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Abstract—For the joint multiple-input multiple-output
(MIMO) radar and MIMO communications system with widely
separated antennas, designing the waveforms properly plays
a pivotal role, especially when dual-functional is requested.
Considering target detection and decoding as the main radar
and communications tasks, for the purpose of improving both
performance, in this paper the dual-functional waveforms
are designed jointly with the radar and communications
receivers. Supervised learning is employed for the radar
detector and communications decoder, while reinforcement
learning is employed for the waveform design. We propose a
joint training framework, where the detection and decoding
performance metrics are used as the loss function of the
supervised learning and the reward of the reinforcement
learning. The reinforcement learning-based transmitter and
supervised learning-based receivers are trained in an iterative
way to meet the desired performance. Numerical examples are
provided to show the efficiency and effectiveness of the proposed
method.

Index Terms—Dual-functional radar and communications
(DFRC), multiple-input multiple-output (MIMO), reinforcement
learning, supervised learning.

I. Introduction

With the number of electronic devices growing, spectrum
resources become scarce, leading to overlapping operating
bands between radar and communications. Dual-functional
radar and communications (DFRC) systems can be an effective
solution [1]. The DFRC system can reduce system overhead
and realize tight integration in which dual-functional wave-
forms emitted from the shared transmitters perform both radar
and communications functionalities simultaneously [2].

Waveforms play a pivotal role in the DFRC system, the
design [3]–[7] of which hence is of great importance. Re-
cently, orthogonal chirp-division multiplexing (OCDM) sig-
nals, which have the robustness to multipath propagation,
high processing gain, and high data rate, have been used in
the DFRC system for target detection [5] and decoding [6],
[7]. Spatially orthogonal OCDM (SO-OCDM) waveforms are
suitable for multiple-input multiple-output (MIMO) systems,
in which the OCDM waveforms contributed from different
transmitters are spatially orthogonal and subcarriers of the
OCDM signal in the same bandwidth are mutually orthogonal.
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In this paper, we study the SO-OCDM waveform design for
the MIMO DFRC system, with target detection and symbol
decoding as the main tasks for the radar and communications
subsystems, respectively.

Towards further improving the system performance of the
DFRC system, the waveforms are optimized jointly with
receiver design [8]–[10]. The authors in [9] and [10] joint
designed waveforms and radar receiver filters based on the
alternative direction method of multipliers and successive con-
vex approximation algorithm. In [11] and [12], a supervised
learning (SL) based autoencoder framework was proposed for
detection, estimation, and decoding in a co-located MIMO
DFRC system. Co-design of the waveforms and receivers
is studied in this paper to enhance the target detection and
symbol decoding performance.

For the joint waveform and receiver design problem, we
employ a framework combining reinforcement learning (RL)
and SL. The advantage of similar framework has been shown
in [13] for joint encoding and decoding for a single-input
signal-output (SISO) communications system and in [14] for
joint waveform design and detection for a SISO radar system
in combatting complex channels or clutter statistics. Inspired
by [13] and [14], the joint SO-OCDM waveforms, detector,
and decoder design based on the RL and SL is studied in this
work for the MIMO DFRC system. RL and SL are adopted
to optimize the waveforms and execute the detection and
decoding tasks, and meanwhile the rewards to the RL-based
transmitter are provided by SL. The optimization problem is
handled by an iterative training process of the SL and RL.

II. Reinforcement Learning Based Dual-Functional
Transmitter

A. Dual-Functional SO-OCDM Waveforms

Consider a MIMO DFRC system with M transmitters.
Assume one frame of a transmitted signal consists of Pm

SO-OCDM symbols, the sampling period is Ts, the index
of the samples is k (k = 1, ...,K), and the total number of
samples is K. The SO-OCDM waveform emitted from the
mth (m = 1, ...,M) transmitter is

xm [k] =
√

Em

Pm−1∑
p=0

Im−1∑
i=0

1
Im

ap,i,msp,i,m [k] rect

(
kTs − pTo,m

To,m

)
(1)
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where Em is the energy of the waveform, Im the number of
chirps, ap,i,m the modulated data for the ith (i = 1, ..., Im) chirp
in the pth (p = 1, ..., Pm) symbol, rect(·) denotes the rectangle
function,

sp,i,m [k]=
{

0, kTs ∈
[
pTo,m, pTo,m + TGI,m

)
sw/o GI

p,i,m [k] , kTs ∈
[
pTo,m+TGI,m, (p+1) To,m

) (2)

the chirp signal,

sw/o GI
p,i,m [k] = e

jπ
4 e− jπ Im

Tm2

(
kTs−i Tm

Im

)2

e j2πm f∆,mkTs (3)

To,m = Tm + TGI,m, Tm is time duration of one SO-OCDM
symbol, TGI,m is the guard interval (GI), and f∆,m denotes
the frequency spacing between waveforms of two adjacent
transmitters. From (3), the chirp rate and bandwidth can
be calculated as Im/Tm

2 and Bm = Im/Tm, respectively.
Let f∆,m > Bm,m = 1, ...,M to ensure the waveforms
from different transmitters are spatially orthogonal, such that∑Km

k=1 x∗m [k]xm′ [k] = 0 for m , m′, where (·)∗ denotes
conjugation. The orthogonality of chirps in the pth SO-OCDM
symbols means

∑Ko,m

k=KGI,m
(sw/o GI

p,i,m [k])
∗
sw/o GI

p,i′,m [k] = 0 for i , i′,
where KGI,m and Ko,m are the sample number for the GI and
for a SO-OCDM symbol. To facilitate future use, we denote
the modulated data matrix by A =

[
a1,1, a1,2, · · · aPM ,IM

]T , in
which ap,i = [ap,i,1, · · · , ap,i,M]T and (·)T denotes transpose.

It can be seen from (1) that the SO-OCDM waveform
xm [k] is determined by the associated parameters, which are
collected together in a parameter vector,

λm =
[
Em,Tm,TG,m, Im, Pm

]T . (4)

The parameter vectors of the waveforms from all the trans-
mitter are

λ =[λT
1 , · · · ,λ

T
M]T (5)

Thus, waveform design of the MIMO DFRC system em-
ploying SO-OCDM is equivalent to the optimization of λ.

B. RL-Based Approach for Waveform Optimization
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0

Fig. 1. Architectures of the waveform design net.

For the RL-based waveform optimization problem, SO-
OCDM waveform designing is viewed as the action. The
rewards provided from the SL-based receivers to the waveform
design net is defined as ρRlR+ρClC , where lR and lC denote the
performance metric for the radar and communications, ρR and
ρC denoted the weighted factors for radar and communications.
As illustrated in Fig. 1, a fully connected network (FCN)
fθT (·) with trainable variables θT takes the initial waveform
parameter λ0 as the input. The network is adopted to adjust
waveform parameters, namely, outputing designed waveform
parameters λ = fθT (λ0). Finally, a SO-OCDM generator is
applied to form a set of SO-OCDM waveforms xm[k].

III. Supervised Learning Based Receivers

In this section, received signal models used for synthesiz-
ing training data and testing date are given. The SL-based
approach is applied to design the detector and decoder.

A. The SL-based Radar Receiver

Assume the MIMO DFRC system has NR radar receivers.
The signal received at the nRth (nR = 1, ...,NR) receiver is

ynR [k]=
M∑

m=1

ζ t
m,nR

xm(kTs−τ
t
m,nR

)+
M∑

m=1

ζd
m,nR

xm(kTs−τ
d
m,nR

)+znR [k]

where τt
m,nR

and τd
m,nR

are the delays associated with the mnRth
target reflection path and the direct path, respectively. The
radar propagation loss corresponding to target reflected path
and direct path are defined as ζ t

m,nR
= δm,nR

√
αt

R/(d
2
mtd

2
tnR

)

and ζd
m,nR
=

√
αd

R/d
2
mnR

, where δm,nR is the target reflection
coefficient, dmt is the distance between the mth transmitter
and the target, dtnR is the distance between the target and
the nRth radar receiver, and dmnR is the distance between
the mth transmitter and the nRth radar receiver. The αt

R and
αd

R are the ratio of received energy to transmitted energy
at dmt = dtnR = 1 and dmnR = 1, respectively. The term
znR [k] ∼

∑GR
gR=1 κgRCN

(
0,ΣgR

)
is the Gaussian mixture clutter-

plus-noise, where CN
(
0,ΣgR

)
represents the zero-mean com-

plex Gaussian distribution with covariance matrix ΣgR , κgC is
the coefficient of the gRth Gaussian mixture component, and∑GR

gR=1 κgR = 1 [15].
Stacking the signals from all receivers, the signal vector is

yR = [yT
1 , · · · y

T
NR

]T

= xtζ tIMNR + xdζdIMNR + zR
(6)

where xt = Diag{xt
1, · · · , x

t
NR
}, xt

nR
= [xt

nR
[1], · · · , xt

nR
[K]]T ,

xt
nR

[k] = [xt
1[k], · · · , xt

M[k]]T , ζ t = Diag{ζ t
1, · · · , ζ

t
NR
}, ζ t

nR
=

diag{ζ t
1,nR
, · · · , ζ t

M,nR
}, where Diag{·} and diag{·} denote block

diagonal operator and diagonal operator. The terms xd and
ζd in (6) are defined similarly. The IM is a column vector
with all the elements being 1, ynR

= [ynR
[1], · · · , ynR

[K]]T ,

z =
[
zT

1 , · · · , z
T
NR

]T
, and znR = [znR [1], · · · , znR [K]]T .

To detect whether the target is present or not in the cell-
under-test (CUT), considering the hypothesis testing problem{

H1 : yR = xtζ tIMNR + xdζdIMNR + zR (7a)
H0 : yR = xdζdIMNR + zR (7b)

where H1 and H0 indicate the target present hypothesis and
absence hypothesis. The labels associated with target present
hypothesis for (7a) and absence hypothesis for (7b) are εR = 1
and εR = 0.

The FCN fθR (·) of detector net with a set of trainable
variables θR takes yR as input, the output pR is compared with
a threshold Λ to make the final decision ε̂R ∈ {0, 1}, which is
shown in Fig. 2. To realize the Neyman-Pearson (NP) detector
using the SL, all the network output with label εR = 0 are
ranked. Based on a required level of false alarm probability
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PFA, the corresponding value is set as the threshold Λ. For the
SL-based detector, if the output pR > Λ, ε̂R = 1, else ε̂R = 0.
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Fig. 2. Framework of SL-based detector.

B. The SL-based Communications Receiver

Consider the system consisting of NC communications
receivers. The signal received at the nCth (nC = 1, ...,NC)
receiver is

ynC [k]=
M∑

m=1

ζd
m,nC

xm(kTs−τ
d
m,nC

)+
M∑

m=1

ζ t
m,nC

xm(kTs−τ
t
m,nC

)+znC [k]

where τd
m,nC

and τt
m,nC

are the delays associated with the
mnCth direct path and the target reflected path, respectively.
The communications propagation loss corresponding to direct
path and target reflected path are ζd

m,nC
=

√
αd

C/d
2
mnC

and

ζ t
m,nC
= δm,nC

√
αt

C/(d
2
mtd

2
tnC

), where δm,nC is the target reflection
coefficient, dmnC is the distance between the mth transmitter
and the nCth communications receiver, and dtnC is the distance
between the target and the nCth communications receiver. The
terms αt

C and αd
C are the ratio of received energy to transmitted

energy at dmt = dtnC = 1 and at dmnC = 1. The Gaussian
mixture clutter-plus-noise is znC [k] ∼

∑GC
gC=1 κgCCN

(
0,ΣgC

)
,

where ΣgC is the covariance matrix, κgC is the coefficient of
the gCth Gaussian mixture component, and

∑GC
gC=1 κgC = 1.
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Fig. 3. Framework of SL-based decoder.

After matched filtering to the corresponding chirp defined
in (3), the output of the filter is

bp,i,m =
To,m

Ko,m

Ko,m∑
k=KGI,m

y∗nC

[
k + pKo,m + KGI,m

]
sw/o GI

p,i,m [k] (8)

The bp,i,m is the data including the effect of propagation loss,
target, and noise. Assume the data in different transmitters
are the same to acquire the multiplexing gain. The received
noisy data matrix is B =

[
b1,1, b1,2, · · · bP,I

]T , where bp,i =

[bp,i,1, · · · , bp,i,M]T with Pm = P and Im = I for m = 1, ...,M.
The labels εC ∈ {0, · · · , J − 1}(PI) are generating according to
the modulated data matrix A with the modulation order J.

As shown in Fig. 3, the matrix B ∈ C(PI,M) is sent into
the decoder FCN fθC (·), where θC is the set of trainable
variables. The output pC ∈ R

(PI,J) is the probability matrix
over the labels. Choosing the labels with the largest prob-
ability in the second dimension of pC as estimated labels
ε̂C ∈ {0, · · · , J − 1}(PI), which is implemented by the max

block. Finally, the decoded data matrix Â is obtained by
utilizing the label to symbol block.

IV. RL and SL Based JointWaveform and Receiver
Optimization

The radar performance metric lR is a function of λ, θT , θR,
and the communications performance metrics lC is a function
of λ, θT , θC . Thus, we denote lR and lC as lR(λ,θT ,θR) and
lC(λ,θT ,θC), so the joint waveform optimization and receiver
design problem can be written as

min
λ,θT ,θR,θC

ρRlR(λ,θT ,θR) + ρClC(λ,θT ,θC)

s.t. constraint on λ,λ = fθT (λ0) .
(9)

The optimization involves training of the waveform de-
sign net, radar detector net, and communications decoder
net. During the detector and decoder training, the parameter
sets θR and θC are updated with the fixed θT . The SO-
OCDM waveforms are generated according to λ based on
the deterministic policy fθT (λ0). During the training of the
waveform design net, fixing θR and θC , θT is updated to
minimize ρRlR(λ,θT ,θR) + ρClC(λ,θT ,θC) as shown in Fig.
4. Additionally, to explore the waveform parameter space, a
stochastic policy πθT

(
λp|λ0

)
is introduced to produce λp [16]

which is depicted by the diagram with dotted black lines.
For the continuous waveform parameter space, the Gaussian
policy is adopted and the waveform parameters are sampled
from the Gaussian distribution λp ∼ N

(
fθT (λ0) , σ2

λ

)
with the

mean fθT (λ0) and the variance σ2
λ; for the discrete waveform

parameter space, the output of the network is the probability
of each discrete waveform parameter. The two training steps
iterate alternatively until the entire network converges.

Waveform 

design Net
Decoder Net

Detector Net

Reward

 0|
T

 
θ

( , , ) ( , , )R R T R C C T Cl l θ θ θ θ

( , , )C T Cl θ θ

( , , )R T Rl θ θ

Fig. 4. Joint training process for RL and SL.

A. Waveform Design Net Training

The training of waveform design net aims at minimizing the
reward, that is, the loss function,

LθT = Eλp∼πθT (λp |λ0)[ρRlR(λ,θT ,θR) + ρClC(λ,θT ,θC)].

where E (·) denotes the ergodic average. Use QT samples to
compute the gradient of the loss function [17],

∇θT LθT =
1

QT

QT∑
qT=1

[ρRl(qT )
R (λ,θT ,θR)+ρCl(qT )

C (λ,θT ,θC)]

×∇θT log πθT (λ(qT )
p |λ0)

where ρRl(qT )
R (λ,θT ,θR) + ρCl(qT )

C (λ,θT ,θC) is the loss and
λp

(qT ) is the parameter vector sampled from the stochastic
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policy for the qT th training data. At the uth iteration, the θT is
optimized with learning rate ηT to minimize the loss function,

θ(u+1)
T = θ(u)

T − ηT∇θT LθT (θ(u)
T ) (10)

where ∇θT LθT (θ(u)
T ) is the gradient of the loss function

LθT (θ(u)
T ) with respect to the parameter set θT evaluated at

θT = θ(u)
T .

B. Decoder Net Training
For the decoder, the symbol error rate (SER) is [11]

Pe = 1 −
P∑

p=1

I∑
i=1

p[(εC)p,i]p[(ε̂C)p,i = (εC)p,i] (11)

where p[(ε̂C)p,i = (εC)p,i] is the probability correspending to
(ε̂C)p,i = (εC)p,i and p[(εC)p,i] is the probability for (εC)p,i.
Assuming each label appears equally and adding log (·) to
p[(ε̂C)p,i = (εC)p,i] to facilitate the derivation of the network,
the loss for the qCth data can be written as

l(qC )
C (λ,θT ,θR) = −

P∑
p=1

I∑
i=1

log p[(ε̂C)p,i = (εC)p,i] (12)

where p[(ε̂C)p,i = (εC)p,i] is obtained by choosing the corre-
sponding probability in pC . Using QR synthetic training data
and lables to compute the loss function, we can obtain

LθC =
1

QC

QC∑
qC=1

lC (qC )(λ,θT ,θC). (13)

The parameter set θC is updated with learning rate ηC ,

θ(u+1)
C = θ(u)

C − ηC∇θC LθC (θ(u)
C ) (14)

where ∇θC LθC (θ(u)
C ) is defined similarly as ∇θT LθT (θ(u)

T ).

C. Detector Net Traning
For the radar detector net, the loss for the qRth data is

calculated with the output of the net p(qR)
R and the lable ε(qR)

R

lR(qR)(λ,θT ,θR) = −[ε(qR)
R log p(qR)

R + (1 − ε(qR)
R ) log(1 − p(qR)

R )].

Assume QR synthetic training data and corresponding lables
are generated based on the radar received signal model. The
loss function can be computed as

LθR =
1

QR

QR∑
qR=1

lR(qR)(λ,θT ,θR). (15)

By minimizing the loss function with learning rate ηR, the
parameter set θR is updated,

θ(u+1)
R = θ(u)

R − ηR∇θR LθR (θ(u)
R ). (16)

where ∇θR LθC (θ(u)
R ) is defined similarly as ∇θT LθT (θ(u)

T ).
After training, the optimized parameter sets θ∗T , θ∗R, θ∗C are

obtained. In the testing process, a batch of testing waveforms
associated with λ∗ = fθ∗T (λ0) can be obtained. Based on the
radar and communications received signal models, testing data
and labels are generated. Then, the testing data and labels for
communications and radar are fed into the decoder net the and
detector net to evaluate the performance.

V. Numerical Results

In this section, the performance of detection and decoding
is presented. Instead of designing λ in (4), the energy and the
time duration of SO-OCDM symbol are considered to design
to simplify the simulation. Thus, the waveform parameters
can be reduced to E = [E1, ..., Em]T , T = [T1, ...,Tm]T , the
waveform design problem is rewritten as

min
E,T,θT ,θC ,θR

ρRlR(λ,θT ,θR) + ρClC(λ,θT ,θC) (17a)

s.t.
M∑

m=1

Em = Etotal, Em ≥ Emin (17b)

Tmin ≤ Tm ≤ Tmax,m = 1, ...,M (17c)

where (17b) is the energy constraint with the total energy Etotal

and the minimal energy Emin, (17c) denoted the time duration
constraint. The Tmin = 1 ms, Tmax = 2 ms, Etotal = 106, and
Emin = 2 × 56.

Suppose the MIMO DFRC system has M = 4 transmitters
located at (70, 0) km, (-70, 0) km, (0, 70) km, (0, -70)
km, NC = 4 communications receivers located at (41, 57)
km, (-28, 64) km, (54, -45) km, (59, -36) km, and NR = 4
radar receivers located at (64, 25) km, (35, 61) km, (-54,
-45) km, (59, -36) km. The target is located at (8, 20)
km. There are P = 2 symbols in one frame and the 4-
quadrature amplitude modulation is adopted, namely, J = 4.
The frequency spacing f∆,m = 16 kHz, for m = 1, ...,M. The
target reflection coefficients are δm,nC = 500, δm,nR = 1000 and
the ratio of fading coefficients are setting as αt

C = 5.03 × 106,
αd

C = 1.58 × 103, αt
R = 2.02 × 107, αd

R = 1.6 × 104.
The waveform design net has two hidden layers and one

output layer. Each hidden layer has 30 neurons and the output
neuron number is 8. The exponential linear units (ELU) is
the activation fucntions for the hidden layer. A normalization
layer is employed to ensure the output parameters satisfy the
constraints. The detector FCN is composed of a complex-to-
real (C2R) layer which converts the complex value into real
value, 2 hidden layers with the activation function rectified
linear unit (ReLU). The numbers of hidden neurons are 100,
20. For the output layer with 1 output neurons, the activation
function is sigmoid. The decoder net comprises of a C2R layer,
2 hidden layers, and a output layer with J output neurons.
The neuron number of each hidden layers is 30. The ELU
function is utilized in the hidden layers, while the softmax is
employed for the output layer. The variance of Gaussian policy
is σ2

λ = 0.01. The learning rate is set as 0.005. The optimizers
used for all nets are Adam due to its fast convergence speed
and the whole network converges after 60 epochs.

The signal-to-clutter-plus-noise ratio (SCNR) for radar is −1
dB and for communications is −0.9 dB during training. During
each training iteration, we generate QR = QC = 1024 data for
receiver training and QT = 2048 for transmitter training. The
number of testing data is 40000, the testing SCNR is -2.8 db
for the radar, and the SCNR changes from -4.8 dB to 2.9 dB
for communications.

713



10 2 10 1 100

PFA

0.5

0.6

0.7

0.8

0.9

1.0

P D

Joint opt. Im=16
Joint opt. Tm=1.5ms, Im=16
Joint opt. Em=2.5x105, Im=16
Joint opt. Im=32
Receiver only, Em=2.5x105, Tm=1.5ms, Im=16

Fig. 5. ROC curves for joint waveform and receiver design and
receiver only design with different waveform parameters.
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Fig. 6. SER for joint waveform and receiver design and receiver only
design with different waveform parameters.

The receiver operating characteristic (ROC) curves show
the detection probability PD when varying PFA in Fig. 5.
The decoding performance when designing different waveform
parameters are compared in Fig. 6. The joint training of
waveform design net, detector, and decoder results in sig-
nificant performance improvement of ROC and SER when
comparing with the receivers only training case. Furthermore,
the combining design of the energy and the time duration
of SO-OCDM waveforms outperforms the performance of
optimizing the energy or the time duration alone in both ROC
and SER performance. When the number of chirps increases,
the SER increases as one SO-OCDM symbol contains more
modulated data and the detection performance decreases due
to the randomness causes by the data.

VI. Conclusion

The joint design of the SO-OCDM waveforms, radar de-
tector, and communications decoder in the learning-based
MIMO DFRC system was studied. We presented the SO-
OCDM signal model and the framework for the RL-based
waveform design net. The received signal models for syn-
thesizing training and testing data, as well as the SL-based
detector and decoder, were presented. A joint training process
of the RL and SL was proposed to solve the problem of joint
waveform design optimization and receiver design. It showed
that the proposed joint design of waveforms and receivers
outperforms the receiver-only design. We showed that the
design of different waveform parameters, together with the

receiver design, can lead to different impact on the MIMO
DFRC system performance.
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