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Abstract—Cooperative sensing and cooperative communica-
tions are viewed as promising techniques for improving the
sensing and communication performance by utilizing the space
diversity. In this paper, we investigate the cooperative-sensing
assisted joint transmission for a ground-to-air system. By coop-
eratively processing the echoes from different UAVs, we propose
a cooperative sensing scheme based on the extended Kalman
filtering mechanism. To improve the system sum-rate based
on the cooperative tracking information, we jointly optimize
the transmit beam power of different BSs via a teaching-and-
learning based optimization technique. Numerical results show
that compared with the conventional separate sensing scheme,
the proposed cooperative sensing scheme is able to significantly
improve the positioning accuracy, thereby improving the com-
munication performance.

Index Terms—Unmanned aerial vehicles, cooperative sensing,
sensing-assisted communication, joint transmission.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), as a promising tech-
nique, viewed as key enablers for executing various tasks in
future [1], such as data sensing, military reconnaissance, and
formation flight. In order to guarantee the safety of UAVs and
satisfy various mission-specific requirements, it is necessary
to ensure the high-capacity and low-latency data transmission
between UAVs and base stations (BSs) [2].

The joint transmission (JT) technique, in which multiple
BSs transmit signals to one or multiple user(s), can signifi-
cantly enhance the robustness and throughput of the commu-
nication links, especially for users at the cell edge, which have
been studied in [2]-[4]. To support joint transmission, accurate
channel estimation is of great importance. However, due to
the high mobility of UAVs, conventional pilot based channel
estimation schemes faces the problem of ‘“channel aging”,
therefore cannot provide accurate channel state information
(CSI). Fortunately, the rising of the integrated communi-
cation and sensing (ISAC) technique allow simultaneously
performing sensing and communication functionalities based
on one unified waveform, which facilitates the sensing-aided
communication [5]-[8]. Compared with the pilot based CSI
acquisition mechanism, the sensing-aided mechanism is able
to significantly improve the throughput by saving the pilot
overhead. Moreover, it allows continuous CSI acquisition.

However, it should be noted that the accuracy of CSI
reconstruction is closely related to the sensing accuracy, while
the sensing accuracy and robustness of a single BS are limited.
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Facing this issue, by employing multiple BSs as distributed
sensing nodes, which share sensing information to enable
collaborative processing, the cooperative sensing (co-sensing)
technique is able to improve the sensing accuracy. The authors
in [9] proposed OFDM-based co-sensing with multiple single-
antenna BSs, and provided a maximum-likelihood based algo-
rithm to achieve multi-target association. The authors in [10]
demonstrated the sensing information fusion of two multi-
antenna nodes and verified the improvement of co-sensing
on sensing performance. Furthermore, the authors in [11]
studied the employment of extended Kalman filter (EKF) in
co-sensing.

Although the above works have studied joint transmission
and cooperative sensing, respectively, their integration and the
impacts of co-sensing on JT have not been studied. In this
paper, we study the cooperative sensing assisted joint trans-
mission, in which multiple BSs coherently transmit signals to
multiple UAVs based on the sensing results. By employing the
ISAC waveform, the BSs are able to estimate the time-variant
locations of UAVs based on the echos, thereby reconstructing
their CSI. To achieve CSI prediction, the EKF technique is
applied to cooperatively process the sensing information of
multiple BSs. Subsequently, in each time slot, the power of the
transmit beams are jointly optimized for maximizing the sys-
tem sum-rate, under the sensing signal-to-clutter-noise-ratio
(SCNR) and transmit power constraints. We first transform
this non-convex problem into appropriate forms, then apply
a teaching-and-learning optimization algorithm to address
it. Numerical results show cooperative sensing can achieve
more accurate positioning than separate sensing; thereby, the
system sum rate achieved by co-sensing assisted JT (CSJT)
outperforms that of the separate sensing assisted JT (SSJT).

II. SYSTEM MODEL

In this section, we first describe the considered system
model. Then we present the signal model of coherent trans-
mission. Afterwards, the signal model of the received echos
is provided.

A. System Description

We consider the co-sensing assisted JT system, as shown in
Fig. 1, which consists of M BSs denoted by M = {1,..., M },
K UAVs, denoted by K {1,...,K}. UAVs maneuver
over the BSs, and the BSs coherently transmit orthogonal
frequency division multiplexing (OFDM) signal to the UAVs.
The locations of BSs are denoted as Q.,, = [Tm,Ym,0],
while the trajectories of UAVs are denoted as xi[n] =
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Fig. 1. An illustration of the considered co-sensing assisted JT in ISAC
system.

[zk[n], yi[n], zx[n]], & = {1,..., K}, with the corresponding
speeds expressed as vi[n] = [vg[n], vk[n], vg[n]]. Each BS is
equipped with two uniform planar arrays (UPAs) for signal
transmission and reception, with the antenna number being NV,
and Np, respectively. Without loss of generality, we assume
N; = N, = N, x N,. The steering vector of UPAs is
expressed as

a(t,¢) = vec (A (0,9)), (1

which vec(-) represents the operation of converting matrix into
column vector, and A (6, ¢) € CNv*Ne with each element as

A (Clm,(ly) = eil(ay=1)B+(az—1)a) )

in which a = 2%d; sin(¢)sin(6), 8 = 2Fd, cos(¢) with dy
and dy denoting the horizontal and vertical intervals between
adjacent antennas, and A is the wavelength of the carrier
signal.

To enable cooperative sensing and coherent transmission,
all BSs are connected to a central station via backhaul
[9]. Through transmitting the ISAC signals, the BSs receive
the echoes from UAVs, and upload the sensing information
to the central station for cooperative sensing. The band-
with allocated to each BS is denoted by B. The power
of the beams transmitted by BSs are denoted as p =
(P11, 1K ML, DMK, Where py, i Tepresents
the transmission power from BS m to UAV k. To address the
high mobility of UAVs, the BSs also conduct beam prediction
based on the sensing information, thereby facilitating the co-
sensing assisted joint transmission. We consider a duration
T of interest, which is discretized into N time slots with
AT =T/N .

B. Joint Transmission Model

In the n-th slot, M BSs jointly transmit data streams
s[n] = [s1[n], ..., sx[n]]" to K UAVs. To reduce inter-cell
interference in JT, each stream transmitted by BSs adopts
space-frequency/time block coding (SFBC/STBC) [12], [13].
The OFDM stream of the m-th BS is expressed as

Sn] = [sm1 [y ooes S (0] 3)
The transmitted signal from the m-th BS is expressed as

§m [TL] - Fm [TL]Sm [n} S CNlea (4’)

where F,,[n] = [£,.1[n], ..., fnx [n]] € CNeXE denotes m-
th BS’s transmit beamforming matrix in the n-th slot, which
is designed based on sensing and prediction information.
Specifically, £, x[n] is given by

£ i[n] = allminn = 1], dmilnln — 1)), )

where 0,,, [n|n — 1] and ¢mk[n|n — 1] respectively denote
the predicted horizontal and vertical angles of the k-th UAV
in the n-th slot.

The path loss from BS m to UAV £k follows the free-space
path loss model, which is given by

h'm,k[n] = \/ Lo Hd’m,k[n]Hia (6)

where d,,, ;[n] = xi[n] — qm. ||-|| denotes its norm, and p,
denotes the path loss at the reference distance dy = 1 m.

For convenience, the subscript n is omitted below. The
signal received by the k-th UAV can be expressed as equation
(7), where Ty, ks Um ks Om.k, and @y, i respectively denote
the time delay, Doppler shift, horizontal angle and vertical
angle between BS m and UAV £, W, denotes the set of BSs
serving UAV £k, T,,, denotes the set of UAVs served by BS m,
and ng ~ CN (0,02) denotes the additive white Gaussian
noise (AWGN) at UAV k. Ty, ks Um ks Om ks and @, j are
respectively given as

_ ldmxll 0 — aresin (Y= Ym
Tm,k = Ta m,k = arcsin m )
q " ®)
Um,k = Vk—wv ¢m,k = arcsin < “k > )
' cl|dm,kll ([l

in which v}d,, /||dm k| denotes the radial speed of the
UAV £ relative to BS m, rmx = ||[Tk, Yk] — [Zm, Ym]|- fe
and c respectively denote carrier frequency and light speed.

After SFBC decoding, the signal-to-interference-plus-noise
ratio (SINR) of the received downlink (DL) communication
signal at UAV £ is expressed as [14]

2
1 Z \/pml«,khml7kanbil,lcfm1,k‘

_ m1 €Wy
Yu,, = 3 .
H 2
\/p’lng,kQhnlz,kamz’kf’lng,k‘z + Ok
k2 €Ty k2Fk ma€Wy
)
where ¢ denotes the encoding rate, al, denotes

aH (em,lm ¢m,k)-
The communication data rate for UAV k is expressed as

Ry, = logy (1 + vu, ). (10)

C. Co-sensing Signal Model

In the n-th slot, echo signal received by the BS m is
expressed as (11), where n,, ~ CN (0,02,) represents the
AWGN at BS m, hp, k,m and Ap,, i, denote the path loss
of "BS m-UAV k-BS m’ and *BS my-UAV k-BS m’, which
are respectively given separately as

hm,k‘,m = 1/)0 \/Po (471')72”(317”,]9”_4,

(12)

—2
Poss s = %0/ poll s | 247 [l i )2,

in which 1)y denotes the radar cross section (RCS).
After sensing SFBC decoding [15], the monostatic echoes
can be retained while the bistatic echoes can be eliminated

(13)
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yck = Z {mel,khm,l,k aH(eml,ka (/)ml,k)fml.k Sma,k (t - Tml,k) ej27ruml’kt}

mi EWY5 (7)
H 27 oy e
+ Z Z {\/pmz»kzhmzyka (0m2,k7 ¢m2,k)fm2,k2 Sma, ko (t - Tmz,k) el "THma b } + ng
k2 €Ty ka#k ma€EWy
H F2T o iy
Ys = Z {\/pm,kl hnL,k1,'mb(9'rrL,k1) ayn,kl fm,lm Sm,kq (t - 27—m,k1 )CJ THm, ke }
k1€Tm (11)
H PLITRN
+ Z Z {Vpm2=k2hm27k1,mb(9m,k2) amz,szmz,kzsmmkz (t — Tmg,ky — Tm,kz)ej T k2 } +
Mo €Wy, s maF#m k2 €T
. . . T
in the corresponding frequency band. Therefore, the signal- Zom k= [szvk,zq,,mvk,zsmgm)k,zsimﬁm{k]
to-clutter-plus-noise ratio (SCNR) of the received echo signal ] )
of BS m for UAV k is xpressed as The covariance matrix of z,, j can be expressed as
= - 2 2 2 2
V5 szvk = diag [UTm,A-,’ O-'U/m,k’O-s'in’gn1,,kt7o-‘9in¢m,ki| ) (18)

Gr

‘ 2

H
\/pm,k'hm,k,mam,kfm,k

H
Z ‘\/p’m,kzhm’k%ma'rn,szm’kz

k2 €Tm, ka2#k

(14)

b
2
+o7,

where (G, devotes the angle matching gain.

III. COOPERATIVE SENSING BASED ON EKF

In this section, we propose an Extended Kalman Filter
(EKF) based cooperative sensing technique. We first present
the measurement model of the BSs based on the received
signal model. Subsequently, the beam and target association
issues are discussed. Afterwards, the detailed procedure of
EKF based cooperative sensing is presented.

A. Measurement Model

Based on the downlink signal echo, BSs can obtain the
observable parameters of UAVs. We use Ty, j,lim, k,H_,,,L, %, and
@m, i to represent the time delay, Doppler shift, horizontal
angle and vertical angle observed by the BS m on UAV £ re-
spectively. The measurement models of observable parameters
are shown as follows.

’T—M,k = 2Tm,k + BTk sin em,k = sin em,k + Zsino

m,k?

am,k = 2um,k' + Zfm ey S ¢m,k’ = sin ¢7n,k + Zsin Gk
1

where T, k, Um ks Om k> and op, i are given in (8), and 2z, .,
Rty 1> Zsinl, 1> AN Zsing,, . Tepresent the measurement error,
which subject to uniform distribution with zero mean and the
following standard deviation.

o 1 o 034B cOS Om 1;
Tm,k 00,k — ’
" Bx N2 " 1.61/27s,, (16)
A $3dB COS P,k
Uum,k - = P

AT < 2y 0% = 16

where 6345 and ¢34p respectively devote the horizontal and
vertical beam width.
We recast the measure model in (15) as

278m,k

Em.k = hm(gk) + Zm, ks (17)
T
where gi. = [(x1)", (vi)"] . and

_ 7 . A LT T
Em,k = [Tm,kv f'm,k‘y Slne’rmky SZn¢m,k] )

To linearize h,,(g), we calculate its Jacobian matrix, which
can be expressed as

Mo,k = %’?’: € Cc™t, (19)
Specific expressions are as [8].

For UAV k, we set
H() = [hl(.)T,hQ(-)T,..A,hM(~)T]T e CMx1 (20)
My = [e14, b nehin] €T @D
Zy = [a]) 205 2hrs] €T )
Q., = diag{Q., ,, Qup - Qsyy, } € CHIAM 1 (23)
e = ;—i = diag {1 5, Moy - marg} € CHIAM(24)

Thus, we have

I1, = He(gr) + Zg- (25)

B. Beam and Target Association

While tracking multiple targets with a single BS, a critical
issue is the beam association in different time slots, which can
be realized by minimizing Euclidean distance between the
measurement state and prediction state [S]. For cooperative
sensing with multiple BSs, besides beam association, there
is also a target association problem. Specifically, the obser-
vations from different BSs may not correspond to the same
target in the same time slot. By defining the coordinates of
UAVs estimated by BSs as X; 1, the target association problem
can be formulated as [9]

j:arg H)_(j,m_ii,l'vi:{lv"' aK}7 (26)
J

where X; ,,, denotes the j-th coordinates estimated by BS m.

Both beam association and target association can be solved

via the data correlation technique, which has been studied in

[16].
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C. Cooperative Tracking Based on EKF

While utilizing the EKF method to jointly estimate and
predict the target position, the state evolution model is given
by

gr[n + 1|n] = Aln + 1|n]gk[n] + wi[n + 1]
I3, I;AT
03, I

Aln+1[n] = { @n

where Aln + 1|n] denotes the state transition matrix for
predicting the target’s state in slot (n + 1) based on the state
in slot n, Is and O3 are 3 x 3 identity matrix and zero matrix,
and wi[n] = [wz, Wy, Wy, Wy, , Wy, 5 wUZ]T denotes the noise
term, where the elements are assumed to be independent
Gaussian noise with variances of 07,07, 02,07 07 07
respectively. The covariance matrix of wy[n + 1] is given by

2 2 2 2

Q. = diag [05,02,0 oL 0. 0 } (28)

Y1 Y2y Y vy Yoy Y,

The predicted mean square error (MSE) matrix can be given
by

My [n + 1|n] = Aln 4 1{n]Mg[n] A" [n + 1|n] (29)
The Kalman gain matrix is then calculated as
Ki[n+ 1] = My[n + 1n|nfn + 1]x

kln 4+ 1] = Mg[n + 1fnjn; [0+ 1] 30

(Q-, + Ml + UMy[n + Ln]n[n + 1)

where m[n + 1] = Mg, 4 1))

Finally, based on (25), we can obtain the UAVs’ states based
on observation parameters in (n+1)-th slot slot, with the states
and MSE matrix updated as

gi[n+1] = gi [ 1]+ K [n+1] (T 1] - H(gg [+ 1 \g}l)))
Min+ 1] = I —-Kgn+ Unkn+ 1)M[n+ 1|n] (32)

IV. TRANSMIT BEAM POWER OPTIMIZATION

According to (9) and (14), the transmit beams’ powerhas
great impact on both communication and sensing perfor-
mance. Therefore, in this section, we investigate the power
optimization for the transmit beams

A. Problem Formulation

We focus on jointly optimizing the power for transmit
beams in the (n + 1)-th slot based on the prediction infor-
mation in the n-th slot, with the aim of maximizing the total
predicted communication sum-rate in the (n+1)-th slot, while
ensuring that the sensing SCNR is greater than a predefined
threshold and meets the power constraints. The optimization
problem in the n-th slot is formulated as

K
max logy (1 + yi[n + 1|n 33
max kZ:l g, (1+e[n + 1jn]) (33)
8.t [0+ 1n] > T,Vm € M (33a)
Pmin S pm,k[n + 1] S Pmax, vk S K (33b)

where I" denotes the sensing SCNR threshold, py,i, and ppax
are the minimum and maximum values of transmitted beam
power respectively.

B. Teaching-Learning-Based Optimization

Note that the above problem is challenging to solve, due
to the high non-convexity of objective function (33) and
constraint (33a). To address this issue, we utilize a meta-
heuristic algorithm called teaching-learning-based optimiza-
tion (TLBO) method [17]. Firstly, the TLBO model generate
U learners. Each learner represents one power optimization
scheme [18], which is called knowledge and expressed p,, €
CIXKM

Then we define the fitness function for problem (33) as

T 3
F(pa) =Y logy (1+ wln+1nll,, )= cifis (34
k=1 =1

with the following penalty functions.

M K N2
fi= 33 (P [+ 1 = 1))
’rrj;l k[:{l

fo= Z Z ([pm,k|u 7pmin]7>27
m=1k=1
M K

f3= Z Z ([pmax —pm,71‘~,\u]_>2.

m=1 k=1

(35)

where ¢; denotes the penalty factor and [a]~ £ min {0,a}.
The TLBO method mainly include teaching and learn-

ing stages. In the teaching stage, the best learner u* =

max {F (p,)} is identifid as a teacher to help learners get

new knowledge. The output of the teaching stage is also the
input of the learning stage. In the learning stage, learners
interact to update knowledge. The output of the learning stage
will be the input of the teaching phase in the next iteration.
The teaching and learning stages are optimized iteratively
until F' (pi.) converges. For further details, we refer the
readers to [17].

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
co-sensing assisted JT (CSJT) in ISAC system via numerical
simulation. In particular, we take M = 4, K = 2 as an
example. The coordinates of the BSs are respectively set as
[0,0,0]"m, [0,100,0]"m, [100,0,0]"m and [100, 100,0]"'m.
The two UAVs maneuver over [50 + 20,50 + 20]7m at the
speed of 20 m/s at the altitudes of 40m and 50m respec-
tively. And the spectrum density of o7 and o2, are set to
—30dBm/MHz. The maximum and minimum transmit power
of BSs are respectively set as 0.5W and 10W. Besides, we
set f. = 1.8GHz, py = —60dB, £ = 3/4, T' = 3s, N, = 2,
63(13 = ¢3dB = 0.3rad, I'=-10 ~ 7dB, l/)() = 20stm,
G, = 10dB. For comparison, we also consider the case that
each BS utilizes its independent sensing information to assist
joint, recorded as “Separate sensing assisted JT (SSJT)”.

In Fig. 2(a), we show the average positioning error versus
bandwidth with N, = 64. Compared with separate sensing,
the average positioning error of co-sensing is significantly
decreased. Meanwhile, the positioning error of the co-sensing
scheme decreases with the bandwidth increase, while posi-
tioning error decreases slightly within the limited bandwidth
variation range for the separate sensing scheme. At the same
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Fig. 2. (a) Average positioning error versus bandwidth (N, = 64). (b)
Average spectral efficiency versus bandwith (N, = 64).
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Fig. 3. (a) Average positioning error versus horizontal antenna dimension
(B = b50MHz). (b) Average system sum-rate versus horizontal antenna
dimension (B = 50MHz).

time, we observe that smaller slot AT results in better
positioning results for both co-sensing and separate sensing.

To show the gain of co-sensing in improving communi-
cation performance, we show the average spectral efficiency
in Fig. 2(b). With the bandwidth increasing, the average
spectral efficiency of the proposed CSJT scheme increases
fast, especially for a small bandwidth since the corresponding
positioning error is significantly decreased. Although the
positioning error also decreases at 50-90MHz, its impact on
beam alignment is smaller. However, for SSJT, the average
spectral efficiency is slightly reduced with the bandwidth
increasing. This is because the decrease of positioning error
is limited, while greater noise power is introduced due to the
increased bandwidth. Again, smaller slot AT result in higher
average system sum-rate for both schemes due to the improved
tracking performance.

Fig. 3(a) shows the average positioning error versus hor-
izontal antenna dimension. As can be seen, the average
positioning error of co-sensing decreases with the N, increase
and is lower than that of separate sensing under different
N, . Fig. 3(b) shows that the proposed CSIT scheme is able
to achieve higher average system sum-rate under different
antennas. With the increase of N, the average system sum-
rate of the CSJT scheme increases faster than the SSJT. Note
that with a smaller AT, the tracking error is smaller; thus,
the CSI can be updated more frequently and more accurately,
which results in the increase of the gap between the sum-rate
under AT = 0.02s and that under AT = 0.05s.

VI. CONCLUSION

In this paper, we studied co-sensing assisted JT for a multi-
BS-to-multi-UAV communication system. In particular, we
employed the EKF technique to predict the trajectories of

UAVs, based on which, the BSs jointly transmit signals to
UAVs. To improve the system sum-rate, we employed the
TLBO algorithm to jointly design the transmit beam power
of multiple BSs. Simulation results show that compared with
the separate sensing scheme, the proposed co-sensing scheme
is able to achieve more accurate tracking of UAVs, thereby
enabling more efficient transmission strategy, and improving
the system sum-rate.
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