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Abstract—In this paper, we introduce the MUSE (MUlti-
view Synthesis Enhancer) method, which is an evolution of our
previously proposed HDSB method and is based on a hybrid
algorithmic-learning-based scheme. MUSE generates novel views
of a scene using an autoencoder specifically optimized for
refining pre-synthesized views that have been derived from actual
observations. Since the subjective test is the ultimate test of the
visual rendering quality, we evaluate our proposed method by two
subjective tests. Experimental results show that the MUSE brings
a global gain compared to two tested state-of-the-art methods.

Index Terms—View synthesis, subjective test, quality assess-
ment

I. INTRODUCTION

To enhance the user experience, advanced works in visual
multimedia technologies and computer graphics have enabled
the development of new immersive visual medias. In an
immersive interactive experience, the “6 degrees of freedom
(6DoF)” offers the user the possibility to be tracked not
only by his head movement but also his body location as he
physically moves left, right, forward, backward up, and down.
The user can thus move around to freely change his location
and point of view while watching a video.

The video transition is one possible intermediate step to-
wards the 6DoF, where the user is not entirely free but has the
choice to change his point of view using a transition that can
seamlessly join two adjacent points of view of real cameras
in the scene. A typical format for these applications is the
Multi-view Video composed of a set of N video sequences
representing the same scene, referred to as real views, acquired
simultaneously by a system of N cameras positioned under
different spatial configurations. An alternative representation
is the Multi-View-Plus-Depth (MVD) format [1], where the
depth and texture information are used for each viewpoint.

The MPEG (Moving Picture Experts Group) proved a
considerable interest in the MVD formats for their capacity to
support 3D video applications. They proposed the View Syn-
thesis Reference Software (VSRS), Reference View Synthesis
(RVS) and Versatile View Synthesizer (VVS) [2], consecu-
tively. The VVS was released facing to the 6DoF challenges,
which improves the precision of the backward texture warping

and better preserves edges, compared to previous reference
softwares.

Many other methods trying to improve the view synthesis
quality have also been proposed in the litterature, such as
rendering-algorithmic-based techniques [3], [4], disocclusion
inpainting methods [5], [6], learning-based methods [7], [8]
or methods based on radiance field estimation [9], [10].
Learning-based and radiance-field-based view synthesis meth-
ods achieving encouraging and outstanding results accelerated
and condensed the work in this field. However, some of them
do not attach importance to the number of input images and the
computational/memory cost, and the improvement is mainly
performed on small baselines from the target view-point and
many input viewpoints.

The larger the distance between the cameras is, the wider
the baseline is. Our works focus on developing solutions
that deal with large baselines view synthesis while mixing
the advantages in algorithmic-based warping method with the
benefits of Convolutional Neural Networks (ConvNets) on
improving the final rendered image quality. In our previous
work [11], we proposed a Hybrid Dual Stream Blender for
wide baseline view synthesis (HDSB), where reference views
were algorithmically warped to the target position and then
blended via a ConvNet, followed by a residual encoder-
decoder for image blending with a Siamese encoder to keep
the parameters low. However, the HDSB did not guarantee a
network generalization due to the lack of variety in the limited
available training database.

In this paper we propose an improved version of the HDSB,
called MUSE: A Multi-view Synthesis Enhancer. It is still
based on our previous idea of a hybrid algorithmic-learning
scheme where reference views are preliminarily warped to the
target position using an inpainting method built around a mean
value to handle occlusions. But the MUSE differs from the
HDSB in the following aspects:

• The warped and inpainted left and right reference views
are preliminary merged by a sum weighted by a factor α,
to increase the contribution of the closest reference view,
reducing the impact of the projection of incorrect geome-
try estimated from distant points of view, and control the
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view-dependent appearance of non-Lambertian surfaces.
• The masks of the disocclusion areas are preliminary

merged by the boolean binary operator “and”, to generate
one mask that contains areas invisible by either the two
reference views.

• A concatenation of the generated mask and the merged
references form the only one input data considered by the
network, and a single encoder can thus be used.

• The network does not blend the views but corrects the
image artifacts resulting from the pre-merged image, and
improves the quality of the final image.

• The learning process of the network is called “intra-
content” and therefore, it is different from the inter-
content learning process used for the HDSB. This ensures
that the network learns the specific content features of
each sequence by over-learning on the available views.
Only the triplet images (left warped image, right warped
image and the reference view) are considered for a given
content.

Another contribution of the paper is that we conducted
two subjective tests to evaluate the rendered quality of our
method, different from many works where the methods are
only evaluated by objective quality metrics which don’t always
correlate with human perception.

In the following, we describe the proposed method in sec-
tion II, present the experiments for the performance evaluation
in section III, then show and discuss the results in section IV,
finally give the conclusions and perspectives in section V.

II. PROPOSED METHOD

We illustrate the MUSE architecture in Fig.1, which
includes two main stages: a pre-synthesis process and a
ConvNet-based view enhancer.
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Fig. 1: MUSE architecture illustration, where α corresponds
to the normalized distance between the virtual view and two
left and right reference views that frame the target view
and regulate the reference views’ mixing within the pre-
synthesized view.

A. Pre-synthesis process

The pre-synthsis process, in the same way as in the HDSB,
uses the two reference views to generate the view to be

synthesized. The steps leading to the generation of the warped
and inpainted left and right reference texture images TLw

f

TRw
f , and the generation of the binary masks (ML, MR)

corresponding to the disocclusion area in (TLw, TRw), respec-
tively, are the same as those described for the HDSB [11].

But here, the view T ′ is pre-synthesized by merging the
warped ans inpainted texture images TLw

f TRw
f by a sum

weighted by a factor α:
T ′ = α · (TLw

f ) + (1− α) · TRw
f (1)

We use a factor α that corresponds to the normalized distance
between the virtual view and the two reference views and
allows to increase the contribution of the reference view that
is closest to the virtual one. For example, if the virtual view
is very close to the left view, the factor α will be close to 1
and the contribution of the left view will be dominant. The
fusion of the binary masks MLb, MRb is performed by the
boolean operator and, and the produced common disocclusion
map contains then only the areas that are not observed by
either the left or the right view. The tensor B is the result of
the concatenation of T ′ which is a 3-channels color image (in
RGB or YUV format) and the mask M ′ of the disoccluded
areas. B is the input to the neural network whose role is to
improve the quality of the pre-synthesized view T v .

B. ConvNet-based view enhancer

The architecture of the neural network enhancer is similar to
the architecture used by the HDSB. However, there are some
remarkable differences between HDSB architecture and the
view-enhancing problem considered here. First, we only need
to deal with a single input (the concatenation of the merged
reference views with the mask B), rather than four inputs in
HDSB, thus only one encoder is used here, instead of two.
Second, the pre-synthesized image is characterized by partic-
ular types of artifacts due to algorithmic blending/inpainting
imperfections (such as ghosting problems shown in Fig.2),
instead of disocclusion problems.
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Fig. 2: Illustrations of algorithmic blending/inpainting imper-
fections in a pre-synthesized image.

Our network should learn how to enhance the quality of the
input blended image by reducing artifacts and ghosting effects
and refining the image details using an adapted architecture.
Thus, we use an encoder-decoder architecture that uses a single
blended image as input and generates one output image and
consists of three parts: encoder, bottleneck and decoder. The
three parts are the same as in the HDSB architecture as they
achieve the best tradeoff between the semantic depth and
the spatial resolution of the output feature maps. As well as
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minimizing training time, we utilize the Mean Squared Error
(MSE) loss function.

III. EXPERIMENTS

For the performance evaluation, we did two subjective tests,
one for the perceived quality evaluation of the view synthesis
methods and the other for the quantification of the differences
in the quality of the image synthesis methods. We compared
our new method MUSE, the MPEG reference software VVS
and our previously proposed HDSB with the subjective results.

A. Dataset

We used 8 multi-view video sequences here, of which 3 are
synthetic (Adventure, OrangeShaman, and Viking Village) and
the other 5 are from real video capturing (PandemoniumRig1,
PoznanCarpark, PoznanFencing, PoznanStreet, and Technicol-
orPainter), as illustrated in Fig. 3. The scenes Adventure
and VikingVillage are generated by IRT b<>com from free
Unity assets; OrangeShaman, PoznanCarpark, PoznanStreet
and TechnicolorPainter are excerpts from the original scenes
proposed to the MPEG Immersive Video working group;
PandemoniumRig1 was captured by IRT b<>com with the
same camera rig described in [12]. Tab. I summarizes the
characteristics of the different sequences.

(a) Adventure (b) OrangeShaman (c) VikingVillage

(d) Pandemonium-
Rig1

(e) PoznanCarpark (f) PoznanFencing

(g) PoznanStreet (h) Technicolor-
Painter

Fig. 3: Illustration of the selected contents.

B. MUSE training settings

For each sequence, we extract three neighbor views from the
first 750 frames: the left and right views are used as references
(TL, TR), and the central view is used as the ground-truth.
We firstly warp, inpaint, and blend TL and TR to obtain T ′.
Our network is then trained on the triplet images (T ′, the
corresponding binary mask M ′ and the ground-truth image).

From each sequence, we extract 75k triplets of co-located
patches of size 64 × 64, and get 52k training patches, 15k
validation patches, and 7500 test patches. During the training,
we used batches of 128 patches, a learning rate of 0.0001
(leading to the convergence of our learning algorithm after

100 epochs), and Adam optimization algorithm with weight
decay = 0 and betas = (0.9, 0.999). All the experiments are
performed on a server with an NVIDIA RTX2080GPU.

C. Subjective test-bed

A 24-inch LED PC monitor (ASUS VG248QE) is used to
manage the stimulis presentation to be evaluated. The voting
interface is displayed after.

In order to reproduce video sequences of different frame
rates, a screen with V-SYNC/G-SYNC capabilities is used to
guarantee a real-time display without visual artifacts. There-
fore, the constituted test-bed optimizes the display of uncom-
pressed video sequences (yuv/1080p/8bits format), recorded
on SSD and played with “mpv.”s player (an open-source media
player software based on ffmpeg [13]).

The test protocol follows the ITU-R BT.500-14 recommen-
dation [14]. Twenty-seven non-expert observers between the
age of 23 and 53 participated in the two tests.

D. Two Subjective Tests

Our subjective tests aim to evaluate the visual quality of our
method in the case of an actual view synthesis application,
which is a video transition. A video transition is a technique
used in post-production video-editing in order to join two shots
together. In our tests, we consider the transition from one point
of view to another in the same scene. Therefore, we use our
method to create a virtual transition between two cameras in
the same scene to change the user’s point of view. To achieve
this, we create several intermediate views that are played one
after another, such as a ”path” between the starting and ending
points. Tab. I shows the scene properties for each sequence to
create the transitions, i.e., the number of real cameras in the
scene, the baseline... It also shows the number of synthesized
images in every scene, necessary to transition between two
real cameras, with its duration.

1) Test 1: Evaluation of the perceived quality of the
view synthesis methods: Five-scale Absolute Category Rating
(ACR) method (cf. P.910 [15]) is adopted in this test, because
of the absence of the natural contents.

With 8 different sequences and 3 synthesis methods (VVS,
HDSB, and MUSE), we have 24 test transitions in total. For
each observer, the order of presentation of the sequences is
different, and each sequence is repeated once. Before starting
the test, the protocol and the objectives of the test are presented
to each participant in a test instruction sheet.

2) Test 2: Quantification of the differences in the quality of
the image synthesis methods: This test is more accurate than
Test 1 in estimating the differences in rendering between the
synthesis methods from a subjective point of view. Therefore,
for each scene, it is possible to determine if MUSE offers
a better visual rendering than the two other methods and
quantify this difference on an appropriate perceptual scale.
However, this method does not determine the level of per-
ceived visual quality for each measurement point (a view
synthesis method associated with a scene), as was the first
subjective test case. The two tests are thus complementary.

667



Sequence PandemoniumRig1 PoznanStreet PoznanFencing PoznanCarpark OrangeShaman TechnicolorPainter Adventure VikingVillage
Baseline [m] 0.79 0.14 0.22 0.14 0.2 0.072 0.8 0.8
Horizontal field of view [deg] 36 58 58 58 90 46 66 92
depth n5 [m] 3.7 4.8 0.63 4.6 1.3 2.4 3.1 7.7
Disparity max [pix] 630 49 600 52 150 73 390 97
Number of images 600 250 250 250 300 300 510 510
Length [s] 10 10 10 10 10 10 10 10
Frame rate [image/s] 60 25 25 25 30 30 50 50
Type natural natural natural natural synthetic hybrid synthetic synthetic
Number of cameras 10 9 10 9 5 4 22 22
Resolution [pix] 1920 x 1080 1920 x 1088 1920 x 1080 1920 x 1088 1920 x 1080 2048 x 1088 1920 x 1080 1920 x 1080

TABLE I: Summary of the characteristics of each scene and their associated capturing system

Test 2 is similar to the Double Stimulus Continuous Quality
Scale (DSCQS) (cf. BT.500 [14]). It requires prior scheduling
of the sequences to be tested because the view synthesis
methods will be compared in pairs (video A and video B).
For a given scene, three pairs are compared: (MUSE vs VVS),
(MUSE, HDSB), and (VVS, HDSB). After that each pair is
displayed twice, participants are asked to report their 7-scale
score on the perceived quality difference (whether the quality
of video B is “Much worse,” “Less good,” “Slightly worse,”
“Equivalent,” “Slightly better,” “Better,” or “Much better” than
video A).

IV. RESULTS AND DISCUSSIONS

A. From Subjective Test 1

Tab. II lists the Mean Opinion Score (MOS) obtained by
computing the average of the inter-observer and inter-scene
scores for each tested method. The ANOVA test is also
done and the p-values are alway below the level of 5% of
significance. The results demonstrate thus that the performance
of MUSE is significantly better than those of VVS and HDSB.

Method MOS

HDSB 2.4
MUSE 3.1
VVS 2.7

TABLE II: MOS for each view synthesis method and the bold
font indicates the best result.

If we look further into each scene (cf. Fig. 4), we can
find that MUSE is better than VVS and HDSB on all the
tested scences, except that VVS performs favorably for the
VikingVillage sequence. For this scene, we could observe that
prominent, annoying, and time-varying artifacts are predom-
inant in the areas where occlusion alternate with disocclu-
sion zones. We can reasonably hypothesize that the temporal
smoothing provided by VVS would bring again compared to
the pure spatial processing performed by MUSE. Thus, the
MUSE method brings a global gain compared to the VVS
method. The taking into account of the temporal neighborhood
represents an improvement perspective of the MUSE method.

B. From Subjective Test 2

Tab. III lists the inter-observer and inter-scene MOS for each
pair of the compared methods, from which we observe that:
the quality results of HDSB are relatively equivalent to those
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Fig. 4: MOS and 95% confidence intervals obtained for each
scene and each view synthesis method.

of VVS; the quality results of MUSE are better than those of
HDSB; the quality results of MUSE are better than those of
VVS. Fig. 5 illustrates then the inter-observer MOS for each
scene and pair of compared methods.

Compared methods MOS

HDSB vs VVS -0.335
MUSE vs HDSB 1.157
MUSE vs VVS 0.780

TABLE III: MOS for each pair of compared methods

Test 2 allows us to quantify the difference in visual quality
between the different view synthesis algorithms (HDSB, VVS
and MUSE). The analysis of the results corroborates the
conclusions of the first test and shows that:

• MUSE performs favorably compared to VVS for all the
scenes except VikingVillage. The contributions are most
significant for the real scenes PandemoniumRig1 and
PoznanFencing. The results for the OrangeShaman and
PoznanStreet sequences are relatively comparable

• MUSE is a real improvement over HDSB. The results for
PoznanStreet and TechnicolorPainter are slightly better,
while the results for the other contents are much better.
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Fig. 5: MOS and 95% inter-user confidence intervals for each
scene and pair of compared methods

• HDSB produces similar or worse results compared to
VVS, except for the PoznanFencing scene, for which the
visual quality of the HDSB method is judged better.

The analysis of the two tests’ results also shows that the
quality of the view synthesis is strongly dependent on the
content. The visible artifacts are related to errors in the depth
maps, which are more critical when the disparity amplitude
is more significant. As well as the camera focal lengths, the
spacing, and the object relative distances in the scene, affect
the quality of the synthesized views. The synthetic contents
for which ideal depth maps have been used escape this rule.
A more detailed study of the link between the configuration of
the rig and the quality of the synthesized views would allow
us to confirm these hypotheses.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a new view synthesis method
MUSE. We qualitatively evaluate our method by conducting
two subjective tests that compare MUSE’s performances with
two other state-of-the-art view synthesis methods (HDSB and
VVS). These tests were performed on an actual view synthesis
use-case which is a video transition between two points of
view in the same scene.

Synchronized
Video Capture

Offline
Synthesizer

6 DoF 
player

User

Synthetized 
view

Camera
rig

Virtual camera

Virtual
camera

Real
camera

Fig. 6: From multi-view capture to 6DoF rendering

Fig. 6 illustrates the final targeted user experience towards
the 6DoF video navigation, that can benefit from our new
method. The user (1) visualizes, with the help of a 6-DoF
player installed on a device such as a PC, a tablet, or a

virtual reality headset, the video sequence associated with a
real camera (2). He/she can navigate from one real point of
view to another real point of view. Between two real points
of view, the images associated with a virtual camera (3) are
generated by an off-line synthesizer such as MUSE and played
back by the player (1).

Our future research regarding the view synthesis technique
aims to exploit the temporal information to improve the hole
filling procedure and impose temporal consistency among
neighboring frames as an additional constraint at training and
inference stages. Since the subjective tests are costly and time-
consuming, we only compared the MUSE with two other
methods this time. But we will compare our method with more
state-of-the-art view synthesis methods in the future.

REFERENCES

[1] P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Multi-view video
plus depth representation and coding,” in 2007 IEEE International
Conference on Image Processing, vol. 1, 2007, pp. I – 201–I – 204.

[2] J. Jung and P. Boissonade, “VVS: Versatile View Synthesizer for 6-DoF
Immersive Video,” Apr. 2020, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02541110

[3] J. Lin, W. Wang, J. Yao, T. Guo, E. Chen, and Q. F. Yan, “Fast
multi-view image rendering method based on reverse search for
matching,” Optik, vol. 180, pp. 953 – 961, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0030402618319272

[4] S. Prakash, T. Leimkühler, S. Rodriguez, and G. Drettakis, “Hybrid
image-based rendering for free-view synthesis,” Proceedings of
the ACM on Computer Graphics and Interactive Techniques,
vol. 4, no. 1, May 2021. [Online]. Available: http://www-
sop.inria.fr/reves/Basilic/2021/PLRD21

[5] J. Thatte and B. Girod, “A statistical model for disocclusions in depth-
based novel view synthesis,” in 2019 IEEE Visual Communications and
Image Processing (VCIP). IEEE, 2019, pp. 1–4.

[6] S. Satapathy and R. R. Sahay, “Robust depth map
inpainting using superpixels and non-local gauss–markov
random field prior,” Signal Processing: Image Communi-
cation, vol. 98, p. 116378, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0923596521001752

[7] I. Choi, O. Gallo, A. Troccoli, M. H. Kim, and J. Kautz, “Extreme
view synthesis,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 7781–7790.

[8] T. Volker, G. Boisson, and B. Chupeau, “Learning light field synthesis
with multi-plane images: Scene encoding as a recurrent segmentation
task,” in 2020 IEEE International Conference on Image Processing
(ICIP), 2020, pp. 633–637.

[9] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in European Conference on Computer Vision. Springer,
2020, pp. 405–421.

[10] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions on
Graphics (ToG), vol. 41, no. 4, pp. 1–15, 2022.

[11] N. Hobloss, L. Zhang, S. Lathuiliere, M. Cagnazzo, and A. Fiandrotti,
“Hybrid dual stream blender for wide baseline view synthesis,” Signal
Processing: Image Communication, vol. 97, p. 116366, 2021.

[12] N. Hobloss, L. Zhang, and M. Cagnazzo, “A multi-view stereoscopic
video database with green screen (mtf) for video transition quality-
of-experience assessment,” in 2021 13th International Conference on
Quality of Multimedia Experience (QoMEX). IEEE, 2021, pp. 201–
206.

[13] MPV, “a free, open source, and cross-platform media player,” 2021.
[Online]. Available: https://mpv.io/

[14] ITU-R, “Recommendation itu-r bt.500-14: Methodologies for the sub-
jective assessment of the quality of television images,” International
Telecommunications Union: Geneva, Switzerland, 2019.

[15] I. Rec, “P. 910: Subjective video quality assessment methods for mul-
timedia applications,” International Telecommunication Union, Geneva,
vol. 2, 2008.

669


