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Abstract—To analyze irregular multi-dimensional data with
unaligned dimensions, which frequently appear in real-world
signal processing and machine learning tasks, parallel factor
analysis 2 (PARAFAC2) has become the state-of-the-art (SOTA)
tensor model that yields interpretable learning results. Like
other tensor decomposition models, tensor rank learning in
PARAFAC2 is vital to overcome overfitting/underfitting, while
the prevalent exhaustive searching scheme is computationally
inefficient. To realize automatic tensor rank learning, a prior
art applies sparsity-promoting Gaussian-gamma (GG) prior to
one particular factor matrix. However, its tensor rank learning
performance is not satisfactory in high-rank or low-signal-to-
noise (SNR) regime. To achieve enhanced tensor rank learning,
an advanced sparsity-promoting generalized hyperbolic (GH)
prior is proposed to apply to all factor matrices. Theoretical
analysis is presented to confirm the desirable sparsity property,
and the conjugacy property of the prior is presented, which
enables a tractable inference algorithm for enhanced tensor rank
learning. Extensive experiments on synthetic data verify that the
proposed method has more accurate rank estimates compared to
the GG-based PARAFAC2 and its tensor de-noising performance
is comparable to the direct fitting method with the rank being
known.

Index Terms—Tensor rank learning, PARAFAC2, Bayesian
learning, Prior design and analysis

I. INTRODUCTION

Irregular tensor data with different sizes along one dimen-
sion naturally arise in various signal processing and machine
learning applications, ranging from audio/image tagging [1],
[2], text signal processing [3], to electronic health records
(EHR) analytics [4], [5]. The irregularity of such tensor data
prohibits the straightforward utilization of conventional tensor
decomposition models such as canonical polyadic decomposi-
tion (CPD) [6] and Tucker decomposition [7], thus urging for
more advanced tensor data analytics tools.

Parallel factor analysis 2 (PARAFAC2), which was firstly
introduced in [8], [9], has recently gained increasing interest
due to its effectiveness in analyzing irregular tensor data [1]–
[5]. In particular, given an irregular third-order tensor data
Y = {Yk ∈ RI×Jk}Kk=1, in which each tensor slice Yk has
a different column number Jk, PARAFAC2 seeks for rank-
R factor matrices {U(1) ∈ RI×R,U(3) ∈ RK×R, {Fk ∈
RJk×R}Kk=1} via solving the following problem [9]:

min
U(1),U(3),{Fk}K

k=1

K∑
k=1

∥∥∥Yk −U(1)diag(U
(3)
k,: )F

⊤
k

∥∥∥2
F
,

s.t. F⊤
i Fi = F⊤

j Fj , ∀i, j ∈ {1, . . . ,K}. (1)

To simplify the constraints of {Fk}Kk=1 in (1), a set of
orthogonal matrices P = {Pk ∈ RJk×R} and a rank-R factor
matrix U(2) ∈ RR×R are introduced in [9], which transforms
(1) to:

min
{U(n)}3

n=1,P

K∑
k=1

∥∥∥Yk −U(1)diag(U
(3)
k,: )U

(2)⊤P⊤
k

∥∥∥2
F
,

s.t. P⊤
k Pk = IR, ∀k ∈ {1, . . . ,K}. (2)

In [9], an alternating-optimization-based direct fitting (DF)
algorithm was developed to solve problem (2).

While the DF algorithm [9] has demonstrated remarkable
performance in PARAFAC2-related applications, practitioners
need to carefully tune the column number R of factor matrices
{U(n)}3n=1, which is known as tensor rank in tensor-related
literature [10]. In particular, the tensor rank R determines
the number of unknown model parameters to be estimated,
thus controlling the model order. If the tensor rank is over-
estimated/underestimated, the issue of overfitting/underfitting
arises for noisy tensor data, thereby failing to yield inter-
pretable learning results.

A common practice to tune the tensor rank R is via
trial-and-error experiments or model selection methods, e.g.,
the test method based on core consistency diagnostic [11].
However, such approaches demand multiple runs of the
PARAFAC2 algorithm, which is computationally inefficient.
To alleviate the computational burden, Bayesian learning,
which has been widely adopted in various tensor decompo-
sitions such as CP [12]–[15], Tucker [16], tensor train [17],
block-term tensor [18], has also been applied in probabilistic
PARAFAC2 [19].

While probabilistic PARAFAC2 [19] successfully applies
the principles of sparse Bayesian learning and achieves au-
tomatic tensor rank identification, its tensor rank learning
performance deteriorates significantly when the true tensor
rank is close to the dimension of the irregular tensor data,
or the signal-to-noise ratio (SNR) is low. Such deteriora-
tion stems from its prior design. In particular, probabilistic
PARAFAC2 [19] adopts Gaussian-gamma (GG) prior as the
sparsity-promoting prior that is hierarchically constructed with
Gaussian distribution and inverse gamma (IG) distribution.
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However, it is known that the GG prior does not yield
satisfactory tensor rank learning performance in high-rank or
low-SNR regime [15].

To achieve enhanced tensor rank learning performance, we
propose to replace the GG prior with advanced sparsity-
promoting priors that are more flexible in their functional
form, in order to adapt to more diverse levels of sparsity
compared with the GG prior. In this paper, we choose the
GH prior as the sparsity-promoting prior, which has already
been applied to Bayesian CP [15] and block-term tensor [18].
The GH prior includes the GG prior as its special case,
and is thus expected to provide more flexibility in modeling
different levels of sparsity and more accurate tensor rank
learning results. Additionally, to impose a common sparsity
structure across factor matrices, we apply the GH prior to
all factor matrices to further benefit tensor rank learning
[20]. Since the proposed prior has the appealing conjugacy
property, a variational inference algorithm with closed-form
update expressions is developed to learn the factor matrices
and tensor rank.

Extensive numerical experiments on synthetic data demon-
strate the superior rank learning and data de-noising perfor-
mance of the proposed method, especially in high-rank or low-
SNR regime.

Notation: Boldface lowercase and uppercase letters will be
used for vectors and matrices, respectively. Tensors are written
as calligraphic letters. Superscript ⊤ denotes transpose, and
the operator Tr[·] denotes the trace of the argument. ∥·∥F
represents the Frobenius norm. The N × N diagonal matrix
with diagonal elements through a1 to aN is represented as
diag{a1, . . . , aN}, while IM denotes the identity matrix with
size M ×M . E[·] represents the expectation of the argument.
The operator ⊗ denotes the Kronecker product, and ⋄ denotes
the Khatri-Rao product.

II. A BRIEF REVIEW OF PROBABILISTIC PARAFAC2 [19]

In this section, we briefly review probabilistic PARAFAC2
[19]. It starts with L(L ≥ R) columns in all factor matrices
and places sparsity-promoting Gaussian-gamma (GG) prior on
factor matrix U(3) to encode sparsity information:

p(U(1)) = MN (U(1)|0I×L, II , IL), (3)

p(U(2)) = MN (U(2)|0L×L, IL, IL), (4)

p(U(3)|Γ) = MN (U(3)|0K×L, IK ,Γ), (5)

p(Γ) =

L∏
l=1

IG(γl|e0l , f0
l ), (6)

where MN (X|M,U,V) denotes a matrix normal distri-
bution on random matrix X parametrized by mean ma-
trix M, row covariance matrix U, and column covari-
ance matrix V, with the probability density function (pdf)
MN (X|M,U,V) ∝ exp(−1/2Tr[V−1(X−M)⊤U−1(X−
M)]).

In the GG prior (5)-(6), the column covariance matrix Γ is a
diagonal matrix with elements being {γ1, γ2, . . . , γL}, where

γl represents the variance of column U
(3)
:,l . Each variance γl

is assigned with an inverse gamma (IG) prior, where e0l , f
0
l

are pre-determined hyper-parameters. The prior of other factor
matrices (3)-(4) follow standard matrix normal distribution,
where no sparsity information is embedded.

On the other hand, the likelihood function in probabilistic
PARAFAC2 [19] is obtained from the objective function of (2),
by assuming each observation in Y is subject to independent
Gaussian noise perturbation. This results in

p(Y|{U(n)}3n=1, τ ;P)

∝exp

{
− τ

2

K∑
k=1

∥∥∥Yk −U(1)diag(U
(3)
k,: )U

(2)⊤P⊤
k

∥∥∥2
F

}
. (7)

For the noise precision τ , a gamma prior Ga(τ |c0, d0) is
assigned, where c0, d0 are pre-determined hyper-parameters.

Based on the prior and likelihood functions in (3)-(7), an
inference algorithm under the variational inference framework
was developed in [19], which will drive irrelevant columns to
zero-value and thereby achieve automatic tensor rank learning.

However, as will be shown in Section V, numerical results
reveal that the tensor rank learning performance of probabilis-
tic PARAFAC2 [19] is not satisfactory in high-rank or low-
SNR regime. This is due to the rigidity of GG prior that it
cannot adapt to different levels of sparsity [15]. Furthermore,
probabilistic PARAFAC2 [19] does not apply the sparsity-
promoting prior to all factor matrices, which fails to capture
the common sparsity structure across factor matrices [20].

III. NOVEL PRIOR FOR BAYESIAN PARAFAC2

To achieve enhanced tensor rank learning, we propose to
apply advanced generalized hyperbolic (GH) prior to all factor
matrices. Since the GH prior can be expressed as a Gaussian
scale mixture where the mixing distribution is generalized
inverse Gaussian (GIG) distribution, it allows a hierarchical
construction of the GH prior:

p(U(1)|Z) = MN (U(1)|0I×L, II ,Z), (8)

p(U(2)|Z) = MN (U(2)|0L×L, IL,Z), (9)

p(U(3)|Z) = MN (U(3)|0K×L, IK ,Z), (10)

p(Z) =

L∏
l=1

GIG(zl|a0l , b0l , λ0
l ), (11)

where the column covariance matrix Z = diag{z1, . . . , zL},
and the pdf of the GIG distribution is

GIG(zl|a0l , b0l , λ0
l )

=
(a0l /b

0
l )

λ0
l /2

2Kλ0
l
(
√

a0l b
0
l )
z
λ0
l −1

l exp

(
−1

2
(a0l zl + b0l z

−1
l )

)
. (12)

The GH prior (8)-(11) is more flexible in its functional form
compared to the GG prior (5)-(6), as it can be reduced to the
GG prior by setting its parameters to certain values, which is
formally presented in the property below.
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Property 1. When a0l → 0 with λ0
l < 0, GIG distribution

reduces to inverse gamma (IG) distribution IG(zl|b0l /2,−λ0
l ),

GIG(zl|a0l →0, b0l , λ
0
l <0)=

(b0l /2)
−λ0

l

Γ(−λ0
l )

z
λ0
l −1

l exp

(
−1
2
b0l z

−1
l

)
.

(13)

The GH prior generalizes not only the GG prior, but also many
other prevalent sparsity-promoting prior [15], [21], including
Laplacian and Mcakay’s Bessel. Therefore, the flexibility in
its functional form is expected to adapt to different levels of
sparsity, and thus to improve tensor rank learning performance.

Furthermore, by comparing the proposed prior (8)-(11)
with probabilistic PARAFAC2 [19] (3)-(6), another significant
difference is that the column covariance matrix Z is shared
across all factor matrices to impose a common sparsity pattern,
which was shown to be beneficial for rank selection [20], and
widely practiced in Bayesian tensor modelings [12]–[18].

Aside from the flexibility adapting to different levels of
sparsity and the shared sparsity pattern, the conjugacy property
of the GIG prior (11) presented below facilitates the derivation
of the inference algorithm in Section IV.

Property 2. GIG distribution (11) is conjugate to the product
of pdfs (8)-(10).

IV. BAYESIAN PARAFAC2 WITH ENHANCED TENSOR
RANK LEARNING

The proposed Bayesian PARAFAC2 model is composed of
the prior introduced in the previous section, and the likelihood
function in (7). The complete model is represented by the
joint probability of the noisy irregular tensor data Y and
Θ = {{U(n)}3n=1, {zl}Ll=1, τ}, parametrized by orthogonal
matrices in P ,

p(Y,Θ;P) = p(Y|{U(n)}3n=1, τ ;P)

3∏
n=1

p(U(n)|Z)p(Z)p(τ).

(14)

A. General Philosophy of Variational EM

To learn parameters Θ and P , Bayesian statistics suggests
to derive posterior distribution and evidence function respec-
tively, which however are analytically intractable. To provide
a viable solution, variational expectation-maximization (EM)
framework is employed in this paper, which maximizes the
evidence lower bound (ELBO) [22]:

max
Q(Θ),P

ELBO(Q(Θ),P) ≜ EQ(Θ)

{
ln

p(Y,Θ;P)

Q (Θ)

}
, (15)

where Q(Θ) is known as variational pdf that aims to approach
the posterior distribution. Particularly, variational EM algo-
rithm alternatingly maximizes ELBO with respect to Q(Θ)
with P fixed in the E-step and optimizes over P while keeping
Q(Θ) fixed in the M-step.

In the E-step, given a fixed P , problem (15) is equiv-
alent to minimizing the Kullback-Leiber (KL) divergence
between Q(Θ) and posterior distribution p(Θ|Y;P). Under
no additional assumption, the optimal solution is the exact

posterior distribution, which is intractable due to the high-
dimensional integration involved. To address this issue, we
restrict Q(Θ) to be in the mean-filed family. More specifically,
the mean-field family collects pdfs with the following form:
Q(Θ) =

∏K
k=1 Q(Θk), where Θ is partitioned into mutually

disjoint non-empty subsets Θk. Then each optimal Q∗(Θk)
was shown to be [22]:

Q∗ (Θk) =

exp

(
E∏

j ̸=k Q(Θj)
[
ln p (Y,Θ;P)

])
∫
exp

(
E∏

j ̸=k Q(Θj)
[
ln p (Y,Θ;P)

])
dΘk

.

(16)

For the proposed Bayesian PARAFAC2 model, the
mean-field assumption is designed as Q(Θ) =∏3

n=1 Q(U(n))
∏L

l=1 Q(zl)Q(τ).
On the other hand, in the M-step, with Q(Θ) fixed, it can

be seen that the optimal parameter P are sought via the maxi-
mization of the expectation of the complete log likelihood. In
particular, by substituting (14) into (15) and extracting only
the terms related to P , the optimization problem becomes

max
P

EQ(Θ)

−τ

2

K∑
k=1

∥∥∥Yk−U(1)diag(U
(3)
k,: )U

(2)⊤P⊤
k

∥∥∥2
F

 ,

s.t. P⊤
k Pk = IL, ∀k ∈ {1, . . . ,K}. (17)

By substituting the mean-filed assumption in (17), the solution
to the maximization problem is given as [9]

Pk = ΨkΞ
⊤
k , ∀k ∈ {1, . . . ,K}, (18)

where Ξk and Ψk are orthogonal matrices obtained from the
following singular value decomposition (SVD):

E[U(2)]diag(E[U(3)
k,: ])

[
E[U(1)]

]⊤
Yk = ΞkΥkΨ

⊤
k . (19)

B. Deriving Optimal Variational Pdfs

By substituting (14) into (16), the optimal variational pdfs
for various variables can be derived. Due to the page limit,
the lengthy derivations are omitted and we directly present
the optimal variational pdfs below.
Update of Q(U(n))

The optimal variational pdfs Q∗(U(n)) are derived to be
a matrix normal distributions, with identity row covariance
matrix, column covariance matrix

Σ(n) =

[
E [τ ]E

[(
3⋄

k=1,k ̸=n
U(k)

)⊤

×
(

3⋄
k=1,k ̸=n

U(k)

)]
+ E [Z]

]−1

, (20)

and mean matrix

M(n) = E [τ ]W⊤
(n)E

[
3⋄

k=1,k ̸=n
U(k)

]
Σ(n), (21)
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where tensor W ∈ RI×L×K is constructed with each tensor
slice being Wk=YkPk and W(n) denotes the matrix obtained
by unfolding the tensor W along its n-th dimension.
Update of Q(zl)

By Property 2, the optimal variational pdf of Q(zl) can
be derived to be a GIG distribution GIG(zl|al, blλl), with
parameters

al = a0l , (22)

bl = b0l +

N∑
n=1

E
[[
U

(n)
:,l

]⊤
U

(n)
:,l

]
, (23)

λl = λ0
l − (I + L+K)/2. (24)

Update of Q(τ)
Finally, for the noise precision τ , the optimal variational pdf

Q∗(τ) is derived to be a gamma distribution Ga(c, d), with

c = c0 + (I ×
K∑

k=1

Jk)/2, (25)

d = d0 +
1

2
E

 K∑
k=1

∥∥∥Yk −U(1)diag(U
(3)
k,: )U

(2)⊤P⊤
k

∥∥∥2
F

 .

(26)

C. Algorithm Summary and Insights

To summarize, the variational EM algorithm for the pro-
posed Bayesian model estimates Q(Θ) and P by itera-
tively updating the parameters via (18)-(26) until conver-
gence. The means of the initial factor matrices {M(n)}3n=1 of
{Q(U(n))}3n=1 are obtained via a DF algorithm [9], while the
initial column covariance matrices {Σ(n)}3n=1 are set as iden-
tity matrices. The hyper-parameters {{a0l , b0l , λ0

l }Ll=1, c
0, d0}

are set to be 10−6 to yield non-informative prior. The com-
putational complexity of the variational EM algorithm is
O(L3IK), where L is the initial tensor rank.

V. NUMERICAL EXPERIMENTS

To validate the performance of the proposed algorithm, ex-
perimental results on synthetic data are reported in this section.
We compare the performance of the following algorithms:
1) the proposed enhanced Bayesian PARAFAC2 algorithm
(EB-PARAFAC2) that can handle both regular and irregular
tensor data; 2) probabilistic PARAFAC2 algorithm [19] (B-
PARAFAC2) that was originally derived for regular tensor
data, but we extend it to irregular tensor data; 3) the direct
fitting (DF) algorithm [9] which assumes the true rank is
known. Two tensor sizes are considered: 1) irregular tensor
with I = 30, K = 30, Jk = 30 for 1 ≤ k ≤ 20, Jk = 40
for 21 ≤ k ≤ 30; 2) regular tensor with I = 30,K = 30,
Jk = 30 for 1 ≤ k ≤ 30. All simulation results in this section
are obtained by averaging 100 Monte Carlo runs.

Noise-free rank-R irregular tensor X = {Xk =

U(1)diag(U
(3)
k,: )[U

(2)]⊤P⊤
k ∈ RI×Jk}Kk=1 is generated fol-

lowing the procedure specified by [9]. Observation tensor Y is
constructed by adding noise sampled from N (0, σ2) on each
entry of tensor X . The noise level is measured by SNR, which

is defined as 10 log(var(X )/σ2) [12], where the variance
var(X ) of tensor X is calculated by treating all entries in
tensor X as statistically independent.

We firstly examine the tensor rank learning performance.
The tensor rank upper bound L for both EB-PARAFAC2 and
B-PARAFAC2 algorithm are set to be the min{Jk}Kk=1. The
percentages of accurate tensor rank estimates are reported in
Fig. 1. For irregular tensor data, when SNR is 15 dB, as
seen in Figure 1(a), GG-based B-PARAFAC2 does not yield
satisfactory tensor rank learning performance when the tensor
rank is close to the dimension of the irregular tensor data
(R is in {21, 24, 27} in this case), while the proposed EB-
PARAFAC2 demonstrates more robust tensor rank learning
performance, since the proposed prior is more flexible to
different levels of sparsity and imposes a common sparsity
structure. Similarly, when SNR is 5 dB, as shown in 1(b),
while the percentage of accurate tensor rank learning estimates
decreases for both algorithms when tensor rank increases,
the proposed EB-PARAFAC2 algorithm gives more accurate
tensor rank estimates compared to B-PARAFAC2. For regular
tensor data, as reported in Fig. 1(c) and 1(d), the proposed EB-
PARAFAC2 algorithm also yields better tensor rank learning
results than B-PARAFAC2 in all cases.

The more accurate tensor rank learning of the proposed
method leads to better tensor de-noising performance. To see
this, we examine the accuracy of tensor recovery by measuring
the root mean squared error (RMSE):

RMSE =

√
1

I ×
∑K

k=1 Jk

∥∥∥vec(X )− vec(X̂ )
∥∥∥2
2
, (27)

where X̂ represents the reconstructed clean tensor. For ir-
regular tensor data, when SNR is 15 dB, as seen from Fig.
2(a), the proposed EB-PARAFAC2 algorithm achieves similar
performance to the genie-aided DF algorithm (which has the
knowledge of the true tensor rank), and they perform better
than B-PARAFAC2, especially in high-rank cases (R is in
{21, 24, 27}). Furthermore, when the SNR is 5 dB, as shown in
Fig. 2(b), with the enhanced tensor rank learning capability, the
tensor data recovery performance of EB-PARAFAC2 is better
than that of B-PARAFAC2. However, due to the inaccurate
tensor rank learning, they are both worse than the genie-aided
DF algorithm. For regular tensor data, as demonstrated in
Fig. 2(c) and 2(d), the proposed EB-PARAFAC2 algorithm,
even without the knowledge of tensor rank, attains comparable
performance with the genie-aided DF algorithm, and performs
better than B-PARAFAC2.

VI. CONCLUSIONS

In this paper, a novel Bayesian learning algorithm for
PARAFAC2 model with enhanced tensor rank learning was
proposed. The proposed Bayesian framework adopts the ad-
vanced GH prior as the sparsity-promoting prior and im-
poses a common sparsity structure to improve tensor rank
learning. Extensive experiments demonstrated the enhanced
performance of the proposed algorithm in terms of tensor rank
learning and data recovery accuracy.
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Fig. 1: Performance of tensor rank learning under different conditions.
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Fig. 2: Performance of tensor recovery under different conditions.
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