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Abstract—Multiple-input multiple-output (MIMO) radar has
several advantages with respect to the traditional radar array sys-
tems in terms of performance and flexibility. However, in order to
achieve high angular resolution, a MIMO radar requires a large
number of antenna elements, which increases hardware design
and computational complexities. Although spatial compressive
sensing (CS) has been recently considered for a pulsed-waveform
MIMO radar with sparse random arrays, such methods for the
frequency-modulated continuous wave (FMCW) radar remain
largely unexplored. In this context, we propose a novel multi-
target localization algorithm in the range-angle domain for a
MIMO FMCW radar with a sparse array of randomly placed
transmit/ receive elements. In particular, we first obtain the
targets’ range-delays using a discrete Fourier transform (DFT)-
based focusing operation. The target angles are then recovered
at each detected range using CS-based techniques exploiting the
sparsity of the target scene. Our simulation results demonstrate
the effectiveness of the proposed algorithm over the classical
methods in detecting multiple targets with a sparse array.

Index Terms—Compressive sensing, FMCW-MIMO radar,
random arrays, range-angle estimation, sparse arrays.

I. INTRODUCTION

Frequency-modulated continuous wave (FMCW) radars
have become a popular choice for short-range applications
like automotive radars [1, 2], human vital sign monitoring [3],
synthetic aperture radars (SARs) [4], and surveillance systems
[5]. The main advantages of FMCW radar are portability, low
cost, and high resolution. An FMCW radar transmits a finite
train of (piece-wise) linear frequency-modulated (LFM) chirps
in each coherent processing interval (CPI). The target returns
are mixed with the transmitted signal at the receiver to obtain
a complex sinusoidal intermediate frequency (IF) signal. The
targets’ locations (and velocities if moving) information can
be extracted from the frequencies of this IF signal. To this end,
fast Fourier transforms (FFTs) have traditionally been used to
estimate these frequencies [1]. However, to localize targets in
the angular domain, multiple transmit and receive antennas are
required. In MIMO radars, multiple orthogonal waveforms are
transmitted simultaneously with the target returns processed
jointly by the multiple receive antennas. The MIMO radar
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achieves a better angular resolution than conventional radar
by exploiting a large number of degrees of freedom of a
virtual array synthesized with a small number of physical
antenna elements. In this work, we focus on multi-target range-
angle detection using MIMO FMCW radars. Conventionally,
frequency estimation algorithms like 2D-FFT [6], 2D-MUSIC
[7], and ESPRIT [8] are used to estimate both targets’ ranges
and angles of arrival (AOAs) from the received signal.

From the array processing theory, it is known that a high
angular resolution requires a large array aperture with a large
number of antenna elements to avoid ambiguities in angle
estimation [9]. Although MIMO technology helps to achieve
higher resolution, the cost of synthesizing a large virtual array
with the half-wavelength element spacing (spatial Nyquist
sampling rate) can be very high. In this context, sparse linear
arrays (SLAs) have been proposed recently for both pulsed-
waveform and continuous-wave radars [6, 10, 11]. Optimal
sparse array design was considered in [12] while [6] designed
a non-uniform SLA and applied digital beamforming tech-
niques for AOA estimation after interpolating for the missing
measurements in the synthesized SLA. On the other hand,
[11] suggested matrix completion techniques to complete the
corresponding linear array for angle detection.

Compressed sensing (CS) addresses sparse signal recovery
with fewer measurements [13]. The sparse array setup en-
ables spatial compressive sensing such that the CS recovery
naturally suits our target localization problem. Note that the
target scene is sparse since only a small number of targets
are present in the scene. The CS-recovery-based localization
has recently been applied for angle estimation for pulsed-
MIMO radar [10]. In [14], CS-based algorithms were used
to process measurements from a traditional full array. Besides
spatial compression, CS techniques have also been considered
in radars for reduced sampling rate [15, 16], interference
mitigation [17], and multi-target shadowing effect mitigation
in constant false-alarm rate (CFAR) detection [18].

Contributions: In this paper, we present a novel multi-
target localization algorithm to detect targets’ ranges and
AOAs using a random SLA. Prior CS-based methods (e.g.
[10]) often address only angle detection at a known range
bin. Here, we consider both range and angle detection in
a MIMO FMCW radar. For range detection, we exploit a
discrete Fourier transform (DFT)-based focusing operation
followed by binary integration [9] of measurements across
pulses and virtual array channels, trading off range resolution
for higher detection probability. For angle recovery, we use
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Fig. 1. MIMO radar system (□ and ◦ denote receivers and transmitters,
respectively).

CS-based techniques reducing the number of antenna elements
needed to attain performance comparable to that of a full
array. Finally, our numerical simulations illustrate the proposed
method’s performance compared to classical-FFT processing.

II. RADAR SYSTEM MODEL

Consider a colocated MIMO radar system, as shown in
Fig. 1, composed of NT transmitters and NR receivers forming
a (possibly overlapping) array of total aperture ZT and ZR,
respectively, and define Z .

= ZT +ZR. The n-th transmitter’s
and m-th receiver’s locations along the x-axis are Zαn/2
and Zβm/2, respectively, where αn ∈ [−ZT /Z,ZT /Z] and
βm ∈ [−ZR/Z,ZR/Z]. Note that αn and βm are randomly
drawn from appropriate uniform distributions [10]. The trans-
mitters transmit LFM chirps, orthogonal across transmitters.
Consider fc as the carrier frequency and γ as the chirp rate of
the LFM chirp of duration T . The FMCW radar’s transmitted
chirp is modeled as s(t) = exp

(
j2π

(
fct+

γ
2 t

2
))

for
0 ≤ t ≤ T , with t as the continuous-time index. A total
of P chirps is transmitted in each CPI. Different orthogonal
waveform designs for MIMO-FMCW radar transmitters have
been proposed in [19, 20]. For simplicity, we consider time-
domain multiplexing, where the transmitters transmit the same
signal with relative time shifts. In our proposed detection
algorithm, we process each transmitted chirp independently
and use binary integration [9] after detection across pulses (in a
CPI) to obtain the estimated ranges. On the contrary, classical-
FFT processing considers coherent or non-coherent integration
of the pulses to average out the interference and noise before
detection [9]. In Section IV, we discuss how binary integration
improves the detection probability over classical processing.
Similarly, the orthogonality of the transmitted signals allows
the corresponding received signal components to be separated
at each receiver. Hence, we first focus on the received signal
component at the m-th receiver due to the single chirp
transmitted from the n-th transmitter.

We assume a target scene of K stationary, far-field, non-
fluctuating point targets. We denote the k-th target’s range and
angle of arrival (AOA) as Rk and θk, respectively. Denote
τm,n,k as the total time-delay in the k-th target’s return
at the m-th receiver from the n-th transmitted signal such

that the received signal component is given as rm,n(t) =∑K
k=1 aks(t − τm,n,k), where ak is the complex amplitude

proportional to the k-th target’s radar cross-section (RCS). The
time delay τm,n,k consists of the range delay τRk and angular
delay τθm,n,k as

τm,n,k = τR
k + τθ

m,n,k, (1)

where τRk = 2Rk/c and τθm,n,k = Z(αn + βm) sin (θk)/2c
with constant c denoting the speed of light. Note that the far-
field assumption leads to a constant AOA across the array.

Unlike a pulsed radar system, an FMCW radar first
mixes the m-th received signal with the n-th transmitted
signal to obtain IF signal ym,n(t) as ym,n(t) =∑K

k=1 a
∗
k exp

(
j2π

(
γτm,n,kt+ fcτm,n,k − γ

2 τ
2
m,n,k

))
+

wm,n(t), where (·)∗ represents the conjugate operation and
wm,n(t) is the interference plus-noise term. Each IF signal
ym,n(t) is sampled at sampling frequency fs as ym,n[t] =∑K

k=1 a
∗
k exp

(
j2π

(
γτm,n,k

t
fs

+ fcτm,n,k − γ
2 τ

2
m,n,k

))
+

wm,n[t], for 0 ≤ t ≤ N − 1, where N = fsT is the
total number of samples in a single pulse and wm,n[t] is
the sampled noise. Here, we represent the discrete-time
index by t. For the NT transmitters and NR receivers
MIMO setup, we obtain ‘NTNR’ sampled measurements
{ym,n[t]}1≤m≤NR,1≤n≤NT

for all P pulses.

III. SPARSE ARRAY RECOVERY ALGORITHM

The spatial compressive sensing framework proposed in
[10] for pulsed MIMO radar assumes an independent range-
Doppler processing and focus only on targets in a given range-
Doppler bin for AOA estimation. On the contrary, here, we
consider both range and AOA detection. In Section III-A,
we adopt a DFT-focusing operation to estimate the targets’
ranges and separate the range and AOA information. Finally,
in Section III-B, the CS-based recovery provides the AOA
estimates at each detected range bin.

A. Range detection

Consider the N -point DFT Ym,n[l] =∑N−1
t=0 ym,n[t] exp (−j2πlt/N) of IF signal ym,n[t] as

Ym,n[l] =

K∑
k=1

a∗
k exp

(
j2π

(
fcτm,n,k − γ

2
τ2
m,n,k

))
×

N−1∑
t=0

exp

(
j2π

(
γτm,n,k

fs
− l

N

)
t

)
+Wm,n[l], (2)

for 0 ≤ l ≤ N − 1, where Wm,n[l] =∑N−1
t=0 wm,n[t] exp (−j2πlt/N) represents the noise term.
Replacing N = fsT , we first analyze the sum of exponents∑N−1
t=0 exp

(
j( 2πγfs

)
(
τm,n,k − l

γT

)
t
)

in (2). Consider the

sum of M exponents g(x|x) =
∑M−1

q=0 ej(x−x)qω for given
constants x and ω. We can approximate |g(x|x)| ≈ M for
|x−x| ≤ π/Mω, and 0 otherwise. The approximation implies
that in the focus zone |x−x| ≤ π/Mω, the M exponents are
coherently integrated while the signal outside the focus zone
is severely attenuated. In [15], this focusing approximation
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was introduced as Doppler focusing across pulses to reduce
the joint delay-Doppler estimation problem to delay only
estimation at a particular Doppler frequency. In our case, the
sum of exponents appears naturally in the DFT of ym,n[t].

Using the focusing approximation for the sum of N expo-
nents (indexed by t) in (2), we have

Ym,n[l] ≈
K′∑

k′=1

a∗
k′N exp

(
j2π

(
fcτm,n,k′ − γ

2
τ2
m,n,k′

))
+Wm,n[l],

(3)

where {ak′ , τm,n,k′}1≤k′≤K′ represents the subset of targets
which satisfy |τm,n,k′ − l/(γT )| ≤ 1/(2γT ) for the given l-
th DFT bin. Assuming τRk ≫ τθm,n,k for all targets, we have
τm,n,k′ ≈ τRk′ such that the received signal from targets at
ranges satisfying |τRk′ − l/(γT )| ≤ 1/(2γT ) are coherently
integrated, resulting in a (magnitude) peak at the l-th DFT
bin. Furthermore, the practical values of γ and T for an
FMCW radar ensures that the value 1/(2γT ) is small enough
and τRk′ ≈ l/(γT ). Hence, using threshold detection to
identify the peaks in Ym,n[l] (corrupted by noise), we obtain
the range estimate R′ corresponding to a DFT peak at l′-
th bin as R′ = cl′

2γT . These range estimates are computed
independently for all P pulses and for all NTNR measure-
ments {ym,n[t]}1≤m≤NR,1≤n≤NT

. The detected ranges are
first filtered for false alarms across the P pulses using binary
integration, i.e., only the ranges detected in majority of pulses
are considered valid target ranges. Similarly, the detected
ranges are also filtered across the NTNR measurements.

The classical-FFT range processing also involves threshold
detection for peaks in the IF signal’s DFT. However, in
classical processing, all the pulses are processed together non-
coherently, which increases the DFT’s frequency resolution
and hence, the range resolution. Contrarily, we trade off range
resolution by processing each pulse independently for reduced
missed detection probability. In particular, in the case of close-
range targets, the classical-FFT often suffers from false peaks
dominating the actual target peaks. Using binary integration
across pulses and the virtual array channels, the detection
probability is enhanced with a constant false alarm probability,
which is further discussed in Section IV-A with a simulated
example of three close-range targets. However, the CS-based
angle detection procedure developed in the following section
can also be applied to non-coherently processed pulses.

B. Angle detection
Consider a detected range bin at the l′-th DFT point.

Substituting (1) in (3) for τm,n,k′ , we obtain Ym,n[l
′] =

Wm,n[l
′] +

∑K′

k′=1 a
∗
k′N exp

(
j2π

(
fcτ

R
k′ − γ

2 (τ
R
k′)2

))
×

exp (j2π(fc − γτRk′)τθm,n,k′), using (τRk′)2 ≫ (τθm,n,k′)2. For
practical FMCW radars, carrier frequency fc (in GHz), chirp
rate γ (in MHz/µs) and short-range delay τRk (a few µs) are
such that the term γτRk′ is negligible and

Ym,n[l
′] =

K′∑
k′=1

a∗
k′N exp

(
j2π

(
fcτ

R
k′ − γ

2
(τR

k′)2
))

× exp (j2πfcτ
θ
m,n,k′) +Wm,n[l

′]. (4)

Note that the exponential terms with the range and angle
delays are now separated in Ym,n[l

′].
Denote xk

.
= a∗kN exp

(
j2π

(
fcτ

R
k − γ

2 (τ
R
k )2

))
, and

Y p
m,n[l

′] as the l′-th DFT coefficient computed for the p-th
pulse. Stack the measurements Y p

m,n[l
′] for all (m,n)-pairs

in a NTNR × 1 vector yp. Now, define the ‘NTNR × P ’
matrix Y = [y1, . . . ,yp]. Similarly, define the K ′ × P

matrix X̃ = [x̃1, . . . , x̃P ] with x̃p = [x1, . . . , xK′ ]T . Now,
substituting τθm,n,k = Z(αn + βm) sin (θk)/2c in (4) yields

Y = C̃(θ)X̃+W, (5)

where the NTNR × K ′ matrix C̃(θ) =
[c(θ1), . . . , c(θK′)] with each column c(θ) =

[exp (jπfcZ(α1 + β1)sin(θ)), . . . , exp (jπfcZ(αNT + βNR)sin(θ))]
T ,

known as the virtual array steering vector [10] parameterized
by the AOA θ. Here, W represents the NTNR × P stacked
noise matrix.

We aim to recover θ and X̃ from Y with a small number
of antenna elements exploiting the target scene’s sparseness.
Assume a grid of G points ϕ1≤g≤G of the possible target
AOAs θ with G ≫ K and negligible discretization errors.
Each grid element ϕg parameterizes a column of C̃(θ).
Hence, we can define a NTNR × G dictionary matrix C =
[c(ϕ1), . . . , c(ϕG)]. From (5), the measurements Y become

Y = CX+W, (6)

where the unknown G × P matrix X contains the target
AOAs and complex amplitudes (xk). A non-zero row of X
represents a target present at the corresponding grid point.
Hence, the system (6) is sparse since X has only K ′ ≪ G
non-zero rows. Given the measurements Y and matrix C,
AOA estimation reduces to determining the support (non-zero
rows) of X. Note that the matrix C and hence, the recovery
guarantees depend on the choice of grid points ϕ1≤g≤G as well
as the number and (random) positions of the transmitters and
receivers ({αn}1≤n≤NT

and {βm}1≤m≤NR
). In [10], authors

also discuss the sufficient conditions on the grid and the
random array for high probability recovery.

We consider CS-based algorithms to recover sparse matrix
X with limited antenna elements. CS problems can be classi-
fied as single measurement vector (SMV) models for P = 1
where Y reduces to a single vector, or multiple measurement
vector (MMV) models for P ≥ 1. Our problem (6) is an
MMV setting. However, we first consider the SMV setting
with P = 1 such that Y = y, X = x and W = w
in (6). Recovering a sparse x from NTNR measurements
y involves solving the computationally expensive non-convex
combinatorial l0-norm problem minx∥x∥0 s.t. ∥y−Cx∥2 ≤ ν,
where parameter ν is chosen based on the noise level ∥w∥2
or the sparsity of x. In practice, an approximate solution is
obtained using polynomial-complexity matching pursuit (MP)
or basis pursuit (BP) algorithms. In Section IV-B, we consider
orthogonal MP (OMP) [21] and simultaneous OMP (SOMP)
[22], respectively, for the sparse recovery in SMV and MMV
settings.
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Fig. 2. DFT for (a) Classical range-FFT; and (b) Three different pulses for
the proposed method (arrows indicate the detected peaks).

IV. SIMULATION RESULTS

We now demonstrate the performance of the proposed
method in comparison to the classical FFT-processing. In Sec-
tion IV-A, we first investigate the effect of binary integration
for range processing discussed in Section III-A. The simulation
results for a sparse target scene are provided in Section IV-B.

We considered a MIMO-FMCW radar system transmitting
at fc = 9.4 GHz. The transmitted bandwidth was chosen
as B = 250 MHz with T = 363µs (chirp rate γ = B/T )
and sampling frequency fs = 1.4 MHz such that the range
resolution was 0.6 m. One CPI consisted of P = 10
MIMO sweeps. For the sparse array, 3 transmitters and 3
receivers (total 6 antenna elements) were placed uniformly
over the array apertures ZT = ZR = 6λ, where λ is
the wavelength of the transmitted signal. Note that in this
case αn, βm ∈ [−0.5, 0.5] for 1 ≤ n,m ≤ 3. For the
full array, we considered 4 transmitters and 8 receivers with
two transmitters placed on either side of the array with λ
spacing and the receivers placed in the middle with 0.5λ and
0.25λ spacings between the receivers and closest transmitter-
receiver elements, respectively [7]. This arrangement results
in a virtual array of 20 unique 0.5λ-separated elements. The
target gains were generated as ak = exp (jψk) with ψk

drawn from i.i.d. uniform distribution over [0, 2π). Noise
wm,n[t] is assumed i.i.d. zero-mean complex circular Gaussian
CN (0, σ2I), mutually independent across pulses and virtual
array channels such that the signal-to-noise ratio (SNR) is
−10 log10 (σ

2) [10].

A. DFT processing: classical and proposed method

Consider three close-range targets with ranges R1 = 20.6
m, R2 = 20.0 m and R3 = 19.4 m at AOAs θ1 = θ2 =
θ3 = 0◦ in the noise-free case. Fig. 2a shows the range-
FFT computed in the classical-FFT processing. Fig. 2b shows
the DFT computed in the proposed method for three differ-
ent pulses from measurement y1,1[t]. We observe that non-
coherent pulses processing in the classical method provides
a refined spectrum compared to the proposed method of
processing one pulse at a time. However, the classical range-
FFT suffers from the side-lobe effect resulting in a false peak
of the same order as the third target (R3) peak such that

Fig. 3. Average (a) false alarm rate, and (b) hit rate at different SNRs for
classical-FFT processing and the proposed method.

Fig. 4. Root MSE in (a) range, and (b) angle estimation at different SNRs
for classical-FFT processing and the proposed method.

reducing the false alarms results in a missed detection. On the
other hand, using the binary integration method, the missed
targets in one pulse can be detected at other pulses (or some
other ym,n[t] measurement), which enhances the detection
probability by trading off range resolution.

B. Performance analysis

We considered K = 5 targets with target delays and AOAs
chosen uniformly at random with ranges in [10m, 40m] and
AOAs in [−15◦, 15◦], such that we have close-range targets as
well as multiple targets at the same range. For CS-based angle
recovery, we considered OMP with the vector measurement y
as the sum across 10 pulses and SOMP for matrix measure-
ment Y. In [10], authors assumed a known sparsity level and
used the prior information of the actual number of targets K
in the CS algorithms. However, here, we assumed a sparsity of
Kmax = 10 for OMP and SOMP algorithms. The target AOAs
were then obtained using threshold detection on the recovered
signal. Hence, we do not require a prior estimate of K. The
grid ϕ1≤g≤G was chosen as 150 uniformly spaced points in
the sin(θ) domain in the interval [−0.7071, 0.7071]. Note that
similar to the classical processing, the AOA estimates are
uniform in the sin (θ) domain.

We consider hit rate and root-mean-squared error (RMSE)
of the recovered targets as the performance metrics. A ‘hit’ is
defined as a range-angle estimate within 0.6 m in range and 1◦
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in angle of the true target. The recovery error is computed for
the estimates classified as hits. We vary the thresholds of the
threshold detectors to maintain a constant false-alarm rate at
different SNRs. The hit rate and false alarm rate for different
SNRs, averaged over 300 independent simulations, are shown
in Fig. 3 for the proposed method and classical-FFT processing
for both full and sparse arrays. The corresponding range and
angle recovery errors are shown in Fig. 4.

From Fig. 3, we observe that for high SNRs, the proposed
OMP-based method for the sparse array attains the same
performance as the classical method for the full array, but
with only half the number of antenna elements. On the other
hand, reducing the antenna elements drastically degrades the
classical-FFT’s performance. The hit rate of the classical
processing (full array) at lower SNRs reduces due to the side-
lobe effect discussed earlier while at high SNRs, the false
peaks from the side lobes are not prominent. On the contrary,
the proposed method maintains the same hit rate for differ-
ent SNRs. The SOMP-based recovery further increases the
proposed method’s detection probability with a reduced false
alarm rate compared to OMP. SOMP improves the detection
ability by exploiting the correlation among the measurements
across different pulses to recover the true target AOAs. In
Fig. 4a, we observe that the classical method has a lower range
recovery error for both full and sparse arrays, because of its
refined range FFT. The proposed method achieves a slightly
higher range error of 0.15 m. Similarly, in Fig. 4b, the classical
method slightly outperforms the proposed method in terms of
angle recovery error. However, the classical method’s angular
resolution (hence, the error) depends on the array aperture.
A higher angular resolution requires an increase in the array
aperture and the number of antenna elements. Contrarily, the
proposed method’s angular resolution depends on the grid
points G such that the angle recovery error can be reduced with
a finer grid ϕ1≤g≤G. However, the number and locations of the
antenna elements still affect the dictionary matrix C, which
determines the CS-based algorithms’ recovery probability.

V. SUMMARY

We have proposed a novel CS-based multi-target detection
algorithm in the range-angle domain for MIMO FMCW radar.
The proposed method enables a random array MIMO system
to localize multiple targets with reduced number of antenna
elements. For range detection, we considered a DFT-based
focusing operation with binary integration across pulses and
virtual array channels, for reduced missed detection probabil-
ity. Finally, the SMV and MMV-based CS recovery algorithms
provide the AOAs estimates. Our numerical experiments sug-
gest that the proposed method can achieve the traditional full-
array hit rate with limited antenna elements. Furthermore, the
MMV-based angle recovery can outperform both SMV-based
and classical-FFT methods.
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