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Abstract—Conventional sensing applications rely on electro-
magnetic far-field channel models with plane wave propagation.
However, recent ultra-short-range automotive radar applications
at upper millimeter-wave or low terahertz (THz) frequencies
envisage operation in the near-field region, where the wavefront
is spherical. Unlike far-field, the near-field beampattern is de-
pendent on both range and angle, thus requiring a different
approach to waveform design. For the first time in the litera-
ture, we adopt the beampattern matching approach to design
unimodular waveforms for THz automotive radars with low
weighted integrated sidelobe levels (WISL). We formulate this
problem as a unimodular bi-quadratic matrix program, and
solve its constituent quadratic sub-problems using our cyclic
power method-like iterations (CyPMLI) algorithm. Numerical
experiments demonstrate that the CyPMLI approach yields the
desired beampattern with low autocorrelation levels.

Index Terms—Beampattern matching, near-field, spherical
wave, THz automotive radar, unimodular waveform.

I. INTRODUCTION

The shape of the propagating wavefront varies depending
on the observation distance [1–3]. Accordingly, three distance
regions have been identified [4]: near-field, Fresnel, and the
far-field (Fraunhofer). The channel reciprocity phenomenon
usually implies that these region categories may be effectively
applied in a bidirectional manner, from both transmitter and
receiver perspectives [5]. In the near-field, amplitude variations
over the antenna aperture are noticeable [6]. In contrast, these
variations are negligible in the Fresnel region, but phase varia-
tions still occur because of the signal’s wavelength. In the far-
field, both amplitude and phase variations are negligible; the
amplitude (phase) depends only on the propagation distance
(signal’s incident angle) and the wavefront is approximated as
locally planar. This leads to a linear propagation model via
the Fourier theory.

Radar systems at lower sub-6 GHz frequencies rely on
far-field plane-wave models as the antenna array is typically
smaller than the operating wavelength [7]. However, with the
advent of automotive radar applications at millimeter-wave
and terahertz (THz) frequencies [8, 9] that employ electrically
large arrays, the far-field assumption breaks down for short-
range operation [10, 11]. At such ranges, the wavefront
becomes spherical in the near-field [2–4], thereby requiring the
use of Weyl’s decomposition [12] of the spherical wave into
several plane waves [7, 13]. This manifests itself in the array
beampattern becoming a function of both angle and range [14].

Some far-field applications such as frequency diverse array
(FDA) radars [15, 16] also exhibit range-dependent beampat-
terns, wherein linear frequency offsets in the carrier frequency
across array elements results in a range-dependent beampattern
without a spherical wavefront. Similar complex patterns are
observed in quantum Rydberg arrays [17, 18]. In this paper,
we focus on near-field THz-band automotive radars [19]
that require consideration of range-dependent beampattern in
system design [11, 20, 21]. THz-band automotive radars have
attracted considerable research interest in recent years because
of their potential for a near-optical resolution [11, 19]. While
the literature indicates that a maximum range of 200 m is
possible for THz automotive radars [22], most applications
envisage their operation to be in the 10-20 m range [19].

Prior works on THz automotive radar waveform design have
included distance-dependent channel models [19] and large
arrays [9], but have ignored the near-field range-dependent
beampattern shaping. Contrary to these works, we include
near-field effects in our waveform design formulations. In
particular, we focus on designing transmit signals with low
correlation levels under the constraint of unimodularity [23,
24]. The upshot of this approach is the minimal peak-to-
average-ratio (PAR) and avoiding gain non-linearities with
low-cost amplifiers [25, 26]. Automotive radars often employ
multiple-input multiple-output (MIMO) arrays to improve res-
olution without using many antennas [11]. In this case, the
design problem requires obtaining a set of mutually (quasi-
)orthogonal waveforms via minimization of the low integrated
sidelobe level (ISL) or weighted ISL (WISL) [27–29] thereby
leading to improved target extraction [30], resolution [31], and
robustness [27].

We approach the near-field waveform design by adopting
the beampattern matching approach [23, 32]. The WISL
metric for beampattern matching leads to a unimodular quar-
tic matrix program (UQMP). We then formulate the near-
field waveform design problem as a unimodular bi-quadratic
matrix program (UBQMP). Here, a quartic-to-bi-quadratic
transformation splits the emerging UQMP into two quadratic
matrix subproblems [33] that we solve using a low-complexity
cyclic power method-like iterations (CyPMLI) algorithm [34,
35]. This is inspired by the power iteration method [24, 36,
37], which benefits from simple matrix-vector multiplications.
Numerical experiments demonstrate that our proposed method
achieves the desired beampattern while minimizing the WISL.

735ISBN: 978-9-4645-9360-0 EUSIPCO 2023



Throughout this paper, we use bold lowercase and bold
uppercase letters for vectors and matrices, respectively. We
represent a vector x ∈ CN in terms of its elements {xi} as
x = [xi]

N
i=1. The mn-th element of the matrix B is [B]mn. The

sets of complex and real numbers are C and R, respectively;
(·)⊤, (·)∗and (·)H are the vector/matrix transpose, conjugate
and the Hermitian transpose, respectively. Trace of a matrix
is denoted by Tr(.); the function diag(.) returns the diagonal
elements of the input matrix. The Frobenius norm of a matrix

B ∈ CM×N is defined as ∥B∥F=
√∑M

r=1

∑N
s=1 |brs|

2,
where brs is the (r, s)-th entry of B. The Hadamard (element-
wise) and Kronecker products are ⊙ and ⊗, respectively. The
vectorized form of a matrix B is written as vec (B). The s-
dimensional all-ones vector, all-zeros vector, and the identity
matrix of size s×s are 1s, 0N , and Is, respectively. The real,
imaginary, and angle/phase components of a complex number
are Re(·), Im(·), and arg (·), respectively.

II. SYSTEM MODEL

Consider a MIMO radar with M linearly-spaced isotropic
array elements, with the uniform inter-element spacing of d.
The transmit antennas emit mutually orthogonal elements. The
baseband signal transmitted by the m-th antenna is denoted
by xm(t) with spectral support

[−B
2 , B

2

]
, and continuous-time

Fourier transform (CTFT),

ym(f) =

∫ ∞

−∞
xm(t)e−j2πft dt, f ∈

[
−B

2
,
B

2

]
. (1)

The baseband signal is then upconverted for transmission, in
the form sm(t) = xm(t)ej2πfct, where fc denotes the carrier
frequency.

The utilization of an extremely small array aperture that is
electrically large compared to the wavelength leads to near-
field interactions with targets in close proximity. When the
transmission range is shorter than the Fraunhofer distance F =
2D2

λ , where D = (M − 1)d is the array aperture and d = λ
2

with λ = c0
f being the wavelength, the wavefront is spherical.

At the THz-band, the distance from the k-th target to the array
origin, i.e., pk < F thereby requiring a near-field model [38].

The near-field steering vector a(θk, pk) corresponding to
physical direction-of-arrival (DoA) θk and range pk, is

a (θk, rk) =
1√
M

[
e−j2π d

λp
(1)
k , · · · , e−j2π d

λp
(M)
k

]⊤
, (2)

where θk = sinϕk, with ϕk ∈
[−π

2 , π
2

]
and p

(m)
k is the

distance between the k-th target and the m-th antenna:

p
(m)
k =

√
p2k + 2(m− 1)2d2 − 2rk(m− 1)dθk. (3)

According to the Fresnel approximation [1, 39], we can
approximate (3) as

p
(m)
k ≈ pk − (m− 1)dθk + (m− 1)2d2ζk, (4)

where ζk =
1−θ2

k

2pk
is a function of both range and DoA.

Substituting (4) into (2) gives

a (θk, pk) ≈ e−j2π fc
c0

pk ã (θk, pk) , (5)

where the m-th element of ã ∈ CM is [ã (θk, pk)]m =

ej2π fc
c0
((m−1)dθk−(m−1)2d2ζk).

The (near-field) transmit signal at the location (θk, pk) is

z
θk,pk

(t) =

M∑
m=1

sm

(
t−

dp
(m)
k

c0

)
,

=

M∑
m=1

xm

(
t−

dp
(m)
k

c0

)
e

j2πfc

(
t−

dp
(m)
k
c0

)
.

(6)

Using the inverse CTFT of (1), we can rewrite z
θk,pk

(t) as

z
θk,pk

(t) =

∫ B/2

−B/2

Y (θk, pk, f)e
j2π(f+fc)t df, (7)

where Y (θk, pk, f) =
∑M

m=1 ym(f)e−j2π(f+fc)
dp

(m)
k
c0 . As a re-

sult, the beampattern at location {θk, pk} and frequency f+fc
is P (θk, pk, f) = |Y (θk, pk, f)|2 =

∣∣αH(θk, pk, f)y(f)
∣∣2,

where f ∈
[
−B

2 ,
B
2

]
and α is obtained based on the approxi-

mated near-field steering vector (5):
α(θk, pk, f) = e−j2πfa⋆(θk, pk), (8)

and y(f) =
[
y1(f) y1(f) · · · yM (f)

]⊤
. Sampling the

signal xm(t) at the Nyquist interval Ts = 1/B, we obtain
xm(n) = xm(nTs). The discrete Fourier transform (DFT) of
xm(t) is

ym(u) =

N−1∑
n=0

xm(n)e−j2π nu
N , u ∈ {0, 1, · · · , N − 1} . (9)

For ease of representation, we define the vector yu =[
y0(u) y1(u) · · · yM−1(u)

]⊤
which is comprised of

the above DFT values.
We assume that the DoAs and ranges/delays {θk, pk} are

aligned to the grid points {θk1}
K1

k1=1 and {pk2}
K2

k2=1, where

θk1 = sinϕk1 with ϕk1 = π
(

k1

K1
− 1

2

)
, 1 < k1 < K1, and

pk2
= k2

K2
, 1 < k2 < K2. The grid size K1 and K2 are

determined by the temporal and spatial sampling rates. The
discretized α is

α
k1,k2,u

= α

(
θk1 , pk2 ,

u

NTs

)
. (10)

The discretized beampattern becomes

P
k1,k2,u

=
∣∣∣αH

k1,k2,u
yu

∣∣∣2 . (11)

Our goal is to design the waveform matrix X =
[x1, · · · ,xM ] ∈ CM×N that will focus the beam in a desired
direction.

III. PROBLEM FORMULATION

A two-stage algorithm for far-field wideband MIMO wave-
form design was suggested in [40] based on the Gerchberg-
Saxton algorithm [41]. The key idea here is to obtain a
complex-valued waveform in the spectral domain such that
yu matches the magnitude of the desired beampattern as
in (11). Related techniques also include phase-retrieval-based
waveform design [42, 43]. We address the near-field version
of this problem without resorting to phase retrieval methods.
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A. Beampattern Matching Formulation

Denote the desired beampattern by
{
P̂ k1,k2,u

}
. The set of

complex unimodular sequences is identified as
ΩN =

{
s ∈ CN |s(l) = ejωl , ωl ∈ [0, 2π), 0 ≤ l ≤ N − 1

}
.

(12)
The beampattern matching optimization problem is [44],

minimize
xm∈ΩN

K1∑
k1=1

K2∑
k2=1

N−1∑
u=0

[
P̂ k1,k2,u −

∣∣∣αH
k1,k2,u

yu

∣∣∣2]2 .
(13)

To directly tackle (13) with respect to X,
we write yu as yu = X⊤fu, where fu =[
1 e−j2π u

N · · · e−j2π (N−1)u
N

]⊤
is the DFT vector.

Then, (13) becomes

minimize
xm∈ΩN

K1∑
k1=1

K2∑
k2=1

N−1∑
u=0

[
P̂ k1,k2,u −

∣∣∣αH
k1,k2,u

X⊤fu

∣∣∣2]2 ,
(14)

Expanding the objective P =

[
P̂ k1,k2,u −

∣∣∣αH
k1,k2,u

X⊤fu

∣∣∣2]2,

we obtain a quartic formulation is
P = fHu X⋆α

k1,k2,u
αH

k1,k2,u
X⊤fuf

H
u X⋆α

k1,k2,u
αH

k1,k2,u
X⊤fu−

2P̂ k1,k2,uf
H
u X⋆α

k1,k2,u
αH

k1,k2,u
X⊤fu + P̂ 2

k1,k2,u.
(15)

Note that αH
k1,k2,u

X⊤fu is scalar. Hence,
fHu X⋆αk1,k2,uα

H
k1,k2,u

X⊤fu =

vec⊤
(
fHu X⋆αk1,k2,u

)
vec

(
αH

k1,k2,u
X⊤fu

)
,

(16)

where according to the identities of vectorization operator
[36], we have vec

(
fHu X⋆α

k1,k2,u

)
= fHu vec

(
X⋆α

k1,k2,u

)
=

fHu

(
α⊤

k1,k2,u
⊗ IN

)
vec (X⋆), and vec

(
αH

k1,k2,u
X⊤fu

)
=

αH
k1,k2,u

vec
(
X⊤fu

)
= αH

k1,k2,u

(
f⊤u ⊗ IM

)
vec
(
X⊤). Conse-

quently,
fHu X⋆αk1,k2,uα

H
k1,k2,u

X⊤fu =

vec⊤ (X⋆)
(
αk1,k2,u ⊗ IN

)
f⋆uα

H
k1,k2,u

(
f⊤u ⊗ IM

)
vec

(
X⊤

)
(17)

Using the commutation matrix P, i.e., vec
(
X⊤) = P vec (X)

and the fact that vec⊤ (X⋆) = vecH (X), (17) becomes
fHu X⋆α

k1,k2,u
αH

k1,k2,u
X⊤fu = vecH (X)G vec (X), where

G =
(
α

k1,k2,u
⊗ IN

)
f⋆uα

H
k1,k2,u

(
f⊤u ⊗ IM

)
P. Thus, the ob-

jective of (14) is reformulated to

P = vecH (X)
(
G (X)− 2P̂ k1,k2,uG

)
vec (X) + P̂ 2

k1,k2,u

(18)
where G (X) = G vec (X) vecH (X)G. The beampattern
matching problem is now formulated as the following quartic
matrix program (QMP):

minimize
xm∈ΩN

vecH (X) Ĝ (X) vec (X) , (19)

with Ĝ (X) =
∑K1

k1=1

∑K2
k2=1

∑N−1
u=0

[
G (X)− 2P̂ k1,k2,uG

]
.

B. WISL Criterion for Unimodular Waveform Design

Consider a collection of M unimodular waveforms, each
with a code length of N . The cross-correlation between

the m-th and m′-th waveforms of sequences is rmm′(k) =∑N−k−1
l=0 xm(l)x⋆

m′(l+k) = r⋆mm′(−k) [44]. Denote τmmk =

|rmm(k)|2 and ηmm′k = |rmm′(k)|2. The WISL criterion of
waveform X is [44]

W =

M∑
m=1

N−1∑
k=−N+1

k ̸=0

ω2
kηmmk +

M∑
m=1

M∑
m′=1m′ ̸=m

N−1∑
k=−N+1

ω2
kηmm′k,

(20)

where {ωk}Nk=1 are weights.
The unimodular waveform with good correlation properties

is obtained by solving the following optimization problem:
minimize
xm∈ΩN

W. (21)

Following [45], this WISL minimization boils down to

minimize
xm∈ΩN

2N∑
k=1

∥∥XH
((
βkβ

H
k

)
⊙ Γ

)
X
∥∥2
F
, (22)

where Γ ∈ RN×N is a Toeplitz matrix whose upper and lower
triangular parts are constructed by the weights {ωk}N−1

k=0 and

{ω−k}N−1
k=1 , respectively, i.e., Γ ≜


ω0 ω1 ··· ωN−1

ω−1 ω0

. . .
...

...
. . . . . . ω1

ω−N+1 ··· ω−1 ω0

 and

βk =
[
1 ej2π (k−1)

2N · · · ej2π (N−1)(k−1)
2N

]⊤
.

C. Low-WISL Waveform Design via UQMP

To tackle the WISL minimization problem with our pro-
posed algorithm, which is a variant of the power iteration
method, we reshape the objective to bring it to the standard
form with sHRs, s ∈ CN , R ∈ RN×N . To do so, we
substitute Jk =

(
βkβ

H
k

)
⊙ Γ in the objective as∥∥∥XHJkX

∥∥∥2

F
= vecH (X)

(
IM ⊗ JH

k XXHJk

)
vec (X) . (23)

Define J (X) =
∑2N

k=1

(
IM ⊗ JH

k XXHJk

)
= IM ⊗(∑2N

k=1 J
H
k XXHJk

)
. The WISL minimization problem is

now recast as a UQMP as follows:
minimize
xm∈ΩN

vecH (X)J (X) vec (X) . (24)

Now, both (19) and (24) share the same form and can be
optimized together in a single optimization problem. Hence,
we consider the following optimization problem that designs
a unimodular waveform with a low-WISL while incorporating
beampattern matching requirements:

minimize
xm∈ΩN

γP + (1− γ)W (25)

where 0 ≤ γ ≤ 1 is the Lagrangian multiplier. The resulting
UQMP is

minimize
xm∈ΩN

vecH (X)
(
γĜ (X) + (1− γ)J (X)

)
vec (X) .

(26)

IV. PROPOSED ALGORITHM

Our approach to solve the low-WISL waveform de-
sign problem (26) is to cast it as a UBQMP and then
tackle it using the CyPMLI algorithm. Define R (X) =(
γĜ (X) + (1− γ)J (X)

)
. To transform (26) into two
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quadratic optimization subproblems, we define two variables
vec (X1) and vec (X2). It is also interesting to observe that
if either X1 or X2 are fixed, solving (26) with respect to
the other variable can be done via a unimodular quadratic
programming (UQP) formulation [34, 46]:

minimize
vec(Xj)∈ΩNM

vecH (Xj)R (Xi) vec (Xj) , i ̸= j ∈ {1, 2} .
(27)

To ensure the convergence of X1 and X2 to the same wave-
form matrix, a connection needs to be established between
them in the objective. By adding the Frobenius norm error
between X1 and X2 as a penalty with the Lagrangian mul-
tiplier to (27), we have the following regularized Lagrangian
problem:

minimize
vec(Xj)∈ΩNM

vecH (Xj)R (Xi) vec (Xj) + ρ ∥Xi −Xj∥2F ,

(28)
where ρ is the Lagrangian multiplier. The penalty ∥Xi −Xj∥2F
is also a quadratic function with respect to Xj . Consequently,
the UBQMP formulation for (26) is given by below:

minimize
vec(Xj)∈ΩNM

(
vec(Xj)

1

)H ( R(Xi) −ρ vec(Xi)

−ρ vecH(Xi) 2ρNM

)
︸ ︷︷ ︸

R̆(Xi)

(
vec(Xj)

1

)
,

(29)
To employ CyPMLI, we need to transform the problem to
a maximization problem using the diagonal loading process.
Denote the maximum eigenvalue of R̆ (Xi) by λm, where
λmI ⪰ R̆ (Xi). Thus, R̂ (Xi) = λmI − R (Xi) is pos-
itive definite [34]. Note that a diagonal loading with λmI
has no effect on the solution of (29) due to the fact that
∥X∥2F = NM and vecH (Xj) R̂ (Xi) vec (Xj) = λmNM −
vecH (Xj)R (Xi) vec (Xj). Therefore, we have the following
equivalent form of (29):

maximize
vec(Xj)∈ΩNM

(
vec(Xj)

1

)H ( R̂(Xi) ρ vec(Xi)

ρ vecH(Xi) ρ̂

)
︸ ︷︷ ︸

R(Xi)

(
vec(Xj)

1

)
,

(30)
where ρ̂ = λm − 2ρNM . The desired matrix Xj of (30) is
readily evaluated by PMLI at convergence using the iterations
ν(t+1) = ej arg(R(Xi)ν

(t)) [34], where ν =
(
vec⊤ (Xj) 1

)⊤
.

This update process can be simplified as

vec
(
X

(t+1)
j

)
= e

j arg
(
R̂
(
X

(t)
i

)
vec
(
X

(t)
j

)
+ρ vec

(
X

(t)
i

))
. (31)

Such power method-like iterations are already shown to be
convergent in terms of both the objective and the signal [24,
35], implying that X1 and X2 will be converging to each other
as well.

V. NUMERICAL EXPERIMENTS

We numerically evaluated the efficacy of our approach. We
used the following settings for our experiments: the number
of array elements is M = 4, the carrier frequency of the trans-
mitted signal is fc = 1 GHz, the bandwidth B = 200 MHz,
and the number of symbols is N = 64. The inter-element
spacing is d = c0/(2(fc + B/2)) (half wavelength of the
highest in-band frequency) to avoid grating lobes. The DoA
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Figure 1. (a) The correlation level of the designed waveform with sequence
length N = 64 for antenna array with M = 4 elements. (b) The cross-
correlation between x1 and other sequences in the designed waveform; i.e.
x2, x3 and x4 with the same values of N and M as in (a). Note that the
sequences have been designed to suppress the correlation levels at lags from
k = −20 to k = 20.

(a) (b)

Figure 2. The obtained near-field beampattern with respect to (a) −π
2

≤
ϕk1

≤ π
2

and u for fixed k1 = k⋆1 , and (b) 0 < pk2
≤ 1 and u for fixed

k2 = k⋆2 . In all cases, we have N = 64 and M = 4.

(normalized range) domain set of −π
2 ≤ ϕ ≤ π

2 (0 < p ≤ 1)
was discretized with K1 = 20 and K2 = 10 grid points.

The CyPMLI parameters are set as ρ = 2 and γ = 0.5. We
updated the value of λm according to [34, Theorem 1]. Fig. 1a
shows that the resulting waveform achieves a satisfactory
correlation level. Further, the designed sequences exhibit a
good cross-correlation property with each other (Fig. 1b). For
numerical evaluation, we consider the desired beampattern to
be 1 at the indices k⋆1 and k⋆2 and 0 elsewhere for all u.
Fig. 2a displays the (near-field) beampattern obtained for the
angular span of −π

2 ≤ ϕk1
≤ π

2 and discrete frequency u
with fixed k1 = k⋆1 . On the other hand, Fig. 2b shows the
beampattern as a function of range 0 < pk2

≤ 1 and u
with fixed k2 = k⋆2 . Moreover, CyPMLI maintains good input
correlation properties as shown in Fig. 1 while obtaining the
desired beampattern with a small negligible error.

VI. SUMMARY

THz automotive radars are expected to provide near-optical
resolution approaching lidars. For the ultrashort range oper-
ation, near-field propagation needs to be considered in the
waveform design for these systems. We proposed CyPMLI
approach to obtain low-WISL unimodular waveforms and
realize the range-dependent beampattern in near-field.
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