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Abstract—In this era of digitalization, the massive increase
in available data leads to great potential for advancing various
domains. However, the available data, such as images, videos,
and speech signals, generally lie in high-dimensional space, which
calls for efficient dimensionality reduction techniques to process
them efficiently. Furthermore, while the fairness of algorithms is
essential for their deployment in real-world systems, the effect of
dimensionality reduction on fairness is an under-explored research
area. Motivated by this, this paper puts forth a fairness-aware
dimensionality reduction framework that is capable of properly
compressing the data while mitigating bias. Specifically, our design
targets at reducing the correlation between the compressed data
and sensitive attributes, while projecting the data into a new
coordinate system where most of its variation can be described.
Experimental results on the CelebA dataset demonstrate that
the proposed dimensionality reduction framework can improve
group fairness measures for image classification while providing
comparable utility to the conventional techniques.

Index Terms—dimension reduction, fairness, PCA, image
classification

I. INTRODUCTION

During the last decade, the accelerated deployment of high
technologies has led to the accumulation of large volumes
of high-dimensional data. While processing and learning
from such data can provide significant understanding and
advancements for several systems, conventional data processing
tools cannot cope with it due to its high dimension. This
motivates the recently reignited attention on dimensionality
reduction techniques. For a number of machine learning
(ML) tasks, including classification, regression, and clustering,
dimensionality reduction is a critical pre-processing step
that allows learning from high-dimensional big data. Several
dimensionality reduction strategies have been proposed so far
in both ML and signal processing domains [1]–[6], among
which principal component analysis (PCA) [2] serves as a
seminal work. PCA projects data into a new coordinate system
that preserves most of its variance.

Due to their success, learning algorithms have widespread
use in our everyday lives to make life-changing decisions, which
showcases the importance of preventing any discriminatory
behaviour in these algorithms towards under-represented groups.
Group fairness concerns the performance gap incurred by the
learning algorithms with respect to certain sensitive/protected
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attributes (e.g., gender, ethnicity) [7], which is the main focus
of this work. Furthermore, within the context of this paper,
algorithmic bias corresponds to the stereotypical correlations
the learning models encode and propagate with respect to the
sensitive attributes.

It has been shown that ML models propagate the bias in
training data, which may lead to discriminatory decisions
in the ensuing applications [8]–[11]. As a result, fairness-
aware ML has emerged as a growing line of research, where
different fairness metrics are introduced for different learning
tasks together with novel algorithmic tools that can help
to satisfy these measures [12]–[18]. While fairness is a
well-studied research area for supervised learning, it is still
under-explored in the context of unsupervised learning [19],
specifically for dimensionality reduction. Since dimensionality
reduction is typically an essential pre-processing step for
supervised learning algorithms, examining the fairness aspect
of dimensionality reduction techniques can bring significant
advancements in ensuring fairness for both unsupervised and
supervised learning algorithms.

This work develops a fairness-aware adaptation of the
PCA algorithm to mitigate bias while compressing data.
While there have been several attempts for designing a fair
PCA implementation [19]–[23], these works have certain
limitations. First, [19], [20], [22], [23] all define fairness
based on the reconstruction errors resulting from PCA for
different sensitive groups, where the goal is to balance the
reconstruction error-based measures for different sensitive
groups. Such a fairness definition is limited in preventing the
propagation of correlations with the sensitive attributes to the
compressed data. To exemplify, making the PCA reconstruction
error zero for each sensitive group would imply that the
original correlations of data and sensitive attributes would
also be reflected in the compressed form, which can lead to
discrimination in the ensuing applications. Second, previous
works are typically designed for a binary sensitive attribute [20],
[21], [23], while sensitive attributes can have multiple values
in many real-world applications (e.g., ethnicity). Finally, none
of the aforementioned studies leads to a closed-form solution,
which can affect the run-time efficiency of the algorithms.
To overcome these limitations, we propose a fairness-aware
PCA design which aims to lower the correlation between the
compressed data and sensitive attributes, is applicable to non-
binary sensitive attributes, and admits a closed-form solution.
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Overall, our contributions can be summarized as follows:
• This work proposes a novel dimensionality reduction

framework which is capable of mitigating bias while
successfully compressing the data.

• A novel fairness measure is introduced for dimensionality
reduction, which can eliminate the propagation of bias
towards the compressed data.

• The proposed algorithm admits a closed-form solution
and can be flexibly employed for non-binary sensitive
attributes.

• Experimental results on a real-world dataset demonstrates
the efficacy of the proposed algorithm in mitigating bias
while protecting the utility for image classification.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a dataset with N samples of dimension D written
as X := [x1, . . . ,xN ], where the ith column xi ∈ RD denotes
ith data sample. Without loss of generality, the sample mean
1
N

∑N
n=1 xn is assumed to be removed from each sample xi.

The trace and singular value decomposition (SVD) of a matrix
X are denoted by tr(X) and X = UΣV⊤, respectively. The
main goal of this study is to find a set of d-dimensional vectors
{yi}Ni=1, with d < D, that preserve certain properties of {xi}
while reducing the correlations between {yi} and sensitive
attributes s ∈ RN . Similar to the definition of data matrix X,
{yi} vectors are the columns of the compressed data matrix
Y := [y1, . . . ,yN ] ∈ Rd×N .

From the least-squares perspective, PCA searches for a linear
subspace of dimension d < D such that the reconstruction
error incurred by the dimensionality reduction is minimized.
Specifically, PCA deals with the following optimization prob-
lem:

min
Ud,{yi}

N∑
i=1

∥xi −Udyi∥22 s. to U⊤
d Ud = I.

It is shown in [24] that y∗
i = (U∗

d)
⊤xi is the optimal solution

for this problem, where U∗
d consists of the eigenvectors of

XX⊤ = UΣU⊤ corresponding to the d largest eigenvalues.
Herein, the reconstructed data vectors {x̃i} based on the latent
representations {yi} can be recovered as x̃i = Udyi.

PCA can also be interpreted as a linear transformation that
projects the original data into a new coordinate system where
its variance is maximized. Therefore, PCA has the potential
of amplifying algorithmic bias, if the data variability is mainly
resulted from the different sensitive attribute values. In this
case, the latent representations created by PCA will be highly
correlated with the sensitive attributes, which may lead to
discriminatory results in the ensuing tasks inputting these
representations. Note that previous works have also empirically
demonstrated that PCA can amplify algorithmic bias and result
in disparate performance for different sensitive groups [23].

III. FAIRNESS-AWARE DIMENSIONALITY REDUCTION

A. Fairness Metric for Dimensionality Reduction

Although the design of different fairness metrics has been
thoroughly studied for supervised learning, this area is rather

under-explored in the context of unsupervised learning. In the
previous fairness-aware PCA formulations, fairness metrics are
typically designed based on the reconstruction errors incurred
for different sensitive groups [19], [20], [22], [23]. Specifically,
a loss that depends on the reconstruction error is defined and
this loss is aimed to be balanced across groups. However,
if there are certain proxy features for the sensitive attributes
within the data samples {xi}, such a fairness measure does
not prevent the propagation of sensitive information to the
compressed samples {yi}. For example, zip code is a proxy
feature for the ethnicity under certain conditions. Thus, for
the case where reconstruction error is low for every sensitive
group (which is the main fairness target of previous fair PCA
formulations), the zip code can be inferred from the latent
representations {yi}, which can lead to discriminatory results
with respect to ethnicity in the ensuing applications that input
these latent representations.

It has been demonstrated that features which are correlated
with the sensitive attribute lead to intrinsic bias, even when the
sensitive attribute is not utilized in learning [25]. Therefore,
the correlation between the inputs to a learning algorithm and
sensitive attributes is a measure for the resulting bias. Motivated
by this, the linear correlation between the sensitive attribute s ∈
RN and the rows of compressed data matrix Y ∈ Rd×N (each
feature in the representations created by PCA) is considered
as a bias measure in this study, since the latent representations
in Y are generally utilized as inputs to learning algorithms.
Specifically, inspired by the total correlation measure introduced
in [26], ∥Ys∥22 is employed as the fairness metric in this
study, which reflects the linear correlation between the sensitive
attribute s and the rows of compressed data matrix Y. Overall,
this work aims to design a PCA formulation that aims to lower
∥Ys∥22 while compressing data.

B. Fairness-aware PCA Formulation

Based on the fairness metric introduced in Subsection III-A,
the fairness-aware PCA formulation in this study solves the
following problem:

min
Ud,Y

tr((X−UdY)⊤(X−UdY)) + β(Ys)⊤(Ys)

s. to U⊤
d Ud = I.

(1)

In this formulation, β is utilized as a hyperparameter that
adjusts the focus on the fairness regularizer and provides a
trade-off between the utility and fairness. Following [24], we
first solve (1) for Y, which leads to the following equivalent
formulation:

min
Y

L(Y,Ud), where

L(Y,Ud) := −2 tr(X⊤UdY) + tr(Y⊤U⊤
d UdY)

+ β(Ys)⊤(Ys).

(2)

The optimal solution for (2), Y∗, can be obtained by solving
∇L
∇Y = 0, which leads to Y∗ = U⊤

d X(IN + ss⊤)−1. Here,
IN ∈ RN×N denotes the identity matrix. Let C := (IN +
ss⊤)−1.
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Finding optimal Y∗ leads to finding the orthonormal matrix
Ud that satisfies the following optimization problem:

min
Ud

tr((X−UdU
⊤
d XC)⊤(X−UdU

⊤
d XC))

+ β(U⊤
d XCs)⊤(U⊤

d XCs)

s. to U⊤
d Ud = I.

(3)

which is equivalent to:

min
Ud

(−2 tr(U⊤
d XCX⊤Ud) + tr(U⊤

d XCC⊤X⊤Ud)

+ βs⊤C⊤X⊤UdU
⊤
d XCs)

s. to U⊤
d Ud = I.

(4)

The problem in (4) can be reformulated as:

min
Ud

(−2 tr(U⊤
d XCX⊤Ud) + tr(U⊤

d XCC⊤X⊤U⊤
d )

+ β tr(U⊤
d XCss⊤C⊤X⊤Ud))

s. to U⊤
d Ud = I.

(5)

Finally, let D := −2XCX⊤+XCC⊤X⊤+βXCss⊤C⊤X⊤,
the optimization problem in (5) can be rewritten as

min
Ud

tr(U⊤
d DUd)

s. to U⊤
d Ud = I.

(6)

The problem in (6) is a typical truncated singular value
decomposition formulation. Therefore, the columns of the
optimal solution U∗

d ∈ RD×d is composed of d eigenvectors of
D associated with the d smallest eigenvalues, which provides
a closed-form solution to the optimization problem formulated
for fairness-aware PCA in (1).
Remark. It is important to note that while this work focuses
on the conventional PCA that captures and protects the linear
relationships within the data, the fairness metric introduced
herein can also be utilized for a fairness-aware Kernel PCA
[27] design. Such a formulation can be valuable when the
data resides on highly nonlinear manifolds, where Kernel PCA
can better capture nonlinear relationships within the data for a
pre-selected kernel function compared to PCA.

Algorithm 1: Fair Dimensionality Reduction
Data: X, s, β, d
Result: Y∗

1. Calculate D, where
D := −2XCX⊤ +XCC⊤X⊤ + βXCss⊤C⊤X⊤,
and C := (IN + ss⊤)−1.

2. Apply orthogonal eigen-decomposition to D, i.e.
D = VΛV⊤.

3. For V := [v1, . . . ,vD], sort the eigenvalues and
corresponding eigenvectors such that v1 and vD

correspond to the smallest and largest eigenvalues,
respectively.

4. Build U∗
d := [v1, . . . ,vd].

5. Calculate Y∗ = (U∗
d)

⊤XC.

IV. EXPERIMENTS

This section evaluates the proposed fairness-aware dimen-
sionality reduction framework for image classification on a
real-world dataset.

A. Dataset

In the experiments, a real-world dataset, CelebFaces At-
tributes Dataset (CelebA) [28], is utilized for the ensuing
task of image classification. CelebA is a large-scale dataset
that includes approximately 200, 000 celebrity images together
with 40 binary face attribute annotations. Background clutter
and poses vary significantly across images leading to a large
diversity within the dataset.

In the experiments, we sample this dataset and utilize a
total number of 40519 images. A pre-processing operation is
also applied to the images with the original dimensions of
218 × 178 × 3 to resize them down to 28 × 28. Specifically,
the images are cropped to remove parts that do not include the
face, and then they are transformed to be grayscale. Afterward,
the 28× 28 matrix are flattened to a vector and concatenated
with 38 of the binary face attributes to create data vectors {xi}.
Labels for the image classification task are the attractiveness
of the faces in the images (i.e., attractive or not attractive),
while gender information is utilized as the sensitive attribute.
Statistical information for the utilized dataset is presented in
Table I.

Female Male Attractive Not Attractive

23580 16939 20874 19645

TABLE I: CelebA statistics.

B. Performance metrics

For the utility metric of image classification, accuracy is
utilized. For fairness, two quantitative measures of group
fairness metrics are reported in terms of statistical parity
(∆SP ) [29] and equal opportunity(∆EO) [30]:
∆SP := |P (ĉ = 1 | s = 0)− P (ĉ = 1 | s = 1)|
∆EO := |P (ĉ = 1 | c = 1, s = 0)− P (ĉ = 1 | c = 1, s = 1)|
where c represents the ground truth class label (c = 1 if
attractive, c = 0 otherwise), and ĉ is the predicted class. Note
that sensitive attributes s = 1 and s = 0 correspond to being
male and female, respectively. Lower values for ∆SP and ∆EO

indicate better fairness performance and are more desirable.

C. Experimental settings

In the experiments, the designed fairness-aware PCA is
employed as a pre-processing operator on the data vectors
{xi}, where the compressed data is then input to a three-
layer multi-layer perceptron (MLP). In training, weights of the
MLP are initialized with Glorot initialization [31] and ReLU
activation is applied after the hidden layer. The utilized MLP
model is trained for the log loss function for 1000 epochs
by utilizing Adam optimizer [32], where the learning rate is
chosen as 0.01. Note that training is early-stopped, if the loss
does not improve for 10 epochs.
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d = 25 Accuracy (%) ∆SP (%) ∆EO (%)

D = d 77.98 ± 0.60 54.26± 1.47 43.82± 6.20

PCA 72.04± 0.71 43.96± 1.67 33.92± 2.38

FairPCA [20] 72.17± 0.57 40.84± 1.82 30.29± 3.98

FairDR 70.80± 0.47 37.98 ± 2.51 28.53 ± 3.18

d = 50 Accuracy (%) ∆SP (%) ∆EO (%)

D = d 77.98 ± 0.60 54.26± 1.47 43.82± 6.20

PCA 73.02± 0.75 42.48± 1.16 30.75± 2.66

FairPCA [20] 72.17± 0.57 40.84± 1.82 30.29± 3.98

FairDR 72.71± 0.19 40.84 ± 0.37 29.13 ± 1.50

TABLE II: Fairness-aware dimensionality reduction on CelebA.

The model is trained over 90% of the images, while the
remaining images contribute to the test set. The hyperparameter
β is selected via grid search among the values {0.1, 1, 10}.
Furthermore, FairPCA [20] is employed as the fairness-aware
dimensionality reduction baseline, where FairPCA aims to
balance the reconstruction loss incurred by PCA for different
sensitive groups. The min-max formulations in FairPCA are
relaxed and solved as semidefinite programs. The hyperpa-
rameters η and T in FairPCA are tuned via grid searches
among the values {1, 20} and {5, 10}, respectively. Note that
the candidate values for the hyperparameters η and T are the
suggested values for them in the corresponding study. For all
experiments, results are collected for five random data splits,
and the average of them together with standard deviations are
presented.

D. Experimental Results

Comparative results for image classification are presented
in Table II for the cases where d = 25 and d = 50. The
proposed fairness-aware dimensionality reduction scheme is
denoted by FairDR in this table. For the proposed scheme, the
natural baseline is to employ the conventional PCA algorithm.
In addition to PCA, the results are also obtained for the case
where no dimensionality reduction is employed (D = d in
Table II) and for the fairness-aware baseline FairPCA [20].

In Table II, all dimensionality reduction techniques are
observed to lead better fairness measures compared to the
case where no dimensionality reduction is employed. For
the utilized dataset, inferral of the sensitive information may
become more challenging based on the latent representations
output by these dimensionality reduction algorithms compared
to the original data vectors, which can justify this observation.
The results in Table II demonstrate that the proposed fairness-
aware dimensionality reduction framework herein consistently
achieves better fairness measures compared to the fairness-
aware baseline, along with similar utility values. Furthermore,
it can be observed that the improvements provided by FairDR
in terms of fairness increase, as d gets smaller, which makes
FairDR more advantegous for the cases where compression rate
needs to be high. Overall, the results corroborate the efficacy
of the proposed fairness-aware dimensionality reduction design

d = 25 Accuracy (%) ∆SP (%) ∆EO (%)

PCA 72.04± 0.71 43.96± 1.67 33.92± 2.38

β = 0.1 70.13± 0.32 38.25± 1.02 28.06± 2.27

β = 1 70.94± 0.60 39.45± 2.19 30.14± 4.50

β = 10 70.80± 0.47 37.98 ± 2.51 28.53± 3.18

d = 50 Accuracy (%) ∆SP (%) ∆EO (%)

PCA 73.02± 0.75 42.48± 1.16 30.75± 2.66

β = 0.1 72.86± 0.37 42.03± 1.59 31.95± 2.49

β = 1 73.01± 0.30 41.13± 1.43 29.88± 2.68

β = 10 72.71± 0.19 40.84 ± 0.37 29.13 ± 1.50

TABLE III: Sensitivity analysis for β.

in mitigating bias while also providing similar utility measures
compared to the state-of-the-art fairness-aware baseline.

In order to examine the influence of hyperparameter se-
lection on the performance, the sensitivity analysis for the
hyperparameter β is presented in Table III for d values 25
and 50. The results in Table III show that the fairness metrics
generally improve as β value increases, which is expected,
since β adjusts the focus on the fairness regularizer in (1).
Overall, the results in Table III demonstrate that the proposed
fairness-aware dimensionality reduction scheme typically leads
to better fairness measures than the natural baseline, PCA, for
a large range of β values.

V. CONCLUSION AND FUTURE WORK

This study presents a fairness-aware dimensionality reduction
technique that projects the data into a lower dimensional
space where most of its variation can be preserved. For bias
mitigation, the proposed scheme employs a fairness regularizer
whose design is based on a novel fairness notion introduced
in this work. Specifically, the presented fairness notion aims
to reduce the correlation between the compressed data and
sensitive attributes, which can alleviate the propagated bias
from the original representations towards the compressed data.
Differing from previous fairness-aware PCA formulations, the
proposed approach can be directly employed with non-binary
sensitive attributes and admits a closed-form solution that can
improve the run-time complexity. Experimental results on a real-
world dataset show the efficacy of the proposed dimensionality
reduction framework in mitigating bias while providing similar
utility to a state-of-the-art fairness-aware baseline for image
classification.

This work opens up a number of possible future directions: (i)
extension of the present framework and analysis to non-linear
dimensionality reduction techniques; (ii) the consideration
of the case where multiple sensitive attributes are available;
(iii) exploration of novel fairness measures for dimensionality
reduction based on non-linear correlations between s and Y.
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