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Abstract—Utilizing radar sensing for assisting communication
has attracted increasing interest thanks to its potential in dy-
namic environments. A particularly interesting problem for this
approach appears in the vehicle-to-vehicle (V2V) millimeter wave
and terahertz communication scenarios, where the narrow beams
change with the movement of both vehicles. To address this
problem, in this work, we develop a radar-aided beam-tracking
framework, where a single initial beam and a set of radar
measurements over a period of time are utilized to predict the
future beams after this time duration. Within this framework, we
develop two approaches with the combination of various degrees
of radar signal processing and machine learning. To evaluate the
feasibility of the solutions in a realistic scenario, we test their
performance on a real-world V2V dataset. Our results indicated
the importance of high angular resolution radar for this task
and affirmed the potential of using radar for the V2V beam
management problems.

I. INTRODUCTION

By employing massive antenna arrays and narrow beams,
millimeter wave (mmWave) and terahertz (THz) communica-
tions can overcome challenging propagation conditions and
leverage the extensive bandwidth offered in these frequency
ranges to attain high data transfer speeds. This way, these
bands can support the envisioned advanced vehicular tech-
nologies that demand high data rates [1]. For example, critical
safety applications can be further enhanced with the sharing
of massive data generated from the vehicles equipped with a
large number of sensors [2]. In such vehicular, and especially
vehicle-to-vehicle (V2V) communication scenarios, achieving
very high data rates requires accurately aligning the narrow
beams adopted in these bands. Finding the optimal narrow
beam, however, results in a large training overhead, which
poses a major challenge in supporting highly-mobile vehicular
scenarios. As the current and future channels are functions of
the geometry of the environment and the position/direction of
the transmitter/receiver, vehicular sensors of various modalities
that are already available for other applications could be uti-
lized to capture these features from the wireless environment.
Especially with the integration of sensing and communication
functions [3], the automotive radar sensors have become
particularly interesting in aiding beam management in V2V
scenarios. Hence, in this paper, we aim to investigate the use
of radar sensing for beam tracking in V2V and evaluate the
feasibility of the approach in the real world.

Several real-world studies have been carried out to solve
the beamforming with the aid of various sensing modalities
in vehicle-to-infrastructure (V2I) scenarios, e.g., camera [4],

lidar [5], and radar [6]. In [4], the authors leverage the RGB
images captured by the camera at the base station to eliminate
the beam training overhead. Similarly, in [5], the lidar point
cloud data of the communication environment is used to guide
the beam prediction and tracking at the base station. More
relevantly, in [6], the beam prediction at the base station is
conducted based on the radar sensing of the vehicular user.
This work, however, was limited to a single radar target,
which is highly limiting for V2V communication. For the V2V
scenarios, [7] studied the radar-aided beamforming with the
GPS data for the identification of the user. This work, however,
focused on the initial access problem and utilized GPS data,
which may be difficult to acquire, and relied on synthetic data.

In this work, we aim to realize radar-aided beam tracking in
V2V scenarios. For this purpose, we first formalize the radar-
aided beam tracking problem by considering practical com-
munication and radar models. In this problem, given an initial
optimal beam and radar measurements from a longer duration,
the purpose is to predict the optimal beam corresponding
to the latest radar measurement. For this, we develop two
LSTM-based approaches: (i) The radar data is first processed
with classical methods to identify the radar state (i.e., range,
angle, and Doppler) of the communication target, and then this
information is utilized to predict the beam through a machine
learning (ML) model. (ii) An end-to-end ML method using the
radar maps along with the initial optimal beam. We evaluate
the performance of the proposed solutions on real-world data
collected with the V2V testbed of the DeepSense 6G dataset
[8]. Despite the limitations due to the low angular resolution
of the radar, our results demonstrated the potential of using
radar sensory data to aid the beam tracking for high data rate
V2V communications.

II. SYSTEM MODEL

In this paper, a V2V communication scenario is considered,
where the system model consists of a vehicle acting as
the transmitter and another vehicle acting as the receiver,
as illustrated in Fig. 1. The transmitter employs a single
omnidirectional antenna. Meanwhile, the receiver is equipped
with (i) a set of linear analog mmWave antenna arrays, each
directed towards different directions to cover the whole space,
and (ii) a set of off-the-shelf FMCW radars operating at a
different frequency band than the communication, each paired
with one of the communication antenna arrays. To cover the
whole circular directions, four linear mmWave antenna arrays
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Fig. 1. The figure presents the considered V2V system model. The receiver
vehicle leverages the radar measurements to predict the optimal beam.

are placed on the receiver vehicle in four separate directions,
i.e., front, right, back, and left. In this model, the antenna
arrays of the receiver are used to communicate with the
transmitter. In this process, the mmWave beam selection is
aided by the FMCW radars.

A. Communication Model

In the communication model, the receiver employs four
mmWave transceivers, each with M c

a antennas. Let d ∈
{front, right, back, left} be the communication and sensing
direction of the receiver vehicle. With the geometric channel
model [9], the channel between the transmitter and receiver in
the direction d, hd ∈ CMc

a , can be given as

hd =

Ld∑
l=1

αd,la(θ
az
d,l, θ

el
d,l), (1)

where Ld is the number of channel paths, and αd,l is the
complex gain. θazd,l and θeld,l are the azimuth and elevation
angles of the paths, and a(., .) is the array response vector of
the antenna arrays. The transmitter transmits the data symbol
s to the receiver with the power gain Ec, and the receive array
of direction d receives the signal via the combining vector
fd ∈ CMc

a . This received signal, yd, can be written as

yd =
√
EcfHd hds+ n, (2)

where n ∼ N (0, σ2) is the additive white Gaussian noise. The
combining vector of the receive antenna array in the direction
d, fd, is assumed to be selected from a pre-defined codebook
of B beams, Fd = {fd,1, . . . , fd,B}. Then, the indices of the
optimal beam among the beams of these four antenna arrays
and the corresponding antenna index can be represented as the
result of the beamforming gain maximization given as

max
d,b

|fHd,bhd|2

s.t. d ∈ {front, right, back, left},
b ∈ {1, . . . , B},

(3)

where the solution can be obtained by an exhaustive search.
Note that the total number of combining vectors is 4B, with
B beams in each of the four directions.

B. Radar Model

To aid the communication, the FMCW radars on the receiver
vehicle independently transmit the sensing signals and collect
the reflected/scattered signals from the objects in the environ-
ment. Specifically, each FMCW radar transmits a sequence of
Mchirp chirps with a repetition interval of TPRI seconds, referred
to as a radar frame. Let stx

chirp(t) ∈ R denote a single linear
chirp with a duration of Tactive seconds and an instantaneous
frequency f0 + St, where S = BW/Tactive is the slope of the
linear chirp with the bandwidth BW. Then, the chirp signal
stx

chirp(t) can be written as [10]

stx
chirp(t) =

{
sin(2π[f0t+

S
2 t

2]) if 0 ≤ t ≤ Tactive

0 otherwise,
(4)

With this definition, the transmit signal of a radar frame,
stx

frame(t), can be written as

stx
frame(t) =

√
Et

Mchirp−1∑
c=0

stx
chirp(t−c·TPRI), 0 ≤ t ≤ Tframe, (5)

where
√
Et is the transmission power gain, and Tframe is the

frame duration.
At the radar receiver, the sensing signal reflected/scattered

from the objects is first passed through a quadrature mixer.
In the mixer, the received signal is mixed with two versions
of the transmit signal stx

frame(t), one with a −90◦ phase shift
difference. Then, a low-pass filter is applied to the mixed
signals to generate the intermediate frequency (IF) signal.
The IF signal is a constant frequency tone, which reflects the
difference in the instantaneous frequency of the transmit and
receive chirp signals. If a single object is in front of the radar,
the IF signal of a chirp can be expressed as

srx
chirp(t) =

√
EtEr exp

(
j2π

[
Sτt+ f0τ −

S

2
τ2
])

, (6)

where Er is the reflection/scattering gain consisting of the radar
cross section (RCS) and the path-loss. τ = R/ς is the round-
trip time of the sensing signal, where R is the total propagation
distance, and ς is the speed of light.

Finally, the received IF signals of the chirps are sampled
by an analog-to-digital converter (ADC) with the sampling
rate Fs, where each chirp is sampled with Msample samples.
Assuming the FMCW radar has Mant receive antennas, and
each antenna has its own RF receive chain, the measurements
of one radar frame at the radar in the direction d can be
denoted by Xd ∈ CMant×Msample×Mchirp .

III. PROBLEM DEFINITION

In this work, we aim to predict the optimal beam for the
receiver vehicle based on the recent radar measurements from
the surrounding environment. Specifically, after communica-
tion is established, the communication beam in the mobile
environment may need to be frequently updated. To that end,
tracking the transmitter vehicle within the radar measurements
and then updating the optimal beam without additional beam
measurements can reduce the resources needed for beam
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management and, particularly, beam tracking. For the beam
tracking, however, using only the radar measurements is not
sufficient since the transmitter vehicle needs to be identified
in the radar. For this purpose, in addition to the radar mea-
surements, we leverage the initial optimal beam index in our
problem, which could be estimated/becomes available during
the initial establishment of the communication.

The radar-aided beam tracking in the V2V scenario is a
challenging task due to (i) multiple objects in the highly
dynamic environment, (ii) noisy radar data from the mobile
receiver/radar, and (iii) multiple potential directions of linear
arrays. To simplify (iii), we only focus on the tracking within
a single receive array/radar pair and assume that the receive
array/radar pair does not change within the sequence of
samples that have been tracked. Thus, we can drop the sub-
index d, which indicates the direction of the radar and phased
array. It is worth noting that, however, this operation induces
additional difficulty for the proposed algorithm since it needs
to accommodate the data from different receiver/radar pairs.

To formalize the problem, we first denote the latest To ∈ Z+

(referred to as the observation interval) radar measurements at
time t by X t = {Xt−To+1, . . . ,Xt}. We then define the func-
tion fΘ of parameters Θ, that maps the To latest radar mea-
surements, X t, and the optimal beam index of the first radar
measurement, b∗t−To+1, to the current optimal beam index, b∗t .
This function can be expressed as fΘ(X t, b

∗
t−To+1) = b∗t .

Now, our objective is to optimize the design of the mapping
function and the set of parameters Θ in order to maximize the
predicted beam’s accuracy, which can be written as

f̂Θ̂ = argmax
f,Θ

1

T

T∑
t=1

1{b∗t=fΘ(X t,b∗t−To+1)}, (7)

where T is the total number of data samples, and 1E is the
indicator function of the event E, i.e., 1E = 1 if E occurs;
otherwise, 1E = 0.

IV. PROPOSED SOLUTIONS

For the defined radar-aided V2V beam tracking problem,
we develop two LSTM-based beam tracking approaches: (i)
The LSTM is fed with the transmitter vehicle’s radar state
estimation (range, angle, and Doppler) to track the beams,
and (ii) an end-to-end ML approach where the radar maps are
directly fed to the LSTM and the output is combined with
the previous optimal beam index to obtain the tracked beam.
Note that both solutions adopt a certain level of classical radar
processing, and hence, in the following, we first introduce the
radar preprocessing methods and then present our solutions.

Radar preprocessing: To extract useful information from
the radar measurements, e.g., range, angle, and Doppler, we
adopt conventional signal processing techniques. In particular,
we apply FFTs to generate the range-Doppler maps and the
radar cube (i.e., range-angle-Doppler maps). We use both maps
for the state estimation of the objects in the first method and
the range-Doppler maps as input in the second end-to-end

Input
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Fig. 2. The illustration of the end-to-end model. In this model, the range-
Doppler maps are fed to the shown architecture. The initial optimal beam is
used to provide the historical information of the transmitter.

method. Mathematically, we describe the range-angle maps
and the radar cube as

HRD =

Mant∑
a=1

|F2D(Xa,:,:)|, HRC = |F3D(X)|, (8)

where F2D(.), and F3D(.) denote the 2D and 3D FFT oper-
ations. For more detailed information on these maps, please
refer to [6], [10].

A. Beam Tracking with Transmitter Identification

In this approach, given a sequence of radar measurements
X t and a previous optimal beam index b∗t−To+1, we first detect
and then track the transmitter vehicle over the radar samples
with a signal processing based approach. After that, we use
an LSTM model to predict the current beam based on the
information of the transmitter vehicle among the time samples.

Object detection: For the detection of the objects in each
radar sample, we apply a classical radar detection chain.
Specifically, we (i) obtain the range-Doppler map and radar
cube for each radar measurement, (ii) apply a CFAR method
to each range-Doppler map to detect the points with high
reflection/scattering power, (iii) cluster the detected points
using DBSCAN to determine the objects, (iv) estimate the
angle from the object’s range and Doppler slice in the radar
cube, where the angle bin with the peak power is taken as the
estimate. Then, for a sequence of radar measurements, we have
a sequence of detected objects Ot = {Ot−To+1, . . . ,Ot},
where Ot = {ot,1, . . . ,ot,Kt} denotes the Kt objects detected
in the radar measurement at time t, and ot,k = {rt,k, vt,k, at,k}
denotes the state of k-th object with range rt,k, Doppler
velocity vt,k, and angle at,k.

Transmitter identification and tracking: Next, we need
to determine the transmitter in the radar samples. For this
purpose, we develop a communication angle-based method.
Let ψr

t,k = at,k and ψc
t denote the radar angle of the k-th

object and the angle corresponding to the optimal beam at
time t, respectively. To identify the transmitter, we select the
object that has the radar angle closest to the communication
angle, i.e., k̂t = argmink∈{1,··· ,Kt} |ψ

r
t,k −ψc

t |, which can be
used to track the transmitter in the following radar samples.
Specifically for the tracking, we select the object that has the
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Fig. 3. The image on the left depicts the setup of the DeepSense 6G dataset’s Testbed 6, where mmWave antenna arrays and radars are placed on top of a
vehicle (Unit 1). Four sets of mmWave receivers and radars face four sides of the box. The image on the right shows a sample from the collection.

closest distance to the previously determined transmitter state
with the following metric

k̂t+1 = argmin
k

wr

∣∣∣rt+1,k − rt,k̂t

∣∣∣+wv

∣∣∣vt+1,k − vt,k̂t

∣∣∣ , (9)

where wr and wv are the weights. After applying the tracking
process iteratively, we obtain the information of the transmitter
through a sequence of radar measurements, denoted by Otx

t =
{otx

t−To+1, . . . ,o
tx
t }, which is ready to be utilized in the ML.

Beam tracking: As the proposed detection chain may present
errors in the highly dynamic environment, we adopt the deep
learning to complement it with a robust model for the tracking
of the transmitter and beams. In this model, the LSTM takes
the extracted radar information of the transmitter over time
as the input and returns the output to a set of two fully
connected layers to obtain the beam. This output is of RB ,
where each element corresponds to a beam index. To optimize
the parameters of the model, Θ, we use the loss between the
output of the networks and the one-hot encoding of the optimal
beam index given as

Θ∗ = argmin
Θ

1

T

T∑
t=1

L(gΘ(Otx
t ), b

∗
t ), (10)

where gΘ(.) is the neural network function, and L is the cross-
entropy loss. Next, we develop an end-to-end solution that
does not rely on object detection and transmitter identification.

B. End-to-End Machine Learning Approach

For the end-to-end solution, we aim to predict the beam
directly using the range-Doppler maps and the previous op-
timal beam index. For this purpose, we use a deep learning
model with convolutional, LSTM, and fully connected layers,
as illustrated in Fig. 2. Before the LSTM, the range-Doppler
maps of different time samples are processed by the same
five convolutional layers with the rectified linear unit (ReLU)
activations and average pooling. The output of the fifth con-
volutional layer for each time sample is then connected to
the corresponding LSTM unit. The output of the LSTM is
combined with the given previous beam information and fed
to three fully connected layers to return the beam. If we denote

HRD
t = {HRD

t−To+1, . . . ,H
RD
t } as the sequences of range-

Doppler maps, we can write the objective of the model as

Θ∗ = argmin
Θ

1

T

T∑
t=1

L(gΘ(HRV
t , b∗t−To+1), b

∗
t ). (11)

Even though the method developed in this subsection in-
cludes less classical radar signal processing, it may suffer
from the difficulty of learning very complicated processing
(object detection and transmitter identification) without a huge
complexity and number of samples.

V. DATASET

For a realistic evaluation of the proposed beam tracking
solutions, we utilize a real-world dataset that is collected by
a V2V testbed as a part of the DeepSense 6G [8] framework,
with co-existing radar and communication equipment.

Testbed: We adopt the Testbed 6 of the DeepSense 6G
dataset [8], and the setup of the testbed is presented in Fig. 3.
There are two units in this testbed: (i) Unit 1, a mobile receiver
that has four pairs of an FMCW radar and a 60GHz mmWave
receiver facing four directions, i.e., front, right, back, left, and
(ii) Unit 2, a mobile transmitter that uses a 60 GHz quasi-
omni antenna. Each mmWave receiver adopts a uniform linear
array (ULA) with M c

a = 16 elements and an over-sampled
beamforming codebook of B = 64 vectors. Also, the mmWave
receivers apply their codebook beams as a combiner to capture
the received power, and the combiner having the strongest
power is taken as the optimal beam. For the radar, only one
of the transmit antennas and Mant = 4 receive antennas are
activated. We adopt a set of radar parameters, given by chirp
starting frequency f0 = 77 GHz, ADC sampling rate Fs = 5
us, chirp slope S = 15 MHz/us, Mchirp = 128 chirps/frame,
and Msample = 256 samples/chirp. This setting provides the
bandwidth BW = 768 MHz, a maximum range of 50 meters,
and a maximum velocity of 54 km/hr.

AI-Ready Dataset: For the evaluation, we present Sce-
nario 38 of the DeepSense 6G dataset. In this scenario, the
transmitter was fixed on a tripod extending to the sunroof of
the vehicle (Unit 2) while the two vehicles traveled within
the traffic in close proximity of each other. The samples are
collected continuously with a sampling rate of 10 samples/s,
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Fig. 4. The top-k test accuracy of the proposed approaches. The proposed
solutions show less performance degradation for longer intervals compared to
beam hold, showing the advantage of radar-aided beam tracking.

and they include a variety of traffic scenarios, including fol-
lowing, passing, and changing lanes. To focus on the scenarios
interesting for tracking, we filter the data by keeping the
sequences of samples with changing beam indices (e.g., the
transmitter getting closer to the receiver in a different lane or
the vehicles consecutively taking a turn). Also, for the samples
of beam tracking, we generate overlapping data sequences with
a length of 10. For the shorter observation interval, we only
utilized the last To ≤ 10 samples of each pre-generated longer
sequence. The resulting final dataset of 3649 sequences is split
into the training and test set with a 70/30% ratio. To prevent
overfitting in the test set, the training and test samples are
selected from different (non-overlapping) time intervals.

VI. RESULTS

In this section, we present the performance of the proposed
solutions to evaluate the feasibility of the radar-aided V2V
beam tracking problem and proposed approaches in the real
world. For the training of (i) the transmitter identification-
based solution, we train the network for 80 epochs using the
Adam algorithm with a learning rate 0.01, batch size 32, and
a decay factor γ = 0.01 applied every 20 epochs. For (ii)
the end-to-end learning solution, we adopt a similar set of
parameters with a learning rate 0.001 and the decay factor
γ = 0.1 applied every 40 epochs.

For the evaluation, we utilize the top-k accuracy of the beam
tracking solutions. As the baseline, we adopt a beam hold
method, where the previous beam given as input is used as
the predicted beam, i.e., b̂t = b⋆t−To+1. For the top-3 and -5
predictions of this baseline solution, ±1 and ±2 beams are
utilized. This baseline allows evaluation of the radar data’s
effect. In Fig. 4, we present the performance of the solutions
for various numbers of radar samples (To). Interestingly, the
transmitter identification-based approach shows worse perfor-
mance than the baseline. The difference, however, decreases
with the observation interval and higher k values. This shows
the limitation due to the low angular resolution of the radar
compared to the communication antennas/beams, where the
exact prediction of the beam directly from the radar is difficult.
By contrast, the end-to-end solution overall outperforms the
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Fig. 5. The confusion matrix of the predictions for To = 5 radar samples.
The low angular resolution results a bias toward specific bins as shown in (a).

baseline. While the gain is limited for top-1 accuracy, it
provides 6-9% and 3-6% gain for the top-3 and -5 accuracies
and shows the potential of radar-aided beam tracking.

In Fig. 5, we illustrate the confusion matrix of the solutions.
Fig. 5(a) again shows the limitation of the low angular
resolution of the radar, which causes a bias towards specific
bins with the radar target tracking approach. On the contrary,
Fig. 5(b) shows a linear pattern with higher accuracy, where
the given beam is refined with the radar information. To
conclude, although high angular resolution in radar may be
required to achieve the full potential, the aid of the radar can
help to overcome beamforming problems in very challenging
real-world V2V communication applications.
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