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Abstract—Pretrained audio neural networks (PANNs) has been
successful in a range of machine audition applications. But its lim-
itation in recognising relationships between acoustic scenes and
events impacts its performance in language-based audio retrieval,
which retrieves audio signals from a dataset based on natural
language textual queries. This paper proposes the attention-
based audio encoder to exploit contextual associations between
acoustic scenes/events, using self-attention or graph attention
with different loss functions for language-based audio retrieval.
Our experimental results show that the proposed attention-based
method outperforms most of state-of-the-art methods, with self-
attention performing better than graph attention. In addition,
the selection of different loss functions (i.e., NT-Xent loss or
supervised contrastive loss) does not have as significant an impact
on the results as the selection of the attention strategy.

Index Terms—Language-based audio retrieval, audio represen-
tation, attention mechanism, multimodal learning

I. INTRODUCTION

Language-based audio retrieval is a multimodal task that
utilizes a text query (i.e., caption) to retrieve the matched audio
signal from a provided database [1]–[3]. It benefits search
engines to output audio signals matching a text query [3] and
enhances the experience of human-machine interaction with
improved machine understanding of the audio content [4].

This task is launched by the Detection and Classification
of Acoustic Scenes and Events (DCASE) 2022 Challenge
Task 6B [2]. The official baseline [2] has the convolutional
recurrent neural network (CRNN) [5] as the audio encoder
and Word2Vec [6] as the text encoder. The audio encoder
extracts audio features (i.e., audio embedding) to represent the
acoustic scenes, and the text encoder extracts text features (i.e.,
sentence embedding) to represent the semantic information of
text queries. However, the simple model structure leads the
CRNN-based audio encoder’s ineffectiveness in audio feature
representation and the Word2Vec-based text encoder’s inef-
fectiveness in the semantic information representation, which
limits the audio retrieval performance.

The state-of-the-art methods adopt a more complex structure
with the pre-trained models for the language-based audio
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retrieval task [3], [7]–[9]. Specifically, these methods employ
pretrained audio neural networks (PANNs) [10] as the audio
encoder and BERT-based language model [11] as the text
encoder. They achieved improved audio retrieval utilising the
pre-trained knowledge from the large-scale audio dataset (i.e.,
AudioSet [12]) and text datasets (i.e., BooksCorpus [13] and
Wikipedia [11]). With the BERT-based language model, the
text encoder can capture the contextual information in the text
for better semantic information representation. In contrast, the
PANNs-based audio encoder often focuses on audio pattern
recognization, which has advantages for sound event/scene
detection. But PANNs cannot well exploit the contextual
association between the acoustic scenes and events within the
audio signal due to its convolution operation [14], [15].

Thus, the PANNs-based audio encoder insufficiently rep-
resents audio content and limits audio retrieval performance
because of mismatching between audio representation and
text embedding (involving the contextual information). To
address this limitation, our DCASE 2022 Challenge Task 6B
submission [16] introduced graph attention network (GAT)
[17] in addition to PANNs as the audio encoder to exploit
the contextual association of the extracted audio features, and
employed Word2Vec [6] as the text encoder. Our submission
achieved the 8th place in the DCASE 2022 Challenge Task
6B.

This paper further explores the attention-based audio en-
coder to capture the contextual association within the au-
dio signal while adopting a BERT-based text encoder to
obtain sentence embedding for audio retrieval. Specifically,
two different attention mechanisms (graph attention [17] and
self-attention [18]) is respectively employed as the attention
module, in addition to PANNs in the audio encoder. The graph
attention learns the audio feature nodes relation, while the
self-attention is widely used for the sequential signal mod-
elling. Experimental result shows that the proposed attention-
based method can achieve competitive performance with the
state-of-the-art methods, and the ablation studies verify the
effectiveness of the attention-based audio encoder. In addition,
two different loss functions (NT-Xent loss [19] and supervised
contrastive loss [20]) are compared. The result shows that the
loss function selection may be less important than the selection
of attention mechanisms.
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Fig. 1. Framework of the proposed audio retrieval method with the attention-based audio encoder, using either self-attention or graph attention.

II. PROPOSED METHODS

This section introduces the proposed audio retrieval method
with the attention-based audio encoder, as illustrated in Figure
1. Specifically, we explore two attention mechanisms, graph
attention and self-attention, applied in the audio encoder in
addition to PANNs, and eventually formed graph attention
based audio retrieval and self-attention based audio retrieval,
respectively. In addition, the use of different loss functions is
also explored.

A. Attention-based Audio Encoder

We use the attention-based audio encoder to extract au-
dio embedding with semantic information about acoustic
scenes/events of the audio signal. The attention-based audio
encoder contains PANNs (i.e., CNN14 in [10]) to extract the
audio feature, an attention module to capture the contextual
association within the audio feature, and an audio projector
to output the audio embedding. We consider two attention
mechanisms in the attention module, either graph attention
or self-attention. The audio feature extracted by PANNs is
denoted as F ∈ RT×DA , where T and DA denote the time
dimension and the latent dimension of the audio feature,
respectively.

1) Graph Attention Based Audio Encoder: The graph
attention based audio encoder employs the graph attention
network layer as the attention module to capture the relation
between audio feature frames (nodes). In the graph atten-
tion network layer, the audio feature F is divided into T
audio feature frames, that F = [f1, · · · , ft, · · · , fT ]⊤ with
1 ≤ t ≤ T and ⊤ denotes the transposition operation. The
relation coefficient between two audio feature frames fi and
fj (1 ≤ i, j ≤ T ) is calculated as

ri,j = LeakyReLU (W2 [W1fi;W1fj ]) , (1)

where matrix W1 ∈ RDA×DA is learnable to map the audio
feature frame with their differences enhanced, operator [·; ·]
denotes the concatenation of two vectors at the feature vector
dimension, and W2 ∈ R1×2DA is a learnable vector to map
the concatenation result to a relation coefficient. The leaky

ReLU function is used for activation. The relation coefficient
reflects the degree of the contextual temporal relation between
two audio feature frames. All relation coefficients form the
relation coefficient matrix R ∈ RT×T . The audio embedding
from the graph attention based audio encoder is

a = ProjA
{
MeanPooling

[
F+ σ(R)FW⊤

1

]}
, (2)

where σ(·) denotes the softmax function, the mean pooling op-
eration is used to squeeze the time dimension, and ProjA{·}
is the audio projector using a linear layer to map the squeezed
audio feature into the audio embedding a ∈ RD and D is the
dimension of the embedding vector. The residual connection[
F+ σ(R)FW⊤

1

]
remains both the information about sound

events captured by PANNs and the relation between audio
feature frames, thus can learn the contextual association of
the audio signal.

2) Self-Attention Based Audio Encoder: The self-attention
based audio encoder employs the self-attention layer [18]
as the attention module to capture the temporal relationship
within the audio feature. The audio feature F is mapped into
three latent features, Q,K,V ∈ RT×DA by learnable parame-
ter matrices, WQ,WK ,WV ∈ RDA×DA , respectively. Then,
these latent features are fed to sequential modelling of the self-
attention mechanism to learn the temporal relationship, and the
residual connection is used to retain the acoustic scenes and
events information. So that the audio feature with the temporal
information is

F̂ = F+ σ
(
QK⊤/

√
DA

)
V. (3)

The audio embedding from the self-attention based audio
encoder can be calculated as

a = ProjA

{
MeanPooling

[
ϕ(F̂) + F̂

]}
, (4)

where ϕ(·) is a multi-layer perceptron with a depth of two, and
the mean pooling operation and the audio projector are used
to obtain the audio embedding a ∈ RD. The residual connec-
tion remains the learnt temporal relationship and the global
information of the audio feature; thus the audio embedding
can obtain the contextual association of the audio signal.
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B. Text Encoder

Following [3], [7]–[9], we employ the pretrained BERT
model [11] as the text encoder of the proposed method
to extract the sentence embedding representing the content
information of the caption. The caption with L words forms
(L+2) tokens, that BERT prepends a “[CLS]” token to obtain
the global information of the sentence, and appends a “[SEP]”
token to represent the end of the sentence. These tokens are
converted as (L + 2) token feature vectors with the feature
dimension DS from the pretrained BERT model. Because the
“[CLS]” token contains the global information of the sentence,
we choose the token feature vector of “[CLS]” to represent the
content of the caption sentence. Because the dimension DS

is usually different from the embedding dimension D, a text
projector that consists of a linear layer maps the token feature
vector of “[CLS]” into the sentence embedding s ∈ RD.

C. Loss Function

The cosine similarity represents the matching degree be-
tween audio and sentence embeddings, and the audio signal
with a larger cosine similarity matches the caption better. Sup-
pose B pairs of text query with the corresponding audio signal.
There are B audio embeddings and B sentence embeddings.
The cosine similarity between any sentence embedding sm
(1 ≤ m ≤ B) and any audio embedding an (1 ≤ n ≤ B) is

cm,n =
s⊤man

∥sm∥2∥an∥2
, (5)

where ∥ · ∥2 denotes the l2 norm operation. All the B × B
cosine similarity values cm,n, 1 ≤ m ≤ B and 1 ≤ n ≤ B,
form the cosine similarity matrix C ∈ RB×B.

1) NT-Xent Loss: Following most audio retrieval methods,
e.g. [3], [8], [9], [21], we consider the NT-Xent loss [19]
to optimize the model during the training stage. It aims to
maximise the diagonal elements of C while minimising the
non-diagonal elements of C, that

LNT-Xent=− 1

B

B∑
m=1

(
log

e
cm,m

τ∑B
n=1e

cm,n
τ

+log
e

cm,m
τ∑B

n=1e
cn,m

τ

)
, (6)

where τ is the temperature parameter to scale the difference in
the cosine similarity value to highlight the difference between
different text-audio pairs. The NT-Xent loss assumes that the
diagonal elements of C correspond to text-audio pairs that
match, and that the non-diagonal elements correspond to pairs
that do not match. However, there may be some non-diagonal
elements that actually correspond to matched pairs, but the
NT-Xent loss disregards them. Hence, we propose to replace
the NT-Xent loss with the supervised contrastive loss [20].

2) Supervised Contrastive Loss: It marks all the elements
of C corresponding to matched text-audio pairs, and enhances

these elements by

Lsupervised=− 1

B

B∑
m=1

1

|K(m)|
∑

k∈K(m)

(
log

e
cm,k

τ∑B
n=1e

cm,n
τ

+log
e

ck,m
τ∑B

n=1e
cn,m

τ

)
,

(7)

where K(m) denotes the set that includes the indices of the
matched audio samples of the m-th text query, |K(m)| denotes
the number of the indices in K(m), and k is an index from
K(m). In this paper, the proposed method using supervised
contrastive loss is named with the suffix “+supervised” and
the effect of the loss function is discussed in Section III-F.

III. EXPERIMENTAL RESULTS

A. Dataset

We conduct the experiments on the Clotho dataset [22],
using both the development split and the validation split as
the training set and the evaluation split as the test set. Note
that every audio signal has five corresponding captions in
the Clotho dataset. The sample rate of the audio signals is
44.1 kHz, and the log-Mel spectrogram of the audio signal
is extracted as the input of the audio encoder. We set the
dimension of the log-Mel band as 64 and the Hamming
window with 50% overlapping while extracting the log-Mel
spectrogram.

B. Experimental Setup

The CNN14 module in the audio encoder is initialised by
the pretrained parameters from acoustic pattern recognition
tasks on AudioSet. The BERT module in the text encoder
is initialised by the pretrained parameters from the natural
language processing tasks on BooksCorpus and Wikepedia.
For the audio encoder, DA is set as 1024 to fit the output
dimension of CNN14. For the text encoder, DS is set as 768
to fit the output dimension of BERT. The dimension D of the
audio and sentence embeddings is 1024. The batch size is set
as 60, and the model is optimized by the Adam optimizer [23]
with a learning rate of 0.0001. The SpecAugment strategy is
used to augment the log-Mel spectrogram for better perfor-
mance, inspired by [24]. For the NT-Xent loss and supervised
contrastive loss, the temperature parameter τ is set as 0.07
following [9].

C. Evaluation Metrics

Following DCASE 2022 Challenge Task 6B [2], we employ
the matched audio signal’s recall and mean average precision
(mAP) metrics to evaluate the retrieval performance. Specifi-
cally, the recall at the top-1, top-5 and top-10 retrieved audio
signal candidates (R1, R5 and R10, respectively) and the mAP
at the top-10 retrieved audio signal candidates (mAP10). Note
that the mAP10 metric is the most important metric to rank
the submissions of DCASE 2022 Challenge Task 6B.
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TABLE I
PERFORMANCE COMPARISON BETWEEN THE STATE-OF-THE-ART

METHODS AND THE PROPOSED METHOD (I.E., GRAPH ATTENTION BASED
AND SELF-ATTENTION BASED AUDIO RETRIEVAL, THE CNN14 BASED
AUDIO RETRIEVAL FOR ABLATION STUDY AND THE SELF-ATTENTION

BASED+SUPERVISED FOR THE DISCUSSION ABOUT THE CHOICE OF LOSS
FUNCTIONS).

Method R1(%) R5(%) R10(%) mAP10(%)

DCASE official baseline [2] 2.6 10.2 17.6 6.1
P-GAT [16] 7.0 21.0 33.0 13.0

ATAE-NP-F [3] 7.2 22.5 32.5 13.9
PaSST-MPnet [7] 13.4 35.5 48.2 22.9

RELAX [25] 13.7 35.4 48.4 23.1
SMBO [8] 14.5 37.2 51.0 24.3

Mei Surrey [9] 14.7 37.7 49.5 24.4
SJTU [21] 16.2 38.3 52.0 25.8

CNN14 based audio retrieval 13.7 35.6 48.7 23.2
Graph attention based 14.6 36.2 50.2 23.9

Self-attention based 14.1 38.0 51.3 24.3

Self-attention based+supervised 14.0 38.5 52.0 24.4

D. Performance Comparison

We evaluate the retrieval performance by comparing the
proposed methods (i.e., graph attention based audio retrieval
and self-attention based audio retrieval) with the state-of-the-
art methods [3], [7]–[9], [16], [21], [25] and DCASE official
baseline [2]. Here, SJTU [21], Mei Surrey [9], RELAX [25],
PaSST-MPnet [7] and ATAE-NP-F [3] respectively achieved
the 1st, 2nd, 3rd, 4th and 7th place in DCASE 2022 Challenge
Task 6B. P-GAT [16] is our previous submission of Task 6B
and achieved 8th place. SMBO [8] is a state-of-the-art method
exploring data augmentation’s effect on language-based audio
retrieval. The performance results are shown in Table I, where
“graph attention based” and “self-attention based” are short for
graph attention based audio retrieval and self-attention based
audio retrieval, respectively.

Table I shows that the proposed graph attention based audio
retrieval and self-attention based audio retrieval can achieve
better retrieval performance than DCASE baseline, RELAX,
ATAE-NP-F, PaSST-MPnet, SMBO and P-GAT methods in
terms of all evaluation metrics, except the R1 performance for
SMBO. Meanwhile, the proposed methods achieve competitive
performance compared with the 1st and 2nd rank methods
(SJTU and Mei Surrey). Moreover, the proposed method has
a simpler training processing than the 1st rank method (SJTU)
as it does not need pretraining on the AudioCaps dataset [26].
These results show that the proposed graph attention based
and self-attention based audio retrieval are effective solutions
for language-based audio retrieval.

E. Effect of Attention

To evaluate the effectiveness of the attention-based audio
encoder for language-based audio retrieval, we performed an
ablation study. Specifically, we removed the attention module
(i.e., the graph attention layer in graph attention-based retrieval
and the self-attention layer in self-attention-based retrieval)
from the proposed encoder, resulting in a degraded audio
retrieval method, CNN14 based audio retrieval in Table I. Note

that all the settings for the three methods (graph attention-
based, self-attention-based and CNN14 based methods) were
identical, except for the model structure of the audio encoder.

The ablation study in the second part of Table I shows
the graph attention based and the self-attention based audio
retrieval outperform the CNN14 based audio retrieval in terms
of all evaluation metrics. This indicates that the use of the
attention module is the particular element of the proposed
methods leading to improved performance, and the contextual
association of the audio signal is important to language-based
audio retrieval.

In addition, the self-attention based audio retrieval outper-
forms the graph attention based audio retrieval in terms of all
metrics, except the R1 metric. It shows that the self-attention
layer is a better choice for the implementation of the attention
module in the proposed attention-based audio encoder.

F. Effect of Loss Function

We tested different loss functions (NT-Xent loss and super-
vised contrastive loss) for the proposed method. Here, we con-
ducted the experiment based on self-attention based audio re-
trieval and replaced the NT-Xent loss with the supervised con-
trastive loss, which forms “self-attention based+supervised”
in Table I. It has improvements in all metrics except the R1
metric compared with the self-attention based audio retrieval,
and has the best performance in terms of R5 and R10 metrics,
compared with the state-of-the-art methods. However, the
core metric mAP10 is nearly not improved. Therefore, the
impact of the loss function is less significant than that of the
model structure design, according to those evaluation metrics.
A possible reason is that the Clotho dataset ignores that a
caption can have multiple matched audio signals, as an audio
signal can have multiple corresponding captions, thus some
matching text-audio pairs are not marked, thereby affecting
the performance.

IV. CONCLUSION

In this work, we propose a language-based audio retrieval
method with the attention-based audio encoder, where the
attention-based audio encoder is used to capture the contextual
association of the audio signal by the attention mechanism.
Specifically, we explore two different attention mechanisms,
i.e., graph attention and self-attention mechanisms for the
attention-based audio encoder, respectively. Experimental re-
sults show the proposed method achieves competitive perfor-
mance with the state-of-the-art methods, verifying the effec-
tiveness of the proposed attention-based audio encoder for
audio retrieval and pointing out that the self-attention mech-
anism is a better choice for the proposed method. Moreover,
we discuss the impact of different loss functions, i.e., NT-
Xent loss and supervised contrastive loss. Results show that
the choice of the attention mechanism has a more significant
impact than the selection of loss functions.

758



REFERENCES

[1] H. Xie, O. Räsänen, K. Drossos, and T. Virtanen, “Unsupervised
audio-caption aligning learns correspondences between individual sound
events and textual phrases,” in Proc. of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 8867–
8871.

[2] H. Xie, S. Lipping, and T. Virtanen, “Language-based audio retrieval
task in DCASE 2022 challenge,” in Proc. of the 7th Detection and
Classification of Acoustic Scenes and Events 2022 Workshop (DCASE
2022), Nancy, France, November 2022.

[3] B. Weck, M. P. Fern’andez, H. Kirchhoff, and X. Serra, “Matching
text and audio embeddings: Exploring transfer-learning strategies for
language-based audio retrieval,” in Proc. of the 7th Detection and
Classification of Acoustic Scenes and Events 2022 Workshop (DCASE
2022), Nancy, France, November 2022.

[4] F. Xiao, J. Guan, H. Lan, Q. Zhu, and W. Wang, “Local information
assisted attention-free decoder for audio captioning,” IEEE Signal Pro-
cessing Letters, vol. 29, pp. 1604–1608, 2022.

[5] X. Fu, E. Ch’ng, U. Aickelin, and S. See, “CRNN: A joint neural
network for redundancy detection,” in Proc. of International Conference
on Smart Computing (SMARTCOMP). IEEE, 2017, pp. 1–8.

[6] G. C. Tomas Mikolov, Kai Chen, “Efficient estimation of word rep-
resentations in vector space,” in Proc. of International Conference on
Learning Representations (ICLR), 2013.

[7] T. Pellegrini, “Language-based audio retrieval with textual embeddings
of tag names,” in Proc. of the 7th Detection and Classification of
Acoustic Scenes and Events 2022 Workshop (DCASE 2022), Nancy,
France, November 2022.

[8] P. Primus and G. Widmer, “Improving natural-language-based audio
retrieval with transfer learning and audio & text augmentations,” in Proc.
of the 7th Detection and Classification of Acoustic Scenes and Events
2022 Workshop (DCASE 2022), Nancy, France, November 2022.

[9] X. Mei, X. Liu, H. Liu, J. Sun, M. D. Plumbley, and W. Wang,
“Language-based audio retrieval with pre-trained models,” DCASE 2022
Challenge, Tech. Rep., July 2022.

[10] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,
“PANNs: Large-scale pretrained audio neural networks for audio pattern
recognition,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 28, pp. 2880–2894, 2020.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
of the North American Chapter of the Association for Computational
Linguistics (NAACL-HLT), 2019, pp. 4171–4186.

[12] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audioset: An ontology and
human-labeled dataset for audio events,” in Proc. of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2017, pp. 776–780.

[13] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proc. of
International Conference on Computer Vision (ICCV). IEEE, 2015,
pp. 19–27.

[14] F. Xiao, J. Guan, Q. Zhu, and W. Wang, “Graph attention for automated
audio captioning,” IEEE Signal Processing Letters, 2022 (submitted).

[15] H. Song, S. Deng, and J. Han, “Exploring inter-node relations in cnns
for environmental sound classification,” IEEE Signal Processing Letters,
vol. 29, pp. 154–158, 2022.

[16] F. Xiao, J. Guan, H. Lan, Q. Zhu, and W. Wang, “Language-based
audio retrieval with pretrained CNN and graph attention,” DCASE 2022
Challenge, Tech. Rep., July 2022.
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