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Abstract—We consider the joint Direction-of-Arrival (DOA),
Time-of-Arrival, and Doppler-frequency estimation problem in
Multiple-Input-Multiple Output automotive radar systems. To
enhance the angular resolution capability, the virtual array
concept is employed. For solving the estimation problem we
present a multidimensional extension of the recently proposed
Partially Relaxed Orthogonal Least Squares Weighted Subspace
Fitting (PR-OLS-WSF) algorithm. The PR-OLS-WSF algorithm
belongs to the class of computationally efficient greedy algorithms
where each source is resolved sequentially. Unlike other greedy
algorithms such as the popular Matching Pursuit (MP) and
Orthogonal Matching Pursuit (OMP) whose performances are
known to severely degrade in both threshold and asymptotic
domains, the proposed PR-OLS-WSF algorithm inherits excellent
resolution performance from the partial relaxation step involving
in the optimization procedure. We show that, based on real
measurement data, the proposed algorithm can resolve more
targets than the Matching Pursuit algorithm.

Index Terms—MIMO radar, automotive radar, virtual array,
sensor array processing, direction-of-arrival estimation, weighted
subspace fitting, orthogonal matching pursuit, partial relaxation

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) radar is receiving
increasing attention in the automotive radar industry due to the
ability to form large virtual array apertures from a relatively
small number of transmit and receive antennas [1]. The use
of the virtual array concepts requires orthogonal waveforms
transmitted from different antennas and therefore comes at
the expense of transmitter array gain leading to a reduced
Signal-to-Noise ratio (SNR) in the response. However, in
automotive radar, the increase of angular resolution capability
of the array and the reduction of the required hardware costs
are of fundamental importance and justify the loss of array
gain [2]. Several multiplexing techniques have been considered
for transmission including code division multiplexing (CDM),
time division multiplexing (TDM) and frequency division
multiplexing (FDM). While CDM is more flexible in the
design of the transmission sequences, TDM MIMO radar is
attractive as less complex hardware is required. The achievable
angular resolution capability of both multiplexing schemes
has been investigated in [3] and shown to be fundamentally
identical, which favors the use of the simpler TDM technique.
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The virtual array concept allows the use of conventional
array processing techniques such as conventional beamform-
ing, Capon beamforming [4], ESPRIT [5], MUSIC [6] and
orthogonal matching pursuit (OMP) [7], [8]. Recently, the
Partial Relaxation (PR) framework has been introduced as
a new class of DOA estimators for closely-spaced sources
with superior resolution performance similar to Maximum-
Likelihood in the threshold domain but with a computational
cost comparable to that of spectral subspace methods [9].
Unfortunately, PR techniques lose the performance benefits
if the number of sources becomes large. This is attributed to
the fact that the manifold relaxation associated with the PR
framework is no longer tight. To prevent such performance
loss, the PR technique has been incorporated in sequential
estimation schemes such as matching pursuit (MP) [10],
OMP [7], [8] and Orthogonal Least Squares (OLS) [11],
[12]. While the above mentioned sequential estimators are
known to be inconsistent for a finite number of antennas the
sequential estimators developed under the PR framework show
in simulations true super-resolution capability and resolution
performance close to the Cramér-Rao Bound [13], [14].

In this paper, we extend the sequential PR estimation frame-
work to the multi-dimensional frequency estimation in MIMO
radar setup where the DOA, range and Doppler parameters
of multiple targets are jointly estimated. We investigate the
resolution performance of the sequential estimation techniques
for real MIMO radar data recorded in a measurement cam-
paign at Sony Stuttgart, Germany, and show that the Partially-
Relaxed Orthogonal Least Squares Weighted Subspace Fitting
(PR-OLS-WSF) method [15] correctly resolves more targets
than the classical OLS in the considered scenario.

II. SIGNAL MODEL

We consider a colocated time-division multiplexing
(TDM) frequency-modulated continuous-waveform (FMCW)
multiple-input-multiple-output (MIMO) radar with Mt trans-
mit and Mr receive antennas [2]. After matched filtering and
Discrete Fourier Transformation (DFT) along the fast time
dimension and denoting ∆f and ∆TP as the frequency spacing
and the time spacing along the fast and slow time dimension,
respectively, the virtual array [1], [3] receive signal tensor
Y∈CK×Mr×Mt×L for N point targets is given by

Y =

N∑
n=1

βnb(τn) ◦ ar(θn) ◦ at(θn) ◦ c(νn) +N (1)
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where β=[β1, . . . , βN ]
T, τ =[τ1, . . . , τN ]

T, θ=[θ1, . . . , θN ]
T

and ν=[ν1, . . . , νP ]
T denote the complex amplitudes propor-

tional to the radar cross section (RCS), the path delay for range
estimation, the azimuth direction and the Doppler frequency
of N targets, respectively. In addition, the vector b(τ) and
c(ν) are respectively defined as

b (τn) =
[
1, e−j2π∆fτn , . . . , e−j2π(K−1)∆fτn

]T
(2a)

c (νn) =
[
1, e−j2π∆TPνn , . . . , e−j2π(L−1)∆TPνn

]T
(2b)

at(θn) ∈ CMt and ar(θn) ∈ CMr represent the transmit
and receive steering vectors with the m-th and m′-th element
denoted by

[at(θn)]m = e−jπ(dt
x,m cos θn+dt

y,m sin θn), (3a)
[ar(θn)]m′ = e−jπ(dr

x,m′ cos θn+dr
y,m′ sin θn), (3b)

respectively. The (x, y)-coordinates in (3), i.e., (dtx,m, dty,m)
and (drx,m′ , dry,m′) denote the locations of the m-th transmit
antenna and m′-th receive antenna in half-wavelength, respec-
tively. K defines the number of relevant frequency samples
for range estimation, L is the number of slow time samples
(i.e. radar pulses), and N ∈ CK×Mr×Mt×L denotes the i.i.d.
Gaussian measurement noise tensor with power σ2. After
appropriate unfolding the 4D measurement tensor in (1) can
be written as

Y = (C ⊙At ⊙Ar︸ ︷︷ ︸
H

) BT +N , (4)

where N is the unfolding of N , ⊙ denotes the Khatri-Rao
(column-wise Kronecker) product,

B = [β1b(τ1), . . . , βnb(τN )] ∈ CK×N (5)

C = [c(ν1), . . . , c(νN )] ∈ CL×N (6)

A = [a(θ1), . . . ,a(θN )] = At ⊙Ar ∈ CM×N (7)

H = [h(θ1, ν1), . . . ,h(θN , νN )] = C ⊙A ∈ CLM×N (8)

with M = MtMr denoting the number of antennas in the
virtual array and

At = [at(θ1), . . . ,at(θN )] ∈ CMt×N (9a)

Ar = [ar(θ1), . . . ,ar(θN )] ∈ CMr×N . (9b)

Given the unfolded measurement model (4) we consider the
range frequency samples as independent measurements and
compute the sample covariance matrix as

R̂ =
1

K
Y Y H = ÛΛ̂Û

H
= Û sΛ̂sÛ

H
s + ÛnΛ̂nÛ

H
n (10)

where Û s ∈ CLM×N refers to the signal subspace matrix con-
taining the N -principal eigenvectors of R̂ and Λ̂s ∈ CN×N is
the diagonal matrix comprising the associated N -largest eigen-
values λ1 ≥ λ2, . . . , λN . Similarly, Ûn ∈ CLM×(LM−N)

refers to the noise subspace matrix containing the (LM −
N) minor noise eigenvectors with corresponding eigenvalues
λN+1 ≥ λN+2 ≥ . . . ≥ λLM on the main diagonal of
Λ̂n ∈ C(LM−N)×(LM−N).

We remark that in the ideal noise free case and for a
sufficiently large number of frequency samples K ≥ N the

signal subspace matrix and the Doppler-DoA steering matrix
span the same signal subspace, hence R(H) = R(Û s).

III. THE PARTIAL RELAXATION ORTHOGONAL LEAST
SQUARES WEIGHTED SUBSPACE FITTING ALGORITHM

A. Motivation and Derivation

In this section, the concept of the PR-OLS-WSF estimator
derived in [15] is explained and applied in the context of
MIMO radar. By relaxing the range frequency samples as in-
dependent measurements, the formulation of the conventional
Deterministic Maximum Likelihood (DML) for estimating the
azimuth angles θ and the Doppler frequencies ν is given by{

θ̂, ν̂
}

= argmin
θ,ν,BT

∣∣∣∣∣∣Y −H(θ,ν)BT
∣∣∣∣∣∣

F
. (11)

As the optimization problem in (11) is nonconvex with multi-
ple local minima, finding the optimal solutions of the azimuth
angles and the Doppler frequencies jointly for N > 2 targets
is not computationally tractable. To reduce the computational
complexity, the OLS technique in [11] was developed. In-
stead of jointly estimating the azimuth angles and Doppler
frequencies of N targets in one optimization problem, the
OLS technique sequentially estimates the azimuth angle and
the Doppler frequency of only one target in each iteration.
More precisely, given the previously estimated azimuth angles
θ̂
(k−1)

and Doppler frequencies ν̂(k−1), the optimization
problem in the k-th iteration for k = 1, . . . , N is given by{
θ̂(k), ν̂(k)

}
= argmin

θ,ν,B(k)T

∣∣∣∣∣∣Y −
[
Ĥ

(k−1)
,h(θ, ν)

]
B(k)T

∣∣∣∣∣∣2
F

= argmin
θ,ν

tr
{
P⊥[

Ĥ
(k−1)

,h(θ,ν)
]R̂

}
,

(12)
where Ĥ

(k−1)
= H

(
θ̂
(k−1)

, ν̂(k−1)) and P⊥
A = I −

A
(
AHA

)−1
AH is the projection matrix onto the subspace that

is the orthogonal complement to the subspace span(A). Then
the estimated azimuth angle and Doppler frequency set in each
iteration k = 1, . . . , N is correspondingly updated as

Ω(k) = Ω(k−1) ∪
{(

θ̂(k), ν̂(k)
)}

. (13)

After the azimuth angle and the Doppler frequency of the k-th
target are resolved, the complex amplitude β̂(k) and the τ̂ (k)

is estimated as{
β̂(k), τ̂ (k)

}
= argmin

β,τ

∣∣∣∣∣∣Y − βh
(
θ̂(k), ν̂(k)

)
b(τ)T

∣∣∣∣∣∣2
F
,

(14)or equivalently, if only the path delay τ̂ (k) is of interest

τ̂ (k) = argmax
τ

∣∣∣∣h(
θ̂(k), ν̂(k)

)H
Y b(τ)⋆

∣∣∣∣2 , (15)

where (·)⋆ denotes the conjugate operator. Compared with the
DML estimator, the computational cost of the OLS technique
is drastically reduced as each target is resolved sequentially
in each iteration. Nevertheless, the drawback of the OLS
technique is the limited resolution capability, similarly to the
conventional beamformer or the FFT method.

In order to improve the estimation performance of the
OLS algorithm while keeping the computational cost low,
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the PR-OLS-WSF in [15] was derived. In the PR-OLS-WSF
algorithm, two major changes to the classical OLS technique
are adopted. First, instead of approximately solving the DML
optimization problem, the PR-OLS-WSF algorithm attempts
to solve the Weighted Subspace Fitting (WSF) [16] opti-
mization problem, in which the unfolded receive tensor Y
is replaced by the weighted subspace matrix Û sW

1/2 with

W =
(
Λ̂s − σ̂2

nIN

)2

Λ̂
−1

s with σ̂2
n = 1

M−N

∑M
k=N+1 λ̂k.

This choice on the matching term simultaneously improves
the asymptotic estimation performance [16] as well as re-
duces the computational cost of the associated PR-OLS-WSF
algorithm. More details on the efficient implementation of
the PR-OLS-WSF algorithm will be explained in the next
subsection. Second, compared to the OLS technique which
only accounts for the (k−1)-previously estimated targets while
estimating the parameters of the k-th target, the PR-OLS-WSF
algorithm considers the (N − k) remaining targets. However,
instead of enforcing structure on the (N − k) remaining
signals, the structure is relaxed to some arbitrary matrix
G(k) ∈ CLM×(N−k). Hence, in the k-th iteration, the matrix
H(θ,ν) in (11) is separated into the relaxed part G(k) and
H(k)(θ, ν) = [Ĥ

(k−1)
,h(θ, ν)] where Ĥ

(k−1)
contains the

(k − 1)-previously estimated DOAs and Doppler frequencies.
Similarly, the nuisance parameter is separated into the part that
belongs to the structured signal part, namely F (k) ∈ Ck×N ,
and E(k) ∈ C(N−k)×N which belongs to the unstructured
signal part G(k). In essence, the optimization problem in the
k-th iteration is given by [15, Eqs. (13)-(16)]{

θ̂(k), ν̂(k)
}
= argmin

θ,ν
min

F (k),G(k),E(k)∥∥∥Û sW
1/2 −

[
Ĥ

(k−1)
,h(θ, ν)

]
F (k) −G(k)E(k)

∥∥∥2
F

=

N∑
q=N−k+1

λq

(
P⊥[

Ĥ
(k−1)

,h(θ,ν)
]Û sWÛ

H
s

)
.

(16)
The PR-OLS-WSF DOA estimation technique is summa-

rized in Algorithm 1. We remark that the main computational

Algorithm 1 PR-OLS-WSF Algorithm

1: Initialization: Iteration index k = 0, initial jointly es-
timated DOA and Doppler frequency set Ω(0) = ∅ and
initial empty mixing matrix Ĥ

(0)
= []

2: for k = 1, . . . , N do
3: Find the azimuth angle and the Doppler frequency{

θ̂(k), ν̂(k)
}

of the k-th target according to (16).

4: Estimate the delay τ̂ (k) of the k-th target as in (15)
5: Update the estimated parameter set and the correspond-

ing estimated mixing matrix
Ω(k) = Ω(k−1) ∪

{(
θ̂(k), ν̂(k)

)}
,

Ĥ
(k)

=
[
Ĥ

(k−1)
,h

(
θ̂(k), ν̂(k)

)]
.

6: end for
7: return The estimated parameters θ̂(k), ν̂(k) and τ̂ (k) for

k = 1, . . . , N of the N targets.

complexity of the PR-OLS-WSF algorithm lies mostly in Step
3, Equation 16, where the eigenvalue decomposition of a
matrix of size LM ×LM is required for all possible azimuth
angles and Doppler frequencies. In the following, an efficient
implementation of the PR-OLS-WSF algorithm is outline,
which simplifies the aforementioned expensive spectral search.

B. Efficient Implementation

A key idea in reducing the computational complexity of
the PR-OLS-WSF algorithm. Instead of performing the full
eigenvalue decomposition on a LM × LM matrix as in (16),
we compute only a subset of k smallest eigenvalues of an
N ×N matrix by rewriting the concentrated cost function in
(16) as follows

N∑
q=N−k+1

λq

(
P⊥

[Ĥ
(k−1)

,h(θ,ν)]
Û sWÛ

H
s

)
=

N∑
q=N−k+1

λq

(
W 1/2Û

H
s P

⊥
[Ĥ

(k−1)
,h(θ,ν)]

Û sW
1/2

)
=

N∑
q=N−k+1

λq

(
M (k−1) − z̃(θ, ν)(k−1)z̃(θ, ν)(k−1)H

)
,

(17)
with the N×N matrix M (k−1) = W 1/2Û

H
s P

⊥
Ĥ

(k−1)Û sW
1/2

and the vector z̃(k−1)
ℓ = W 1/2Û

H
s

P⊥
H(k−1)h(θ,ν)

∥P⊥
H(k−1)

h(θ,ν)∥ . For faster

computation of the vector z̃(k−1)
ℓ , the Gram-Schmidt process is

applied to orthonormalize the matrix Ĥ
(k−1)

in each iteration
after the parameters of one target are estimated. In addition,
if the matrix M (k−1) admits the eigenvalue decomposition
M (k−1) = V (k−1)W (k−1)V (k−1)H, then the cost function
in (17) is expressed as

N∑
q=N−k+1

λq

(
M (k−1) − z̃(θ, ν)(k−1)z̃(θ, ν)(k−1)H

)
=

N∑
q=N−k+1

λq

(
W (k−1) − z(θ, ν)(k−1)z(θ, ν)(k−1)H

)
,

(18)
with z(θ, ν)(k−1) = V (k−1)Hz̃(θ, ν)(k−1). The eigenvalues of
the rank-one modified Hermitian matrix in (18) can efficiently
be computed using the iterative method in [17] (also refer
to [9, Th. 1]). Along the same line, the updates for V (k)

and W (k) can be efficiently computed by adopting the same
iterative procedure. If the mixing vectors h(θ, ν) for all
possible candidates azimuth angle θ and the Doppler frequency
ν are precomputed and collected in the dictionary matrix
H̄ , then the computationally efficient implementation of the
PR-OLS-WSF method is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS WITH MIMO RADAR

In this section, we evaluate the performance of our algo-
rithm using real MIMO radar data recorded in a measurement
campaign at Sony Stuttgart. Mt = 3 transmit antennas send
a TDM signal, which is then collected by a Uniform Linear
Array (ULA) of Mr = 4 receive antennas with a spacing
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Algorithm 2 Efficient Implementation of the PR-OLS-WSF
Algorithm

1: Initialization: Iteration index k = 0, initial diago-
nalizing matrix V (0) = IN , initial weighting matrix
W (0) = W , initial normalized dictionary H̄

(0)
= H̄ =[

h̄
(0)
1 , . . . , h̄

(0)
G

]
(such that each column is unit-norm)

2: for k = 1, . . . , N do
3: Find the index p such that

p = argmin
g=1,...,G

N∑
q=N−k+1

λq

(
W (k−1) − zgz

H
g

)
using the rank-one modification problem in [9, Theorem
1] (also see [17]) with zg = V (k−1)HŨ

H

s h̄
(k−1)
g and

Ũ s = Û sW
1/2. The optimal index p corresponds to

the estimated azimuth angle θ̂(k) and Doppler frequency
ν̂(k).

4: Compute the diagonalizing matrix V
(k)
mod and the di-

agonal matrix W (k) using the rank-one modification
problem
V

(k)
modW

(k)V
(k)H
mod

= W (k−1) − V (k−1)HŨ
H
s h̄

(k−1)
p h̄

(k−1)H
p Ũ sV

(k−1)

5: Update the orthogonal basis V (k) and the updated
dictionary matrix H̄

(k)
=

[
h̄
(k)
1 , . . . , h̄

(k)
G

]
as follows

H̄
(k)

= H̄
(k−1) − 1

∥h̄(k−1)
p ∥22

h̄
(k−1)
p h̄

(k−1)H
p H̄

(k−1)
.

6: Normalize the updated dictionary matrix H̄
(k) colum-

nwise.
7: Estimate the delay τ̂ (k) of the k-th target based on θ̂(k)

and ν̂(k) according to (15)
8: end for
9: return The estimated parameters θ̂(k), ν̂(k) and τ̂ (k) for

k = 1, . . . , N of the N targets.

equal to half-wavelength (d = λ/2). The antenna setup is
illustrated in Fig. 1 where also the corresponding virtual array
is displayed. The measurement consists of 901 frames. Each

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

Y / [λ]

Z
/

[λ
]

Tx Antennas
Rx Antennas
MIMO Array

Fig. 1: MIMO Array Structure

frame contains the measured signal which is reshaped into
a three-dimensional Radar Data Cube (RDC) of dimension
(K ×M × L) as depicted in Table I.
In this scenario, a radar-vehicle navigates in a parking lot with
stationary cars. The main goal is also to achieve a detection

TABLE I: Radar Data Cube Specifications

Notation Explanation Value
K Fast time samples 512
M = Mt ×Mr Number of virtual array elements 12
L Number of Pulses/Slow time samples 128

and accurate estimation of the distance, relative angle and ve-
locity corresponding to cars in front of a moving radar-vehicle.
Note that the radar sensor is placed at the front right corner
of the radar-vehicle and is oriented to sense the scene forward
in the driving direction. There is no other object moving in
the scene except for the radar-vehicle. Thus, all velocities
estimated hereinafter represent the Doppler velocity of the
radar-vehicle with respect to the detected stationary objects.
Moreover, all detection and estimation results are visualized
in the local coordinate system of the radar sensor as in Fig. 3
and Fig. 5. In order to provide a reference representation of
the scene driven, visual information is recorded by a camera
sensor placed at the middle front of the radar-vehicle as in
Fig. 2 and Fig. 4. We compare the performance of the proposed
method, i.e., PR-OLS-WSF to the Matching Pursuit (MP)
algorithm, where the parameters are sequentially estimated
using multidimensional FFT.

Fig. 2: Camera image of frame 194 at t = 6.43s
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Y
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m
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56

7

Fig. 3: Estimation result of frame 194

Fig. 2 and Fig. 4 provide camera images of the frames
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194 and 234, respectively. The detected targets obtained via
both proposed algorithms are also visualized in the local
coordinate system of the radar sensor, see Fig. 3 and Fig. 5.
For easier illustration, the targets are numbered according to
the respective camera image.
The PR-OLS-WSF algorithm takes into account not only the

Fig. 4: Camera image of frame 234 at t = 7.77s
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Fig. 5: Estimation result of frame 234

impact of previously estimated source, like the case of MP,
but also any potential contribution from remaining (N − k)
sources in each iteration. This remark explains the improved
performance of PR-OLS-WSF, which is illustrated in Fig. 3
and Fig. 5 . In Fig. 3, the PR-OLS-WSF algorithm is able to
detect two more targets than the MP algorithm. Similarly, in
Fig. 5 , PR-OLS-WSF can detect three more targets than MP.
This suggests that PR-OLS-WSF is a promising estimators in
applications where the accurate detection is crucial.

Nevertheless, the drawback of the PR-OLS-WSF algo-
rithm is higher execution time compared to the MP algo-
rithm. Despite the acceleration procedure introduced in Al-
gorithm 2, computation of specific eigenvalues is required in
the PR-OLS-WSF algorithm as in (3). More precisely, in each
iteration, the azimuth angle and Doppler frequency of one
particular target is estimated by computing a two-dimensional
spectrum and then searching for the minimum. The delay is
then estimated by a one-dimensional grid search. Furthermore,

each iteration requires additional computation to update the
dictionary matrix H̄

(k) based on the current estimation. On
the contrary, the MP algorithm only requires the computation
of a 3D FFT-based in each estimation to estimate the path
delay, angle and Doppler frequency simultaneously.

V. CONCLUSIONS

In this paper, we extend the PR-OLS-WSF algorithm of [15]
to the 3D-harmonic estimation problem in synthetic MIMO
radar. We provide a fast implementation based on eigende-
compositions of rank-one modifications of diagonal matrices
that can be efficiently computed using the rational function
approximation algorithm [17], [9]. Experimental results with
real MIMO radar measurements reveal superior resolution
capability of the proposed algorithm compared to classical
Matching Pursuit.
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