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Abstract—Dynamic targets in a radar system undergo a
decrease in the matched filter gain as the Doppler tolerance
limits for reliable operation are exceeded. In addition, interferers
present in the field of view adversely effects the SINR of
the victim sensor, thereby increasing false alarms. Features
such as Doppler tolerance, uniqueness of the phase in every
subpulse and subpulse processing architecture at the receiver
are integrated together and a joint waveform and receiver design
problem is discussed. An algorithm to devise unique waveforms is
proposed which provides interference immunity to the transmit
signal, improves compatibility of the system toward higher target
velocities and provides optimal ISL/PSL metrics.

Index Terms—Majorization-minimization, interference, poly-
nomial phase.

I. INTRODUCTION

Mutual Interference (MI) in radars is a challenge of high
practical importance in Advanced driver assisted systems
(ADAS) employed in modern vehicles [1]. This is due to the
fact the radar sensors mounted on every vehicle operate in the
shared unregulated frequency band and these transmissions are
uncoordinated. This interference typically manifests as time-
domain bursts which can result in diminished sensitivity [2].

Vehicular radar operation dominantly relies on the Fre-
quency Modulated Continuous Wave (FMCW) technique with
chirp sequence modulation in each Coherent Processing In-
terval (CPI). Every chirp uses Linear Frequency Modulation
(LFM) waveform. It has two-fold advantages: Doppler tol-
erance and easy dechirp based receiver with low sampling
requirements [3]. The reflected signal from dynamic targets
with high relative velocity possess a Doppler shift which alters
the return signal and deteriorates the Matched Filter (MF) gain.
Because the LFM waveform is Doppler tolerant, the MF gain
is less affected and the detection performance is preserved.
In addition to the advantages, it has a serious drawback of
lacking uniqueness. Transmitted chirp signal with LFM from
a sensor (victim sensor) is prone to MI from another sensor
(interferer) which possesses similar operating characteristics
(such as chirp slope, bandwidth, etc.).

An alternative solution is transmitting noise waveform
which is a form of random signal with arbitrary phase and
amplitude. Keeping the amplitude fixed, it will be simplified to
Phase Modulated Continuous Wave (PMCW) technique which
possess uniqueness in phase and is therefore, impervious to
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Fig. 1: Waveform time diagram

MI [4]. In addition to these advantages, it has a disadvantage
of Doppler intolerance. Although, loss in the MF response
due to Doppler intolerance in Noise radars can be fairly dealt
with the subpulse processing architecture in the receiver [5]
but with longer pulse widths or fast moving targets the MF
gain decrease. Due to dynamic targets, large Doppler shifts
in noise radar systems cause detection loss in the MF output,
which can be decreased by applying subpulse processing [5],
[6]. However, if the intended speeds are too high or the
pulse width is large, this strategy may not be enough to
compensate the loss. In this paper, we have addressed this issue
by integrating features such as Doppler tolerance, uniqueness
of the phase in every subpulse and Integrated Sidelobe Level
(ISL) minimization to synthesize a waveform [7] and utilize it
with subpulse processing architecture at the receiver end [5].

Recently, several studies have also considered the design of
polyphase sequences with good Doppler tolerance properties
[7]–[10]. In [11]–[13] ambiguity function shaping methods are
used to obtain waveforms with low range sidelobes and high
Doppler tolerance properties. Although, these approaches have
addressed the problem in different ways, they have not been
used in conjunction to solve the issue of sensing dynamic
targets in the presence of interference.

Unlike previous studies, in this paper we propose an analyt-
ical approach for designing Doppler tolerant waveforms which
are also immune to interference. Let x = [x1, x2, · · · , xN ]T ∈
CN , denote the radar transmit waveform in the discrete form
in fast-time domain. This waveform can be considered as the
transmit sequence of a conventional noise radar, or a PMCW
automotive radar, or even a pulsed radar equipped with the
pulse compression technique during a single pulse of duration
Tc = Nτ , where τ is the chip-duration. To improve the
Signal to Noise Ratio (SNR), Np such pulses are commonly
transmitted in a single CPI with a time of Tcp. Fig. 1 depicts
the timing diagram of the proposed radar waveform.

Assume a point target at range R approaching the radar
system at a velocity of v. We consider ϵ as a complex term that715ISBN: 978-9-4645-9360-0 EUSIPCO 2023



indicates the backscattering effects of the target, channel fad-
ing, the gains and distortions introduced by the receiver Radio
Frequency (RF) chain (assumed to be constant over a single
Pulse Repetition Interval (PRI)). The received baseband signal
reflected from this point target is sampled at Analog-to-Digital
Converter (ADC) with a rate fs = 1

ts
≈ 1

τ . It is contaminated
with the receiver noise and can be modeled as a noise vector
w = [w1, w2, · · · , wN ] ∈ CN where wn is distributed
normally with mean µ and variance σ2 ( wn ∼ N (µ, σ2)).
Thus, the resultant received signal is, y = ϵx ⊙ p(fd) + w,
where p(fd) is Doppler steering vector defined in fast-time by,
p(fd) = [1, ej2πfdts , · · · , ej2πfd(N−1)ts ]T ∈ CN . Now, we
examine number of Doppler cycles observed in a single pulse
duration [3] as ζ = fdTc, where ζ indicates how many cycles
of target Doppler appears in the fast-time duration1. Depending
on the waveform type, if ζ is greater than a certain value [3],
the Doppler shift can provide a mismatch loss at the output
of the receiver, which can significantly reduce the detection
capability.

To prevent this, a possible solution is to use Doppler-tolerant
waveforms (chirp-like sequences [14]), which introduce range-
Doppler coupling with lower loss in MF gain. The quadratic
phase characteristic of chirp-like sequences causes MI, which
reduces sensor reliability due to an increase in false targets or,
in rare cases, receiver saturation. To avoid this, another idea is
to design a transmit waveform that maintains its distinctiveness
during the subpulse while being resilient to Doppler shift,
which is considered in the sequel.

Notation: Boldface upper case letters denote matrices, bold-
face lower case letters denote column vectors, and italics
denote scalars. Z, R and C denote the integer, real and
complex field, respectively. ℜ(·) and ℑ(·) denote the real
and imaginary part respectively. arg(·) denotes the phase of
a complex number. The superscripts (·)T , (·)∗, (·)H and (·)†
denote transpose, complex conjugate, conjugate transpose, and
pseudo-inverse respectively. Xi,j denotes the (i, j)th element
of a matrix and xi denotes the ith element of vector x.
Diag(X) is a column vector consisting of all the diagonal
elements of X . Diag(x) is a diagonal matrix formed with x
as its principal diagonal.

II. PROBLEM FORMULATION

Let the transmit sequence x be partitioned into L sub-
sequences each having length of Ml, where l = 1, 2, . . . , L
such that every sub-sequence is considered a unique subpulse,
say x̃l = [x{1,l}, · · · , x{m,l}, · · · , x{Ml,l}]

T ∈ CMl , and it
has a polynomial phase behavior, which can be expressed
as arg(x{m,l}) =

∑Q
q=0 a{q,l}m

q, where m = 1, 2, . . . ,Ml

and a{q,l} is the Qth degree polynomial coefficient for the
phase of the l-th sub-sequence with q ∈ {0, 1, 2, . . . , Q}.
The length of each subpulse Ml can be arbitrarily chosen
which gives rise to the choice of any integer length N for
the whole sequence, s.t. x = [x̃T1 , · · · , x̃Tl , · · · , x̃TL]T ∈ CN .
The aperiodic autocorrelation of the transmitting waveform
at lag k (e.g. MF output at the radar receiver) is defined as

1The fast-time Doppler shift may be ignored in most radar applications, and
the Doppler shift appears only in the slow time. This phenomena, however,
is of particular importance in this work.

rk =
∑N−k
n=1 xnx

∗
n+k = r∗−k, k = 0, . . . , N−1. The transmit

waveform must be good in terms of autocorrelation sidelobes
in most radar applications. ISL, described mathematically
as, ISL ≜

∑N−1
k=−N+1
k ̸=0

|rk|2, is a metric that quantifies the

goodness of the transmit waveform [14]. Using the ISL as
the objective function, we can formulate the optimization
problem for designing subpulses in a sequence, where each
subpulse has different characteristics in terms of subpulse
length, instantaneous phase, and phase behavior (thus Doppler-
tolerance property2). This problem can be stated as,

P1



minimize
a{q,l}

N−1∑
k=1

|rk|2

subject to arg(x{m,l}) =

Q∑
q=0

a{q,l}m
q,

|x{m,l}| = 1,

(1)

where m = 1, . . . ,Ml, and l = 1, . . . , L. Based on the choice
of degree Q, the length of subpulse Ml, and total number
of subpulses L, every subpulse can have a unique property
varying from a chirp-like sequence on one end to noise-like
sequences on the other end.

The conventional MF response of the received signal with
the reference signal is given as

r̄k =

N−k∑
n=−N+k

xny
∗
n+k, (2)

where k ∈ {1−N, . . . , N − 1}. In the case of subpulse
processing, the pulse compression operation consists of per-
forming L matched filtering operations, one for each subpulse.
Let 0l be a vector of zeros as 0l = [01, 02 · · · , 0Ml

]T and

U =


x̃1 01 . . . 01

02 x̃2

...
...

...
. . .

0L . . . x̃L

 ∈ CN×L. (3)

Let ul = [01, . . . ,ul, . . . ,0L]
T ∈ CN be the lth column of

U, l = 1, . . . , L. Thus, the lth MF operation for each of the
zero-padded subpulse reference signal is represented as

(y⊛ul)k =

N−k∑
n=−N+k

ynu
∗
n+k, k ∈ {1−N, · · · , N − 1}. (4)

Finally, the combined result of l matched filters is represented
as r̄k =

∑L
l=1(y ⊛ ul)k, k ∈ {1−N, · · · , N − 1}, and is

equivalent to the conventional MF operation mentioned in (2).
However, to decrease the MF loss in the received side, the
subpulses are non-coherently integrated as

L∑
l=1

|(y ⊛ ul)k| = r̂k, k ∈ {1−N, · · · , N − 1}. (5)

2Doppler tolerance property arises in a sequence when its unwrap phase
varies in a quadratic manner (i.e. Q = 2). As this is being handled directly
in the objective function, the resultant sequence is bound to have better
performance for moving targets [7].716



This operation (subpulse Doppler processing) in (5) provides a
better MF gain in the presence of large Doppler shifts than the
coherent integration in (4). Note that the additional step in the
processing adds a new dimension to the analysis. Besides the
fast and slow-time domains, the subpulse dimension, denoted
by k, can be jointly evaluated in order to improve the Doppler
estimation performance.

III. PROPOSED METHOD

The optimization problem mentioned in (1) is hard to solve
since each rk is quadratically related to {xn}Nn=1 and each
{xn}Nn=1 is non-linearly related to a{q,l}. In [15], minimization
of the aforementioned quartic objective function in (1), is
shown to be “almost equivalent” to minimization of the
following quadratic function,

minimize
{xn}N

n=1;{χg}2N
g=1

2N∑
g=1

∣∣∣∣∣
N∑
n=1

xne
−jωgn −

√
Nejχg

∣∣∣∣∣
2

(6)

s.t. wg are the Fourier frequencies: wg = 2π
2N g and χg ∈

[0, 2π], where g = 1, . . . , 2N . The above equation can be
further simplified and written in a more compact form as (to
within a multiplicative constant)

||AH x̄− v||2 (7)

where αHg = [e−jωg , · · · , e−j2Nωg ] and AH is the unitary
2N × 2N Discrete Fourier Transform (DFT) matrix

AH =
1√
2N

[αH1 , · · · ,αH2N ]T , (8)

x̄ is the sequence {xn}Nn=1 padded with N zeros, i.e. x̄ =
[x1, · · · , xN , 0, · · · , 0]T2N×1 and v = 1√

2
[ejχ1 , · · · , ejχ2N ]T .

For given {xn}, CAN [15] minimizes (7) by alternat-
ing the optimization between x̄ and v. Let x̄(i) =

[x
(i)
1 , · · · , x(i)N , 0, · · · , 0]T2N×1 represent the value of x at it-

eration i. Similarly, let Di represent the value of ||AH x̄(i) −
v(i)||22 at iteration i. Then we have Di−1 ≥ Di. Further in the
ith iteration, the objective can be rewritten as

||s− β||22 (9)

where s = AH x̄(i),d = Av(i), β = v(i), yn = ej arg(dn),
and χg = arg(sg).

Now, let us define, ρ = |y| and ψ = arg(y), where
ρn and ψn, n = 1, . . . , N , are the magnitude and phase
of every entry of y, respectively. By considering the poly-
nomial phase and unimodular constraints of Problem P1

into the objective function, (9) can be rewritten as [7],∑L
l=1

∑Ml

m=1

∣∣∣ej(∑Q
q=0 a{q,l}m

q) − ρme
jψm

∣∣∣2 , where m =

1, . . . ,Ml, and l = 1, . . . , L.
Since the objective in (9) is separable in the sequence

variables, minimization problem can now be split into L
sub-problems (each of which can be solved in parallel). For
ease of notation, let us assume that the polynomial phase
coefficients and sub-sequence length of the l-th subpulse, say
a{q,l} and Ml are indicated as ãq and M̃ respectively, where

M̃ ∈ [M1, · · · ,ML]. Thus, dropping the subscript-l, each of
the sub-problem can be further defined as

P2

{
minimize

ãq

M̃∑
m=1

∣∣∣ej(∑Q
q=0 ãqm

q) − ρme
jψm

∣∣∣2 , (10)

where we have considered the unimodular and polynomial
phase constraints of Problem P1 directly in the definition of
the code entries in Problem P2. Further, using Majorization-
Minimization (MM) framework (10) can be written as [7],

P3

minimize
ãq

M̃∑
m=1

[
ρm cos(θ(i)m )

(
Q∑
q=0

ãqm
q

)
− b̃m

]2
,

(11)
where θm =

∑Q
q=0 ãqm

q − ψm, b̃m =

ρm cos(θ
(i)
m )
(
ψm + θ

(i)
m

)
− ρm sin(θ

(i)
m ). Now,

considering a generic sub-sequence index l, we define
η = [1, 2, 3, · · · , M̃ ]T ∈ ZM̃+ , ηq implying each element of η
is raised to the power of q, q = 0, 1, . . . , Q. Further,

γ = ρm cos(θ(i)m )⊙ [1, · · · , 1]T ∈ RM̃ ,

Ã = Diag (γ)[η0,η1, · · · ,ηQ] ∈ RM̃×Q+1,

z = [ã0, ã1, · · · , ãQ]T ∈ RQ+1,

b̃ = [̃b1, b̃2, · · · , b̃M̃ ]T ∈ RM̃ ,

(12)

the optimization problem in (11) can be rewritten as{
minimize

z
||Ãz− b̃||22, (13)

which is the standard Least Squares (LS) problem. As a
result, the optimal z⋆ = Ã

(†)
b̃ = [ã⋆0, ã

⋆
1, · · · , ã⋆Q]T would

be calculated and the optimal sequence will be synthesized.
Using the aforementioned setup for a generic sub-sequence

index l, we calculate all the x̃ls pertaining to different sub-
sequences and derive {xn}Nn=1 by concatenating all the x̃ls.
The algorithm successively improves the objective and an
optimal value of x is achieved. The details of the implementa-
tion which includes the sequence generation and non-coherent
subpulse integration can be found in Algorithm 1.

IV. RESULTS

In this section, we will assess the performance of the
proposed algorithm and then discuss its application. Using a
case study with reference to the work [5], we highlight the
improvement achievable with the proposed algorithm.

A. Algorithm Performance Analysis

Fig. 2a shows the unwrap phase plot of the optimal sequence
(multi-colored) compared with the seed sequence (black). As
evident from the plot, every subpulse possesses a quadratic
phase behavior which imparts the waveform its Doppler-
tolerant property. The sidelobe reduction is achieved (shown in
Fig. 2b) while retaining the quadratic phase constraint within
every subpulse. Fig. 2c proves the Doppler tolerance property
of the code sequence. The design parameters considered for
running the Algorithm 1 are: N = 500, M = 10 and L = 50.
The Algorithm 1 is fast and requires a few iterations to717
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Fig. 2: Unwrapped phase value, autocorrelation and Doppler tolerant ambiguity function plots for optimal code sequence

Algorithm 1 Subpulse processing using optimal sequence with
minimum ISL and Doppler tolerance property

Require: N , L and M̃
Ensure: x(i)

1: Waveform Design
2: Set i = 0, initialize x(0).
3: while Stopping criterion is not met do
4: Obtain s, vg , d, y(i+1)

n , ψ, and ρ
5: for l← 1 to L do
6: Obtain ψ̃l, ρ̃l, θ

(i)
m , and b̃m

7: Obtain η, γ, Ã, z, and b̃ from (12)
8: z⋆ = Ã

(†)
b̃

9: x̃l = e(j(Ãz⋆))

10: x(i+1) = [x̃T
1 , x̃

T
2 , · · · , x̃T

L ]
T ∈ CN

11: Receiver Design
12: s = x(i+1)

13: for l← 1 to L do
14: γl = |(s⊛ ul)k|, ∈ C2N−1 and k = 1−N, · · · , N − 1

15: r̂ =
∑L

l=1 γl

16: return

converge3. Further, the next section discusses its applications
and puts forth its advantages over existing techniques.

B. Case Study

We discuss its application in Noise surveillance radars and
Automotive radars in the following subsections.

1) Application 1 - Noise Radar Systems: In this section,
a performance analysis is presented for a setup in which the
waveform and target properties of Noise radar are operating
frequency (fc) is 3GHz, wavelength (λ) is 0.1m, pulse width
(Tc) is 125µs, chip width (τ ) is 50ns, bandwidth (B) is
20MHz, sequence length (N ) is 2500, target speed, v is 680m/s
- 2040m/s (Mach2 - Mach6), Doppler frequency (fd) is 13.60
- 40.80kHz, and parameter ζ is 1.7 - 5.1 cycles. We compare
the MF response of optimized code subpulse waveform with
frequency-modulated noise signals (FM Noise) using subpulse
processing architecture [5]. As a reference, the performance of
a complex random sequence using conventional MF and sub-
pulse processing method is provided. Here, the entries of the
complex random sequence x = [x1, x2, . . . , xN ]T is defined
as xn = ejϕn , ϕn = 2πz, n ∈ 1, · · · , N, where z is drawn
from a Gaussian distribution with zero mean and unit variance.
The FM Noise waveform is composed of 4 subpulses each
of length 31.25µs. Further, the number of Doppler tolerant
subpulses in optimized code waveform, L incorporated in the

3for more details on the performance of Algorithm 1, refer [7].
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Fig. 3: Improvement in the cumulative matched filter gain from
Subpulse processing method

overall code sequence was set to 25 where the subpulse length
M̃ is 100 elements long of 5µs each. The subpulse length for
the optimized code is calculated such that one quarter of a
Doppler cycle (i.e. ζ) is covered in it. Thus, the subpulse length
is decreased from 31.25µs in FM Noise waveform to 5µs
in optimized code subpulse waveform, allowing the subpulse
processing technique to achieve optimal result. Fig.3 shows an
improvement of ∼ 14dB in the MF response of the optimized
code subpulse waveform as compared to FM Noise using
subpulse processing method. The conventional MF response
of a complex random sequence shows poor performance as
expected from its lack of Doppler tolerance. When the random
sequence is processed using subpulse processing method with
the same subpulse length as of the FM Noise waveform, its
peak correlation value matches with the FM Noise waveform
(refer magnified plot in Fig.3).

2) Application 2 - Automotive Radar Sensors: In this
section, we discuss another application where the target
speeds are relatively low (i.e. maximum relative velocity of
420kmph/120m/s) and the pulse widths are less than 90µs. The
specifications of a typical commercial-off-the-shelf (COTS)
radar sensor for long range sensing application are operat-
ing frequency (fc), wavelength (λ), and bandwidth (B) as
76.5GHz, 0.0039m, and 150MHz respectively. For a target
with a maximum relative speed of 120m/s (i.e. 420kmph), the
Doppler frequency (fd) of 27.20kHz is observed at the sensor.
The parameter ζ is 3.4 cycles due to this Doppler frequency
and pulse width time is (60µs). The Doppler tolerant property
of LFM waveform used in FMCW radars helps in retaining the
gain of the MF in the presence of longer pulses for dynamic
target detection. Although these waveforms perform well in
this respect, their interference immunity from a statistical718



analysis standpoint is low, as explained in [7]. Thus, PMCW
radars with unique phase in every subpulse provide less
cross-correlation and better interference immunity. In addition,
Doppler tolerant behavior (quadratic phase) in every subpulse
can provide better MF gain. As a result, the flexibility of
waveform design in phase and time domain in the PMCW
radars, allows a greater degree of freedom in addressing the
whole problem of interference.

Using the proposed algorithm, we design a code of length
9000 for a PMCW waveform with a pulse width of 60µs, 15
subpulses of length 4µs each, and quadratic phase behavior
(i.e. Q = 2). The sampling frequency is set to 150MHz and
therefore the chip time is 6.66ns. With this setup, the MF
performance of the PMCW waveform suitably matches the
performance of FMCW waveform with an added advantage of
interference immunity. Further, the statistical interference anal-
ysis is performed using the following waveform types: random
sequence, LFM waveform in FMCW radars (for similar-slope
and sweeping slope type interference) and code sequences
designed using the proposed algorithm. The procedure of this
statistical experiment is as follows:

1) Consider two sequences from a selected category of
signals (say x = [x1, · · · , xN ]T and y = [y1, · · · , yN ]T

∈ CN , N > 0).
2) Compute the linear aperiodic cross-correlation of these

signals, and find c̄k =
∑N
n=1 xny

∗
n+k, such that k =

−(N−1), . . . , 0, . . . , N−1. Here, we use the convention
that xn = 0 and yn = 0 when n /∈ {1, · · · , N}.

3) Calculate c̄max = max(|ck|).
4) Let ξ = 20 log10(

c̄max

N ).
5) Record the value (i.e. ξ) for the current trial and repeat

the experiment until the desired number of trials.
Note that ξ which is a stochastic value will be calculated for
different categories of waveforms that are mentioned above.
In case the sequences x and y are similar, ξ is approximately
zero, since both the sequences are fully correlated. In the
case of partially correlated waveforms, ξ is negative, and as
the correlation between the waveforms decreases, ξ decreases
further. TABLE I presents the excerpts of the analysis.

TABLE I: Statistical interference comparative analysis

Waveform type max. cross-correlation
ξ (µ, σ)

mean
occurrence
probability

Random sequence −14.1dB, 3dB 0.1
FMCW - similar slope [16] −0.2dB, 0.1dB 0.3

FMCW - sweeping slope −1.5dB, 1.4dB 0.1
Proposed sequence −14.1dB, 3dB 0.1

In general, random sequences have the lowest mean value of
ξ. Interestingly, the mean value and distribution of ξ generated
using the proposed sequence exhibits a large overlap with
the distribution of ξ generated using complex unimodular
random phase sequences (refer TABLE I). When compared
to the categories where conventional FMCW waveforms are
employed, utilizing the proposed approach resulted in an
overall decreased cross-correlation of 12dB. As a result, the
proposed technique shows improved interference immunity as
compared to the state of the art techniques.

V. CONCLUSION

A joint waveform and receiver design approach is presented
to synthesize interference immune and Doppler tolerant wave-
forms which can be used with subpulse processing technique
to achieve optimal performance. The proposed algorithm is
stable and requires few iterations to synthesize the waveform.
Its application to surveillance and automotive radars was
discussed and the algorithm performance is compared to the
existing approach in the literature for validation.
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