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Abstract—The bilinear mixture model (BMM) is often used in
hyperspectral unmixing (HU) for incorporating nonlinear effects,
which is considered more general than the widely used linear
mixture model (LMM). Existing BMM-based HU methods often
lack identifiability guarantees of the endmembers and their
abundances unless some stringent conditions are met. This work
puts forth a new framework for BMM-based HU. Our method
models the hyperspectral image as a latent factor-structured
block-term tensor decomposition model with multilinear rank-
(Lr, Lr, 1) terms (“LL1" model for short). This way, the HU task
boils down to finding the block terms of the tensor model. The
LL1 model’s essential uniqueness naturally provides identifiability
guarantees of the endmembers/abundances under reasonably
mild conditions. An alternating gradient projection (GP) algorithm
is proposed to takle the formulated tensor decomposition-based
BMM-HU problem. Simulations on semi-real and real datasets
show the high-quality unmixing performance of the proposed GP
algorithm compared to state-of-the-art methods.

Index Terms—Bilinear hyperspectral unmixing, block-term
tensor decomposition, identifiability

I. INTRODUCTION

Hyperspectral unmixing (HU) techniques estimate the end-
members and their corresponding proportions (abundances)
from the high-dimensional pixels. The pixels are often mix-
tures of the endmembers due to low spatial resolution of the
hyperspectral sensors [1], [2]. The widely used linear mixture
model (LMM) expresses a pixel as the convex combination of
the endmembers [2]. Nonetheless, the LMM could be overly
simplified as nonlinearity oftentimes arises in hyperspectral
image (HSI). Efforts have been made towards fending against
nonlinearity in HU via using various nonlinear models; see,
e.g., [3]. Among these nonlinear models, the bilinear mixture
model (BMM) is arguably one of the most widely adopted
due to its effectiveness in capturing sunlight reflection among
more than one material [4]–[8].

Over the past decade, many BMM algorithms were devel-
oped; see, e.g., [4]–[8]. However, most of the existing BMM
models lack identifiability guarantees of the endmembers and
their abundances. The recent works [9], [10] studied and es-
tablished the identifiability for BMM-based HU. Nevertheless,
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the identifiability only holds under some relatively stringent
conditions, e.g., the pure pixel condition and its variants. But
such conditions are not always easy to meet.

In this work, we propose a new BMM-based HU algo-
rithm from a tensor decomposition perspective. We model
the hyperspectral images as a block-term tensor decompo-
sition model with multilinear rank-(Lr, Lr, 1) terms (“LL1"
model for short). This way, estimating the abundances and
the endmembers boils down to recovering the block terms
of the LL1 tensor model. One of the advantages of adopt-
ing this perspective is that the LL1 decomposition allows
for the identification of block terms under relatively mild
conditions, which aligns well with the objectives of HU.
Computing the LL1 decomposition under constraints arising
in the context of BMM-based HU is highly nontrivial. We
develop an alternating gradient projection (GP) algorithm
and a heuristic alternating projection (AP) solver to handle
the challenging structural constraints. Simulations show that
the proposed algorithm produces more accurate results for
estimating both linear and bilinear abundances relative to state-
of-the-art methods.

II. BACKGROUND

A. BMM-based HU
Consider a HSI Y ∈ RI×J×K , where I and J denote the

vertical and horizontal spatial dimensions, respectively, and
K is the spectral dimension. A vector yℓ := Y (i, j, :) ∈
RK , (i = 1, . . . , I, j = 1, . . . , J) represents a K-dimensional
hyperspectral pixel, in which we have

ℓ = I(j − 1) + i.

If the noise is absent, the BMM for yℓ is expressed as follows
[11]:

yℓ = Csℓ +

R−1∑
r=1

R∑
m=r+1

er,mℓ cr ⊙ cm

= Csℓ + C̃eℓ, (1)

where C = [c1, . . . , cR] ∈ RK×R contains R endmembers’
spectral signatures (i.e., cr ∈ RK , r = 1, . . . , R), and the cor-
responding abundance vector sℓ ∈ RR satisfies the following
simplex constraint [1], [2] under the physical mechanism:

1⊤sℓ = 1, sℓ ≥ 0, ℓ = 1, . . . , IJ, (2)
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Fig. 1. Illustration of the bilinear HU.

where 1 is an all-1 vector with a proper length, and sr,ℓ is
the proportion of r-th endmember in the pixel ℓ. The term
Csℓ is the same as the LMM for HSI [1]. The additional
term C̃eℓ is called the bilinear mixture term, which models
the reflections between two different endmembers that is con-
sidered as a major source of nonlinearity in HSI acquisition.
Note that er,mℓ ∈ [0, 1] stands for the abundance of the “virtual
endmember” cr⊙cm that is created by the reflections between
endmembers r and m, where ⊙ is the Hadamard (element-
wise) product. The matrix C̃ ∈ RK×P (P = (R − 1)R/2)
denotes the bilinear virtual spectral signatures, i.e.,

C̃ = [c1 ⊙ c2, . . . , c1 ⊙ cR, c2 ⊙ c3, . . . , cR−1 ⊙ cR],

and eℓ = [e1,2ℓ , . . . , e1,Rℓ , e2,3ℓ , . . . , eR−1,R
ℓ ]⊤ is the abundance

vector associated with bilinear endmembers.
Putting all pixels together Y = [y1, . . . ,yIJ ] ∈ RK×IJ , the

HSI can be expressed as follows:

Y = CS + C̃E, (3)

where S = [s1, . . . , sIJ ] ∈ RR×IJ , and E = [e1, . . . , eIJ ] ∈
RP×IJ . Reshaping Y into a third-order tensor, we have

Y =

R∑
r=1

Sr ◦C(:, r) +

P∑
p=1

Ep ◦ C̃(:, p), (4)

where C(:, r) = cr, ◦ denotes the outer product, and C̃(:
, p) = cr ⊙ cm with p = m − r +

∑r−1
r̃=1(R − r̃) (1 ≤ r <

m ≤ R) , the matrix Sr ∈ RI×J is the abundance map of the
rth endmember, which can be obtained by reshaping the rth
row vector S(r, :) ∈ RIJ , i.e.,

S(r, :) = vec(Sr)
⊤,

where the vec(·) is the “vectorization” operator. Also, we
can get the pth bilinear abundance map Ep via E(p, :) =
vec(Ep)

⊤. The signal model in (4) is illustrated in Fig. 1.
The linear abundance maps satisfy the simplex constraint∑R
r=1 Sr = 11⊤ and Sr ≥ 0. The goal of BMM-based HU is

to find S, C, and E simultaneously.

B. Existing BMM Methods

Under the matrix formulation in (3), a large number of
matrix-based methods have been proposed for bilinear HU,
please see more introductions in [3], [11] and references
therein. As a blind source separation problem, the identifia-
bility of C, S, and E in (3) plays an important role in the
effectiveness of the bilinear HU. However, the identifiability of
BMM-based HU has been less studied until recent works [9],
[10], which both require the factors C, S, and E satisfying

Fig. 2. Illustration of the LL1 model.

certain conditions. To be specific, the work in [9] relied on two
strong assumptions: (1) the abundance map [S;E] has full row
rank, and all possible interactions of two endmembers must be
present in the HSI; (2) the wavelength K of HSI should be
of the order K ≈ O(R4). The identifiability condition in [10]
requires the existence of the pure pixels, which is often used
in LMM-based HU [12], [13]. However, these conditions are
relatively stringent and may not always hold.

C. LL1 Tensor Decomposition

In this work, we will tackle the BMM-based HU problem
from an LL1 tensor decomposition viewpoint. The LL1 model
(see Fig. 2) decomposes a third-order tensor Y ∈ RI×J×K

into the sum of a set of latent components, in which each
component is expressed as the outer product of a vector and
a low-rank matrix. To be specific, we have

Y =

R∑
r=1

(
ArB

⊤
r

)
◦C(:, r), (5)

where Ar ∈ RI×Lr , Br ∈ RJ×Lr , and C ∈ RK×R. The LL1
model in (5) has an important identifiability property:

Theorem 1 ( [14]). Assume that the latent factors (Ar,Br,C)
in (5) are drawn from any joint absolutely continuous distri-
butions. Assume that Lr = L, the LL1 decomposition of Y is
essentially unique almost surely if IJ ≥ L2R, and

min

(⌊
I

L

⌋
, R

)
+min

(⌊
J

L

⌋
, R

)
+min(K,R) ≥ 2R+ 2.

Here, the term “essential uniqueness” means that if we
have (Ār, B̄r, C̄) satisfying Y =

∑R
r=1(Ār(B̄r)

⊤) ◦ C̄(:, r),
there must exist a permutation matrix Π and a nonsingular
diagonal matrix Λ such that S̄ = SΠΛ, C̄ = CΠΛ−1,
where S̄ = [vec(S̄1), . . . , vec(S̄R)]

⊤, S̄r = Ār

(
B̄r

)⊤
,

S = [vec(S1), . . . , vec(SR)]
⊤, and Sr = ArB

⊤
r .

Note that due to the important identifiability property,
the LL1 model has been successfully employed for many
tasks, e.g., LMM-based HU [15], [16], hyperspectral super-
resolution [17], and spectrum cartography in wireless com-
munications [18].

III. LL1-BASED BILINEAR HU

The spread of each material over the spatial domain often
exhibits high correlation across neighboring pixels. Hence,
the abundance maps Sr can be approximated by low-rank
matrices—as observed in the LMM works [15]–[17]. Using
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the same idea to model Ep, we assume that the following
hold:

rank(Sr) ≤ Lr and rank(Ep) ≤ Qp. (6)

Therefore, the model (4) can be re-written as

Y =

R∑
r=1

(ArB
⊤
r ) ◦C(:, r) +

P∑
p=1

(MpN
⊤
p ) ◦ C̃(:, p), (7)

where Ar ∈ RI×Lr , Br ∈ RJ×Lr , Sr = ArB
⊤
r , Mp ∈

RI×Qp , Np ∈ RJ×Qp , and Ep = MpN
⊤
p . The model in (7)

is clearly an LL1 model. Hence, by applying Theorem 1, one
can obtain the following identifiability guarantee immediately:

Fact 1. Assume that the latent factors Ar, Br, Mp, Np,
and C in (7) are drawn from any absolutely continuous
distributions. Then, the bilinear LL1 decomposition of Y
is essentially unique almost surely, if Lr = L, Qp = Q,
O = max(L,Q), IJ ≥ max

(
L2R, Q2R

)
and

min

(⌊
I

O

⌋
,
R(R+ 1)

2

)
+min

(⌊
J

O

⌋
,
R(R+ 1)

2

)
+min(K,R(R+ 1)) ≥ 2R(R+ 1) + 2.

Note that the identifiability result does not require K ≈
O(R4) as in [9]. Instead, K ≈ O(R2) is enough. In addition,
unlike [10], there is no requirement for the existence of pure
pixels. Hence, the LL1 tensor decomposition perspective offers
a valuable alternative to existing identifiability-ensured BMM
HU toolkit, covering scenarios where the existing approaches
could not provide identifiability guarantees.

A. Constrained LL1 for bilinear HU

To proceed, we propose the following tensor decomposition
criterion:

min
S,C,E

1

2

∥∥∥Y −CS − C̃E
∥∥∥2
F
+ θ1φ(S) + θ2φ(E) (8a)

s.t. Sr ∈ ALR, r = 1, . . . , R, (8b)

S ≥ 0, 1⊤S = 1⊤, C ≥ 0, E ≥ 0, (8c)
Ep ∈ BLR, p = 1, . . . , R(R− 1)/2, (8d)

where θ1, θ2 ≥ 0 are regularization parameters, and the sets
ALR and BLR are used for adding the low-rank constraints
onto Sr and Ep, respectively, which will be stated later. The
nonnegativity constraints are added to reflect the physical
meaning of the factors. The regularization φ(·) is used to
exploit the sparsity of the abundances that is often observed
in the literature [19]–[22]. The regularization has the form of
φ(X) =

∑∑
([X]2i,j + ε)

q
2 with 0 < q ≤ 1 and ε > 0,

which is often used as a non-convex sparsity promoter in the
literature; see, e.g., [23].

B. Algorithm Design

We propose an inexact block coordinate descent algorithm
to tackle Problem (8).

1) Solver for Updating C: To begin with, we update each
element in C by

ckr ← max

(
ỹkrs̃

⊤
kr

∥s̃kr∥22
, 0

)
, (9)

k = 1, . . . ,K, r = 1, . . . , R,

where

s̃kr=S(r, :)+

R∑
a=1,a ̸=r

ckaeka, (10)

ỹkr=Y (k, :)−
R∑

a = 1
a ̸= r

ckaS(a, :)−
R−1∑
a = 1
a ̸= r

R∑
m = a + 1

a ̸= r

ckackmeam,

where eka denotes the 1×IJ row abundance vector associated
with the mixture of endmembers k and a for all pixels. The
update is derived following the classic update in the HALS
algorithm for NMF; see [24].

2) Solver for Updating S: For the S-subproblem, we use
the following gradient projection (GP) operator:

S(t+1) ← ProjS

(
S(t) − β(t)G

(t)
S

)
, (11)

where the notation ProjS(·) is the projector on the set S, G(t)
S

denotes the gradient w.r.t. S at t-th iteration, β(t) is the step
size, and the set S ⊆ RR×IJ is defined as

S = {S|S ≥ 0,1⊤S = 1⊤,Sr ∈ ALR, r = 1, . . . , R}. (12)

The challenge is that there is no tractable solution designed
for the GP in (11). Here, we use the alternating projection
(AP) operator proposed in [16]. The solver expresses ALR =
{Sr ∈ RI×J |∥Sr∥∗ ≤ L̃} and alternates projection over ALR

and the simplex constraint Asplx = {S ∈ RR×IJ | 1⊤S =
1⊤, S ≥ 0}. The algorithm often converges very quickly; see
details in [16].

3) Solver for Updating E: For E-subproblem, we also use
the GP method:

E(t+1) ← ProjE

(
E(t) − η(t)G

(t)
E

)
, (13)

where η(t) and G
(t)
E respectively denote the step size and

gradient used at t-th iteration, ProjE(·) denotes the projector on
the set E = {E ∈ RP×IJ |E ≥ 0,Ep ∈ BLR, p = 1, . . . , P}.
Following the algorithm for the S-update, the projection is
computed using a similar alternating projection procedure.

Our overall algorithm involves (9), (11), and (13), where
the solvers for (11) and (13) leverage the AP-based solvers in
[16]. This algorithm is named as bilinear gradient projection
alternating projection algorithm (BiGradPAPA). Note that the
Nesterov’s extrapolation technique is adopted in our imple-
mentation for updating S and E, following that in [17].
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Fig. 3. The estimated linear abundance maps of Samson data by different
methods. From top to bottom: Soil, Tree, and Water.

TABLE I
THE AVERAGE MSES OF C AND S , AND RUNNING TIME (IN MINUTES) OF

SAMSON DATA BY DIFFERENT METHODS.

Methods MSE of C MSE of S MSE of E Time (min.)
MVCNMF 0.0100 ± 0.0003 0.0216 ± 0.0003 — 1.30 ± 0.02

GBM — 0.0148 ± 0.0002 0.999 ± 0.0068 0.96 ± 0.04
MLM — 0.0138 ± 0.0003 — 0.56 ± 0.02
BUq 0.0142 ± 0.0003 0.0134 ± 0.0003 0.9968 ± 0.0082 2.21 ± 0.11

SNPALQ 0.0398 ± 0.0021 0.0803 ± 0.0057 1.5370 ± 0.0736 0.05 ± 0.04
BiGradPAPA 0.0058 ± 0.0001 0.0113 ± 0.0003 0.2300 ± 0.0018 0.44 ± 0.03

IV. EXPERIMENTS

We compare our method with a number of SOTA baselines,
including MVCNMF [25], GBM [5], MLM [7], BUq [26],
and SNPALQ [10]. The method MVCNMF is designed for
LMM-based HU, and GBM, MLM, BUq, and SNPALQ are
the methods for BMM-based HU. Note that for the methods
GBM and MLM, we first produce the endmember spectral
signatures determined by MVCNMF [25], and then perform
these methods to estimate the abundance maps. In the AP
solvers for updating S and E, we stop the iteration when the
relative change of the iterates of the latent factors is smaller
than 10−3. All algorithms are terminated when the relative
change of the objective value is smaller than 5× 10−5. In the
semi-real data experiments, we mainly use the mean squared
error (MSE) [27] of C, S, and E as the performance metric.

A. Semi-Real Experiment

We generate the bilinear semi-real HSI data following Eq.
(3). The zero-mean white Gaussian noise with SNR=40dB is
added to the HSI data. The dataset we used is a subsence of
the Samson data, which is obtained by Florida Environment
Research Institute using Samson sensor. The used subimage
contains 95×95 pixels and 156 bands. This subimage contains
three endmembers: Soil, Tree, and Water.

From Table I, one can see that the proposed method achieves
the best over the MSE metric. Fig. 3 shows the estimated linear
abundance maps. One can observe that the results obtained
by baselines contain undesired noise. Fig. 4 compares the
interaction abundance maps obtained by MVCNMF+GBM,
BUq, SNPALQ, and the proposed method. One can see that
our method exhibits the most promising performance. The
spectral signatures obtained by the proposed BiGradPAPA are
much closer to the ground-truth, see Fig. 5.
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Fig. 4. The estimated bilinear abundance maps of Samson data by different
methods.
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Fig. 5. The estimated spectral signatures of Samson data by different methods.
From top to bottom: Soil, Tree, and Water.

B. Real-Data Experiment

We also test baselines on real HSI unmixing task. An
subimage of AVIRIS HSI data with 50 × 50 pixels and
181 bands (after removing low SNR bands), covered over
Moffett Field, is used. The subimage has been wildly studied
in HU researches, which mainly contains three endmembers,
including Soil, Vegetation, and Water.

Figs. 6 and 7 show the estimated Sr’s and Ep’s, respec-
tively. One can see that all methods produce similar Sr’s.
However, the proposed method obtains slightly clearer bound-
aries (e.g. the map of Vegetation), and keeps the smooth
region of the map for Soil better than the ones obtained using
the baselines. All methods can identify the bilinear interac-
tions between Soil and Vegetation in the coastal area.
BiGradPAPA and BUq obtain the similar bilinear abundances
between Soil/Water and Vegetation/Water, while Bi-
GradPAPA’s result has better continuity of the boundary.

V. CONCLUSION

In this work, we proposed a new algorithm for HU under
the BMM. Our HU criterion is formulated from an LL1 ten-
sor decomposition perspective. Unlike prior works that often
need stringent conditions to ensure the identifiability of the
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Fig. 6. The estimated Sr’s of the Moffett data by different methods. From
top to bottom: Soil, Vegetation, and Water.
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Fig. 7. The estimated Ep’s of the Moffett data by different methods.

endmembers and abundances, model identification is naturally
guaranteed by the LL1 tensor’s essential uniqueness under
mild conditions. We proposed a block coordinate descent
algorithm to tackle the formulated HU criterion. The algorithm
is designed to effectively handle a series of constraints and
regularization arising in the context of BMM-HU. We tested
the algorithm over a series of semi-real and real experiments
and observed promising results.
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