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Abstract—Human activity recognition (HAR) is an important
research area that involves detecting and classifying human
activities using various sensors. Recently, radar-based HAR
systems have attracted the attention of researchers due to
their superiority over other techniques. However, one of the
main challenges in HAR is capturing the spatial dependencies
among the micro-Doppler features, as the spatial arrangement
of the activities and their features are necessary for accurate
recognition. This paper introduces a novel graph neural network
model for classifying human activities using superpixel gray-scale
images constructed from the range and velocity profile obtained
from human activity data. Our approach utilizes a k-NN (k-
nearest neighbor) graph structure to represent the superpixels
as nodes, enabling the model to learn spatial dependencies
among the image features. We evaluate the performance of our
model with a publicly available dataset using different GNN
(Graph Neural Network) techniques, including GCN (Graph
Convolution Neural Network), GAT (Graph Attention Network),
and SGC (Simplifying Graph Convolution Network), and conduct
a comparative study to determine the most effective approach
for this task. The results indicate that GAT outperforms the
other state-of-the-art techniques in accurately classifying human
activities with competitive accuracy.

Index Terms—Human activity recognition, GNN, GCN, SGC,
GAT

I. INTRODUCTION

Human activity recognition (HAR) has gained significant
research attention due to its versatility and the broad range
of potential applications, such as smart homes, healthcare,
gaming, fitness tracking, and assisted living [1]–[6]. HAR
system aims to categorize human movements into pre-defined
activities. Present human activity detection methods can be
divided into two categories: wearable and non-wearable. Wear-
able devices such as accelerometers, push-button devices,
and smartphones are more established and widely used [1].
However, it causes discomfort to the users as it has to be
attached to the body all the time. Non-wearable devices, on
the other hand, include technologies like infrared sensors,
microphones, pressure sensors, radar, and cameras. Among
non-wearable systems, camera-based systems [2] are the most
commonly used, but they face several challenges, including
privacy concerns for users. Additionally, occlusion and low
lighting conditions can limit their performance. Other types of
non-wearable systems, like floor and microphone sensors, are

still largely in the experimental stage and have yet to become
viable commercial solutions.

The rise of smart homes has led to increased interest in
non-contact indoor monitoring using radar-based technology,
as radar signals can penetrate obstacles like walls to detect
targets. Furthermore, radar-based methods do not compromise
the user’s privacy, and there is no need to always wear the
sensor. Frequent-modulated continuous wave (FMCW) radars
have become popular as active monitoring sensors due to their
attractive features like resistance to multi-path fading, better
penetration, more precise time resolution, and higher spatial
resolution [3].

The underlying principle of a radar-based HAR system is
rooted in the concept of Doppler frequency shifts resulting
from human activity, which produce corresponding unique
signatures [4]. These signatures carry hidden features and
are further used for classification using various methods.
Traditional machine learning methods [5] depend on manually
designed features, which can limit their ability to generalize
to new data. Moreover, the process of manually extracting
features is both time-consuming and ineffective. On the other
hand, deep learning methods take a hierarchical approach to
automatically learn high-level features and have demonstrated
outstanding results in human activity recognition [6].

Recent advances in machine learning have led to the de-
velopment of a number of techniques for extracting features
from structured graph data. Graph neural networks (GNN)
are a fundamental application of deep learning techniques in
the graph domain [7]. In [8], the authors present a graph
convolutional propagation algorithm for classification at the
graph level. Nevertheless, [9] implements the same strategy
using a single weight matrix per layer. Spectral graph convo-
lutions are a common way for implementing GCN [10] due to
their fast localized convolutions. GCN first learns a first-order
spectral filter before layer stacking and activation. GCN has
applications in disciplines such as natural language processing
[11], citation networks [9], image classifications [12], seismic
fault [13] and social networks [14], among others. Further, the
authors in [15] present a GNN-based image classification that
extracts features from superpixels in a region adjacency graph
(RAG).
Our proposed methodology is shown in Fig. 1. First, we derive
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Fig. 1: Proposed Methodology

the range-time (range profile) and velocity-time (spectrogram
or velocity profile) plots of radar data associated with the
different human activities. Following normalization, we use
superpixels for image segmentation, dividing the image into
groups of similar pixels in color and texture. Then we convert
the superpixel images into grayscale images and use these su-
perpixel matrices as nodes in the graph structure to implement
the task as a node classification problem. We use k-NN(k=8,
obtained through various experiments using cross-validation)
for graph representation and use three different GNN models
to compare the results.
Our main contributions to this study are as follows:

• We derive range-time and velocity-time profiles of the
sensor data corresponding to different human activities
and conduct a comparative study between these profiles
to obtain the optimal result.

• We present a novel graph neural network model that
leverages the k-nearest neighbor graph structure of su-
perpixel grayscale images derived from the range and
velocity profile of radar data to classify various hu-
man activities. We evaluate the performance of different
GNNs, including GCN, GAT, and SGC, and conduct a
comprehensive comparative analysis.

II. DATA PREPARATION

A. Description of Data

We have used a publicly available dataset provided by the
University of Glasgow [16]. Data is collected through a 5.8
GHz frequency modulated continuous wave (FMCW) radar
with a 400 MHz bandwidth and 1 ms chirp duration. The
complex time series of the backscattering signal is collected,
where both the amplitude and phase of the signal are affected
by the target’s electromagnetic features and kinematics. A
sample data (d) format is shown below:

d = a + ib (1)

where a represents the amplitude of the in-phase signal, and
b represents the amplitude of the quadrature signal.
Most of the data were collected at the University of Glasgow.

A few parts were obtained from North Glasgow Housing
Association facilities, and the Age UK West Cumbria Centre.
Participants were encouraged to perform several repetitions
of six different activities, which included walking back and
forth from the sensor, sitting down on a chair, standing up
from a chair, bending forward to pick up an object, drinking
from a cup or glass, and performing a frontal fall. All the data
were collected in a controlled laboratory environment with
physically fit volunteers. The duration of the walking data was
10 seconds, while all other activities had a span of 5 seconds.

B. Preprocessing

All radar-based healthcare systems revolve around three
domains of data representation, i.e., range, time, and velocity.
Range and velocity are fundamental parameters containing
information about human activity [17]. In our work, we con-
sidered two data representations, i.e., range-time and velocity-
time plots, and compared their feasibility in classifying differ-
ent activities. These plotted images provide a visual represen-
tation of the movements of different body parts, distinguishing
between heavier and lighter movements. The oscillations in
the images indicate the specific movements, and the resulting
signature varies according to the type of movement being
performed, thereby indicating the feasibility of utilizing these
signatures to uniquely identify human activities.
To obtain these plots, the data is first arranged in a matrix
of dimension m×n. Here, m represents the number of time
samples per sweep, and n represents the number of chirps. In
our case, the data matrix size is 128x5000 (m = 128 and n =
5000). Fig. 2 shows the steps in finding different plots.

1) Range-time: Range information provides the physical
distance from the radar to the subject and generally involves
the body’s macro movements. The range-time plot correspond-
ing to different human activity data provides the subject’s
distance from the radar position as time varies. A fast Fourier
transform (FFT) is applied to each chirp to obtain a range-
time plot. This plot can be utilized to classify different human
activities. However, we must derive a velocity-time plot for
detailed movement information on the limbs.
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Fig. 2: Steps involved to find range and velocity profile from
radar sensor data

2) Velocity-time: Unlike range-time, the velocity-time pro-
file gathers information about the body’s micro-movements.
During various human activities, it tracks the minute move-
ments of hands, legs, and other limbs. In the range-time matrix,
an FFT across the time dimension gives a range-doppler plot.
Then, short-time Fourier transform (STFT) is applied with
A Hamming window of length 200 with 50% overlap along
slow-time for each range bin to generate spectrogram or time-
Doppler or velocity-time plots to characterize velocity over
time.

3) Superpixels: Superpixels are a widely used image seg-
mentation technique that groups similar pixels together based
on their color and texture characteristics. Superpixel algo-
rithms aim to generate a compact and meaningful image
partition into regions corresponding to objects or object parts.
This is achieved by minimizing a cost function that balances
the local similarity and the spatial proximity of the pixels. The
resulting superpixels can be used as a compact representation
of an image for various computer vision tasks, such as
object recognition, edge detection, and image compression.
By reducing the number of pixels in an image, superpixels
can speed up processing time and improve the accuracy of
downstream tasks [18]. In our work, superpixels serve as a
feature matrix at each graph node.

4) Grayscale Conversion: We convert the obtained super-
pixel images into grayscale images for further processing.
Grayscale images have lower dimensionality, making them
computationally less expensive to process than color images.
This is particularly important in GNNs, where the computa-
tional complexity increases with the number of features.

III. METHODOLOGY

In graphs, data elements are connected based on certain rela-
tionships. The graph is expressed as G = (V, E), where V is a
set of N vertices or nodes, represented by {V0,V1, ....,VN-1},
and E is the set of edges connecting the nodes. The relationship
between nodes is represented by an N ×N adjacency matrix,
where the weight of the edge connecting node i and j, denoted
as E i,j ∈ C, where C is a set of complex numbers. The
set of nodes connected to vertex Vn is referred to as the
neighborhood, W n = {j|E i,j ̸= 0}.
In this method, a graph of nearest neighbors is utilized.
The graph G = (V, E) consists of N vertices, representing
N different superpixels of plot images. Each image of size
m × n is considered a point in an m ∗ n dimensional vector
space. To determine the graph, the Euclidean distance between
all superpixels is calculated, and a k-nearest neighbor graph
is constructed, with k set to eight for optimal computation
time and accuracy across six data classes. The Euclidean
distance is computed based on the superpixel values in the
m ∗ n-dimensional vector space. The corresponding vertices
are connected if two superpixels of images belong to the same
class and the superpixel values are among the eight nearest
elements. The graph can also be represented as a weighted
graph by assigning weights to the edges Ei,j = exp(δ2i,j) ,
where δi,j is the Euclidean distance between the ith and jth

vertices. In an unweighted graph, the weight is set to one if
two vertices are connected and zero otherwise. In this study,
we apply three different graph neural network models, which
are graph convolution network (GCN), graph attention network
(GAT), and simple graph convolution (SGC).

1) GCN: The GCN model employs a localized approxima-
tion of spectral graph convolutions to construct the convolu-
tional architecture, as described by Kipf et al. [9]. GCNs are
typically designed as semi-supervised models with multiple
layers. The output of a GCN with two layers can be mathe-
matically expressed as:

O = f(F , E)
= ReLU(ÊReLU(ÊFω(0))ω(1))

(2)

where, Ê = D̃−1/2ẼD̃, D̃ii =
∑

j Ẽi,j , is the degree matrix.
Ẽ = E + I|V|, where E is the original adjacency matrix and
I|V| is the identity matrix and ω(0) and ω(1) are the weight
matrices.

2) GAT: The GAT model, unlike GCN, directly utilizes
the spatial information of each node in the graph to learn
the representation of each node. GAT achieves this by using
node self-attention and neighboring features to train the model,
similar to GCN [19]. The attention coefficient is determined
by performing self-attention using a weight matrix ω and input
features f⃗i.

ci,j = e(ωf⃗i, ωf⃗j) (3)

The masked attention is performed by computing ci,j for
nodes j ∈ W and then normalizing by applying the softmax
function to the computed attentions. The aggregation is carried
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out using multi-head attention averaging rather than a scalar
attention score, which is expressed as:

f⃗ ′
i = σ (

1

N

N∑
k=1

∑
j∈Wi

eki,jω
kf⃗j) (4)

Here, ωk is the weight matrix for the kthattention head,
and eki,j is the attention coefficient for the ith node and the
jth neighboring node. The activation function σ is applied
element-wise to the aggregated result.

3) SGC: The SGC model is a simplified version of the
GCN model. In SGC, non-linearities are removed sequen-
tially, and weight matrices between subsequent layers are
compressed. The model involves a graph-based preprocessing
phase followed by a standard multi-class logistic regression
for classification [20]. The SGC classification formulation can
be expressed as follows:

O = softmax(ÊNFω) (5)

Here, ω is the weight matrix, and N is the number of layers.

IV. RESULTS AND DISCUSSION

In this study, we considered two different radar data repre-
sentations, range profile and velocity profile, as inputs to our
proposed models after proper preprocessing (II-B). To deter-
mine the optimal outcome, we varied the superpixel values
and image sizes for comparison purposes. We investigated
the effect of varying superpixel values (fixing the image size
to 25 × 32) on the classification accuracy of three distinct
methods: GCN, SGC, and GPT. We ran each model for
40 epochs, except for GAT, which we ran for 1000 epochs
(as the standard set by respective literatures [9], [19], [20]).
We repeated the experiment 100 times for each model to
calculate the average accuracy. Table I shows the obtained
results. We also plotted the variation of average accuracy
with changing superpixel values, as shown in Fig. 3 and 4.
Our findings indicate that GAT performed best with 1000
superpixels, obtaining an accuracy of 97.81% for the velocity
profile. For the range profile, we achieved 95.70% accuracy
with 300 superpixels, clearly depicting the superiority of the
spectrogram in representing human activity. In addition, we
compared the results obtained for different image sizes (using
a specific superpixel value of 600). The comparison outcome
is presented in Table II. Surprisingly, increasing the image size
did not result in a higher accuracy rate. Thus, we recommend
using a superpixel value of 1000 and an image size of 25×32
for the best results with the velocity profile.

To evaluate the performance of our proposed method, we
compared it with current state-of-the-art methods in the lit-
erature. As shown in Table III, our proposed GAT method
achieved the highest accuracy of 97.81%, outperforming all
other methods. The other methods in the table range from
89.50% to 97.58% in accuracy, further highlighting our pro-
posed method’s superior performance. The key advantage of
our proposed GAT method is its ability to effectively capture
the spatial dependencies among the features extracted from

sensor data. It uses a graph-based approach, which models the
relationship between the features as a graph and uses attention
mechanisms to weigh the importance of different nodes in the
graph, enabling the model to effectively learn the complex
patterns in the sensor data and achieve high accuracy in human
activity recognition.

TABLE I: Comparison of Different Superpixels

Super Pixel Velocity Profile Range Profile

GCN SGC GAT GCN SGC GAT

100 53.92 88.33 90.32 72.25 87.79 89.61
200 51.5 87.95 88.33 73.38 88.33 92.47
300 72.04 91.88 90.32 64.67 90.32 95.70
400 69.89 91.93 92.47 71.88 90.00 92.47
500 73.22 90.64 90.86 72.63 88.38 89.74
600 80.53 91.18 94.09 66.20 90.32 92.47
700 80.16 90.86 90.32 70.00 91.18 93.55
800 75.59 89.99 94.09 67.74 89.57 94.62
900 58.06 90.10 93.55 75.37 90.48 95.16
1000 55.86 90.10 97.81 73.38 90.8 94.09
1100 92.85 90.21 92.47 68.17 91.39 94.09
1200 63.81 90.91 92.47 74.83 92.36 94.09
1300 56.02 90.96 92.47 68.28 91.66 93.55
1400 71.02 90.80 91.94 68.22 90.00 93.01
1500 64.73 91.13 94.62 77.09 91.02 94.62
1600 63.06 89.83 91.40 67.90 90.00 93.01

Image Size = 25 × 32

TABLE II: Comparison of Different Image Size

Image Size Velocity Profile Range Profile

GCN SGC GAT GCN SGC GAT

25× 32 80.53 91.18 94.09 66.20 90.32 92.47
54× 64 51.82 90.59 86.33 46.95 84.87 83.32
75× 96 71.29 91.98 82.51 42.16 85.38 77.91
100× 128 15.59 91.2 15.59 15.59 80.64 15.59

Superpixels = 600

TABLE III: Comparison With Previous Works

Reference Method Used Accuracy

[21] CNN 91%
[6] bi-LSTM 95.90%
[22] Sensor Fusion 91.30%
[23] SVM+ANN 96%
[5] SVM (cubic kernel) 94%
[24] RD-CNN 89.50%
[25] T-CNN 97.58%
[26] RNN 94.30%
[27] VGG-Net 95.80%
[28] DCGAN+CNN 97.20%
Proposed GAT 97.81%

ANN = Artificial neural network, SVM = Support Vector Machine, RD-CNN
= Range-Distributed Convolution Neural Network, T-CNN = Tower Convolution
Neural Network, RNN = Recurrent Neural Network, CNN = Convolution Neural
Network, DCNN = Deep Convolution Neural Network, Bi-LSTM = Bidirectional
Long Short Term Memory, DCGAN = Deep Convolutional Generative Adversarial
Network, VGG-Net = Visual Geometry Group Network

V. CONCLUSION AND FUTURE SCOPE

The present study explores the potential of graph neural
networks (GNNs) for radar-based human activity recognition
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(a) Superpixels vs. Accuracy (b) Image Size vs. Accuracy

Fig. 3: Accuracy dependency on superpixels and image size
of the range profile of the radar human activity data.

(a) Superpixels vs. Accuracy (b) Image Size vs. Accuracy

Fig. 4: Accuracy dependency on superpixels and image size
of the velocity profile of the radar human activity data.

(HAR). Different GNN models and the current state-of-the-
art approach were compared to evaluate their performance.
GNN models, specifically GAT, showed a significant increase
in classification accuracy. We considered two distinct radar
data representations to demonstrate the potential of GNNs
for human activity detection. As part of future work, we
will evaluate the performance of GNNs in the presence of
noise. This evaluation will enable us to understand better the
ability of GNNs to handle noisy inputs and identify potential
limitations of the current model in such scenarios.
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