetric
nonnegative tri-factorization, namely X ≈ WSWT where
S = H2H

T
2 [13]. As the factorization unfolds, the rl’s

columns of the matrices Wl’s will identify fewer communities
(as the ranks of the factorization are decreasing) and the inner
square matrix Hl · · ·H2H

T
2 · · ·HT

l indicates how the numer-
ous small communities of the first layers are progressively
merged in fewer larger communities at the last layers. Hence,
DSNMF provides a deeper level of understanding of the input
data matrix than its single-layer version, similarly to the other
deep MF models [8].
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Fig. 1: Simple graph to illustrate the working of DSNMF, with
two levels of communities.

Let us illustrate DSNMF with L = 2 on the synthetic graph
of Fig. 1, made of 14 nodes. DSNMF applied with r1 = 4
and r2 = 2 splits the nodes in four communities at the first
layer, namely containing the nodes {1, 2, 3, 4}, {4, 5, 6, 7},
{8, 9, 10, 11}, and {11, 12, 13, 14}. They correspond to the
sets of nodes surrounded with a solid line circle. Note that
nodes 4 and 11 belong with the same proportion to two
communities. Then, at the second layer, only two communities
remain (dashed circles), obtained by merging respectively the
first two and the last two communities of the first layer.

III. ALGORITHM FOR DSNMF

Given a nonnegative symmetric matrix X ∈ Rn×n
+ , standard

symNMF consists in solving the following problem:

min
W∈Rn×r

+

∥X −WWT ∥2F .

To avoid dealing with a fourth-order objective function in W ,
an alternative formulation is proposed in [4]:

min
W,H≥0

∥X −WH∥2F + µ∥W −HT ∥2F . (1)

For µ sufficiently large, it has been shown that W = HT holds
for the critical points of (1) [14]. Extending (1) to L layers
requires to define an appropriate loss function. Inspired by [15]
that showed that weighted sums of layer-wise contributions
are meaningful loss functions for deep MFs, we propose to
minimize

LDSNMF =
1

2

(
∥X −W1H1∥2F + µ1∥W1 −HT

1 ∥2F + λ1

(∥W1 −W2H2∥2F + µ2∥W2 − (H2H1)
T ∥2F ) + · · ·+ λL−1

(∥WL−1 −WLHL∥2F + µL∥WL − (HLHL−1 · · ·H1)
T ∥2F )

)
.

(2)

This layer-centric loss function performs a weighted
sum of the layer-wise symNMF errors, that is,
err(l) = ∥Wl−1 − WlHl∥2F + µl∥Wl − (Hl · · ·H1)

T ∥2F

for l = 1, . . . , L, with W0 = X . Each layer-wise error
is in turn the sum of two contributions. The first one,
namely err1(l) = ∥Wl−1 − WlHl∥2F , is the reconstruction
error at layer l, that is, the error between Wl−1 and its
approximation WlHl of rank rl. The second term, namely
err2(l) = µl∥Wl − (Hl · · ·H1)

T ∥2F for all l, ensures the
symmetry of the factorization, using the same trick as in
Eq. (1) to solve non-quadratic optimization subproblems.
With such a global loss function, it is possible to derive
meaningful update rules for all the factors Wl’s and Hl’s,
which are optimized alternatively, that lead to a monotonic
decrease of the objective function.

To minimize LDSNMF in Eq. (2), we use a block coordinate
descent (BCD) method, with the blocks of variables Wl’s and
Hl’s. This general framework is presented in Algorithm 1. The
subproblems in one factor matrix at lines 4 and 5 are solved
with a fast projected gradient method (FPGM) with Nesterov
acceleration [16], similarly to what is described in [15].

Algorithm 1 DSNMF

Input: Symmetric matrix X .
Output: Matrices W1, · · · ,WL and H1, · · · , HL

1: Choose the number of layers L, the inner ranks r1, ..., rL,
and the initial matrices W

(0)
l and H

(0)
l for all l.

2: for k = 1, . . . do
3: for l = 1, . . . , L do
4: H

(k)
l = arg reduce

Hl

LDSNMF

5: W
(k)
l = arg reduce

Wl

LDSNMF

6: end for
7: end for

A crucial aspect of deep MF models is the choice of the
hyperparameters, namely the number of layers, L, and their
factorization ranks, rl’s. In the following, we suggest two ways
of initializing DSNMF:

• When the depth L and the ranks rl’s are given by the
user, the initial factors W

(0)
l ’s and H

(0)
l ’s are initialized

with a sequential multilayer approach, as in [17]. This is
the strategy that we chose for experiments on synthetic
data since it provides control on the network architecture.

• When no prior information on the network is provided,
we resort to the well-known Louvain Method (LM) [18].
LM is a widely-used algorithm that extracts communities
of nodes in a graph by maximizing the so-called network
modularity. LM starts with each node representing its
own community and then tries to move nodes from one
community to another. After each iteration t, LM provides
a split of the graph in rt disjoint communities, that is,
with each node belonging to a single community. In
other words, LM extracts a bottom-up hierarchy of com-
munities inside a graph, allowing a different interpretation
at each iteration, similarly to what multilayer MF does
(except that in multilayer MF, nodes can simultaneously
belong to several communities, with some proportions).
Hence, in the absence of values provided by the user, we
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set the number of layers L of DSNMF to be equal to the
number of iterations of LM and the ranks rl’s are taken
as the number rt’s of communities successively extracted
by LM. The initial matrices W (0)

l ’s are built for all l such
that each column corresponds to a community extracted
by LM at iteration l.

IV. EXPERIMENTS

In this section, we apply DSNMF on synthetic data in Sec-
tion IV-B, and on a real psychiatric network in Section IV-C.
DSNMF can be interpreted as a hierarchical unsupervised
fuzzy clustering approach hence no clear ground truth is
available, which renders the quantitative assessment of the
model challenging, even on synthetic data.

A. Compared methods

In the following experiments, we compare three algorithms,
namely:

• DSNMF, see Algorithm 1 in Section II. To set up
the parameters λl’s for l = 1, ..., L − 1 and µl’s
for l = 1, ..., L, we balance the importance of each
layer and proceed as follows. The λl’s are chosen
such that the initial contributions of all layers are the
same, that is, λl = err(0)(1)

err(0)(l+1)
. Similarly, the µl’s

are such that for all l, err
(0)
1 (l) = err

(0)
2 (l), that is

µl =
∥W (0)

l−1−W
(0)
l H

(0)
l ∥2

F

∥W (0)
l −(H

(0)
l ···H(0)

1 )T ∥2
F

.
• Multilayer symmetric NMF (MSNMF); this is the sym-

metric version of the sequential multilayer factorization
of Cichocki et al. [6]. In other words, the symmetric
factorizations are successively performed independently
layer by layer.

• Spectral clustering (SpecClust) applied at each layer; this
is a well-known clustering algorithm [19] which applies
k-means to the n rows of the matrix whose columns are
the first (that is, smallest) k eigenvectors of the graph
Laplacian matrix. Hence, SpecClust generates disjoint
communities, contrary to DSNMF and MSNMF.

All experiments were run in MATLAB, the code is available
from https://gitlab.com/ngillis/deep-SymNMF/.

B. Synthetic dataset

We build our dataset in a similar way as the toy example of
Fig. 1. More precisely, we set L = 2, r1 = 4 and r2 = 2.
The noiseless graph consists in two disjoint sub-graphs of
the same size, themselves composed of two cliques of the
same size that have n∗ nodes in common, which is the same
for both sub-graphs. Hence, each of these 2n∗ nodes belong
equally to two communities at the first layer. For n = 14 and
n∗ = 1, this is exactly the situation represented on Fig. 1 if the
edge between nodes 4 and 11 is removed. We add symmetric
white Gaussian noise of standard deviation ϵ to the noiseless
adjacency matrix X̃ such that the noisy data matrix is given
by

X = max

(
0, X̃ + ϵ||X̃||F

N

||N ||F

)
,

(n, n∗,ν) DSNMF MSNMF SpecClust

(14, 1, 0.01) 0.10± 0.01 0.11± 0.02 9.54

(14, 1, 0.05) 0.53± 0.08 0.54± 0.08 9.54

(14, 1, 0.1) 1.06± 0.16 1.07± 0.17 9.54

(14, 1, 0.5) 5.95± 0.71 5.65± 0.73 9.54

(100, 10, 0.01) 0.05± 0.00 0.05± 0.00 11.17

(100, 10, 0.05) 0.27± 0.01 0.23± 0.01 11.17

(100, 10, 0.1) 0.55± 0.02 0.46± 0.02 11.17

(100, 10, 0.5) 3.78± 0.15 2.52± 0.12 11.33± 0.16

(100, 30, 0.01) 0.07± 0.00 0.06± 0.00 18.31

(100, 30, 0.05) 0.34± 0.01 0.31± 0.01 18.31

(100, 30, 0.1) 0.72± 0.03 0.62± 0.03 20.19± 5.09

(100, 30, 0.5) 6.37± 0.20 3.40± 0.19 18.31

(a) MRSA at the first layer.

(n, n∗,ν) DSNMF MSNMF SpecClust

(14, 1, 0.01) 2.39± 7.72 5.09± 7.26 0

(14, 1, 0.05) 2.42± 4.90 5.94± 6.30 0

(14, 1, 0.1) 5.41± 9.24 19.98± 11.84 0

(14, 1, 0.5) 21.54± 12.47 32.05± 12.25 14.49± 17.04

(100, 10, 0.01) 0.05± 0.00 8.02± 5.14 0

(100, 10, 0.05) 0.29± 0.05 1.75± 1.18 0

(100, 10, 0.1) 0.56± 0.08 1.64± 1.10 0

(100, 10, 0.5) 3.85± 0.85 23.85± 7.47 0

(100, 30, 0.01) 0.04± 0.00 19.78± 2.45 0

(100, 30, 0.05) 0.19± 0.01 20.72± 2.40 0

(100, 30, 0.1) 0.39± 0.02 20.88± 2.00 0

(100, 30, 0.5) 2.10± 0.16 21.64± 2.02 0

(b) MRSA at the second layer.

Table I: Comparison of the MRSA (average and standard
deviation) of DSNMF, MSNMF and SpecClust on synthetic
data over 25 runs in function of the noise level ϵ and the
configuration of the network for (a) r1 = 4 and (b) r2 = 2.
The best average MRSA achieved for each configuration is
highlighted in bold.

where N is a symmetric square matrix whose elements are
drawn from the standard normal distribution.

For different noise levels ϵ and for several combinations of
n and n∗, we run the three methods described in Section IV-A
with 25 different randomly generated noise matrices N as
described above. Table I reports the average and standard de-
viation of the mean removed spectral angle (MRSA) between
the columns of the ground truth and of the computed factors
Wl’s (which were permuted to minimize the MRSA), over
these 25 runs. The MRSA between two vectors x and y is
given by MRSA(x, y) = 100

π arcos
(

⟨x−x,y−y⟩
∥x−x∥2∥y−y∥2

)
∈ [0, 100]

where ⟨ · , · ⟩ indicates the scalar product of two vectors and
· is the mean of a vector.

The interpretation of the results is not easy since no method
clearly outperforms the others. At the first layer, DSNMF
and MSNMF perform comparably, and outperform spectral
clustering, especially in more challenging settings, when the
clusters are more overlapping (that is, when n∗ is larger). It
was expected that MSNMF performs well on the first layer
since it optimizes the first layer independently of the next
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ones. It is reassuring to see that DSNMF performs comparably:
although it has to take into account the decomposition at
the second layer, the error at the first layer is similar to
that of MSNMF. On the other hand, spectral clustering only
extracts disjoint communities, which is a limitation since the
communities at the first layer are overlapping.

At the second layer, MSNMF completely fails, showing the
limitations of a purely sequential approach. This behaviour
is likely to worsen when the number of layers increases.
Spectral clustering nearly performs a perfect clustering at the
second layer, which is expected since the two corresponding
communities are disjoint (in the noiseless case). It is important
to keep in mind that SpecClust always works on the original
data without the need to keep a balance between several
layers, such as DSNMF. Since it is by definition a single-layer
method, SpecClust is not able to interpret the links between
successive levels of communities, as opposed to DSNMF.

In summary, DSNMF is the only method able to balance
both layers for the various tested configurations.

C. Psychiatric networks

Network analysis has been recently applied successfully in
computational psychiatry. The original data matrix Y ∈ Rm×n

contains the ratings of m subjects on n symptoms on an
ordinal scale. Given Y , the symmetric input matrix X ∈ Rn×n

is made of the partial correlations between the n symptoms,
that is, X(i, j) = − K(i,j)√

K(i,i)K(j,j)
where K = Σ−1 is the

precision matrix, defined as the inverse of the covariance
matrix of the columns of Y [20].

Considering the graph whose adjacency matrix is X and
where each node corresponds to a symptom, it is interesting
to identify its communities. This would allow us, for example,
to evaluate the set of symptoms that will be somehow im-
pacted by an action (such as a medication) on a particular
symptom [21]. Most works in this recent field only extract
one level of disjoint communities, which does not allow to
finely grasp all the possible interactions in the network.

In the following, we consider a dataset of 359 women suf-
fering from post-traumatical stress disorder (PTSD) evaluated
through the PTSD Symptom Scale-Self Report (PSS-SR) [22].
The PSS-SR is an ordinal scale assessing the 17 symptoms of
PTSD. It is built on the fourth version of the Diagnostic and
Statistical Manual of Mental Disorders (DSM) [23] (DSM-IV),
a standard classification of mental disorders used by mental
health professionals. Note that the fifth version is denoted
DSM-5; see below for some details. Items correspond to the
frequency of some behaviours considered as characteristic
of the pathology. This scale was expected to have three
communities representing symptoms of arousal (for example,
being jumpy), avoidance (for example, avoid reminders of the
trauma) and re-experiencing (for example, having bad dreams
about the trauma).

The network of symptoms is built in R with the so-called
EBIC graphical Lasso regularization (see [21]) and represented
on Fig. 2.

Fig. 2: Communities extracted at each layer by DSNMF on a
PTSD dataset. Communities extracted at the first and second
layer are circled in green and red, respectively.

We apply DSNMF on this network with the LM initializa-
tion. LM extracts 2 layers of respectively 4 and 3 communities
hence we perform DSNMF with L = 2, r1 = 4, r2 = 3. Fig. 2
displays the extracted communities at the first and second
layers which are circled in green and red, respectively. For
convenience, we only plot the main communities to which
each node belongs to. For a given node, we first assign it to the
community for which it has the largest degree of membership
(that is, largest value in the corresponding factor Wl). Then,
we sequentially assign it to more communities as follows: we
assign it to the next community with the largest degree of
membership if this degree is at least 60% of the one of the
latest community assigned to this node. At the first layer, the
4 extracted communities are

• {1, 3, 4, 13, 14}, which represents symptoms of avoidance
and physical reaction caused by the lack of avoidance of
trauma reminders,

• {5, 6, 7, 8, 9, 10, 11, 12}, which is clinically the most
homogeneous community. These symptoms represent a
negative mood and correspond to the community added
in the new version of the scale (that is, DSM-5), and

• {2, 10, 12, 13, 15, 16} and {12, 13, 14, 17} gather re-
experiencing symptoms and attempts to avoid such re-
experiences.

Let us remark that node 10 and 14 belong to two communities
and nodes 12 and 13 belong to three communities.

At the second layer, the 3 extracted com-
munities are {1, 3, 4, 14}, {5, 6, 7, 8, 9, 10, 11} and
{2, 10, 12, 13, 14, 15, 16, 17}. Node 10 and 14 again belong
to two communities. Roughly speaking, the second layer
merges the two last communities of the first layer, keeping
the two others mostly unchanged.
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The analysis of the different communities shows that the
algorithm did not extract the different sub-scales of the PSS-
SR, but rather extracted communities representing behaviours
that are commonly presented together among patients. In other
words, DSNMF did not extract the different symptoms of
avoidance, re-experiencing and arousal distinctly, but rather
extracted behaviors that can be observed together. This could
have strong clinical implication for disorders presenting com-
plex interactions between multiple features, such as PTSD or
suicide behaviors.

Finally, it is to be noted that the communities extrac-
ted by DSNMF represent well the criticisms raised by the
DSM-IV assessment of PTSD. The joint presentation of
symptoms representing a negative mood and cognition led the
research community to modify the assessment of PTSD in
the DSM-5 [24]. Indeed, it was shown that (i) certain items
represented a different category of symptoms that the one
originally conceptualized, and (ii) the formulation of certain
items led to inconsistencies [25]. The analysis of the node
shared by the most communities strengthens this interpretation.
That is, node 12 has been largely questioned, re-written in the
DSM-5 and finally added to the new community of symptoms
of negative mood and cognition.

V. CONCLUSION

In this paper, we introduced deep symmetric nonnegative
matrix factorization (DSNMF), an extension of symmetric
NMF to several layers. We showed the efficiency of the
proposed model on both synthetic and real data for the
hierarchical extraction of interleaved communities in networks.
In particular, we extracted non-disjoint communities in a
network of psychiatric symptoms, that lead to meaningful
clinical interpretations. We plan to investigate more in details
the added value of such hierarchical communities extraction
in the psychological field in future works.

Interesting perspectives also include the experimentation of
other initialization strategies for real data, especially when the
number of layers of factorization is unknown. In this paper,
we used the well-known Louvain Method which extracts a
hierarchy of disjoint communities but has the drawback to
assign each node to a single community at each step. Testing
our model on other applications, such as the hierarchical ex-
traction of topics in a document corpus, is an other promising
perspective, but without ground truth, the quantitative analysis
of the performance of DSNMF would be challenging, as
for the other unsupervised deep MF models. Hence, defining
proper metrics to assess the quality of such a hierarchical fuzzy
clustering also seems crucial to us.
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