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Abstract—This paper considers the localization problem in a
5G-aided global navigation satellite system (GNSS) based on real-
time kinematic (RTK) technique. Specifically, the user’s position
is estimated based on the hybrid measurements, including GNSS
pseudo-ranges, GNSS carrier phases, 5G angle-of-departures,
and 5G channel delays. The underlying estimation problem
is solved by steps that comprise obtaining the float solution,
ambiguity resolution, and resolving the fixed solution. The
analysis results show that the involvement of 5G observations
can enable localization under satellite-deprived environments,
inclusive of extreme cases with only 2 or 3 visible satellites.
Moreover, extensive simulation results reveal that with the help of
5G observations, the proposed algorithm can significantly reduce
the estimation error of the user’s position and increase the success
rate of carrier-phase ambiguity resolution.

Index Terms—GNSS, 5G/6G, localization, RTK, ambiguity
resolution.

I. INTRODUCTION

Accurate localization has become an essential requirement
for a broad variety of applications, such as intelligent trans-
portation, precision agriculture, surveying and mapping, and
smart cities [1]–[3]. The development of advanced unmanned
systems in recent years motivates a further increase in the
demand for high positioning accuracy and reliability [4], [5].
Although plenty of navigation techniques have been developed
for outdoor positioning, global navigation satellite system
(GNSS)-based positioning is the most prevalent thanks to its
advantages of high accuracy, global coverage, low cost, and
all-weather capability.

Real-time kinematic (RTK) is a widely-used GNSS-based
positioning technique. In RTK positioning, a GNSS base
station (BS) installed at a fixed position and the user’s GNSS
receiver collect GNSS observations simultaneously. The BS
transmits its observation (the pseudo-range and carrier-phase)
together with its accurate position to the user via a suitable
communication link [6]. The involvement of GNSS carrier-
phase observations, differential correction, and ambiguity res-
olution enables RTK positioning to provide centimeter-level
accuracy in open-sky scenarios [7], [8]. However, the per-
formance of RTK in deep urban environments is not up to
par with the high-accuracy requirements for many dynamic
systems. In such environments, buildings can block, weaken,
reflect, and diffract the GNSS signals, which may result in an
insufficient number of visible satellites and observations with
severe multipath effects [9]. Providing reliable navigation in

these situations is a daunting task that is yet to be accom-
plished.

To address the limitations of RTK positioning, fusing vari-
ous sensor types (including inertial navigation systems, optical
sensors, Lidar, etc.) with GNSS has been explored [10],
[11]. Recently, with the emergence of the fifth generation
(5G) wireless systems which are expected to provide high-
precision localization services, many promising results about
5G localization have been reported in the literature [12]–
[15]. To take advantage of these emerging technologies, GNSS
augmentation with 5G has been considered. Examples of such
works include hybrid GNSS-5G positioning based on device-
to-device measurements [16], neural network fingerprinting
and GNSS data fusion [17], multi-rate 5G and GNSS data
fusion [18], and a few more [19], [20].

This paper utilizes 5G observations to aid RTK positioning
to overcome its shortcomings in GNSS-deprived environments.
Our main contribution is proposing a method to leverage
5G observations in GNSS carrier-phase ambiguity resolution,
especially in harsh environments with poor satellite visibility.
We formulate the localization problem by jointly using GNSS
and 5G observations. The problem is solved through three
steps, namely, computing a float solution, ambiguity resolu-
tion, and computing the fixed solution. In addition, we perform
a localization availability analysis which demonstrates that the
introduction of the 5G observations can enable localization in
extreme scenarios with only 2 or 3 visible satellites.

II. SYSTEM MODEL

We consider a 5G-aided RTK positioning system with N
visible satellites, a user equipment with an unknown position,
a GNSS BS with a known position, and L 5G BSs with known
positions and orientations. A 5G radio link is established
between the GNSS BS and the user. The user can receive
both GNSS and 5G signals. An example of the considered
system with N = 3 and L = 1 is illustrated in Fig. 1. For
clarity, we use superscripts (·)n to denote the variables related
to the n-th satellite, subscripts (·)u, (·)b and (·)B represent
the variables related to the user, the GNSS BS and the 5G
BS, respectively. We denote the user position as pu ∈ R3 and
the position of the GNSS BS as pb ∈ R3. The position and
orientation of the `-th 5G BS are denoted as pB,` ∈ R3 and
RB,` ∈ SO(3), respectively. Here SO(3) denotes the special
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Fig. 1. Illustration of a 5G-aided RTK positioning system with three satellites
and one 5G BS.

orthogonal group of three-dimensional (3D) rotation matrices
SO(3) = {R|RTR = I3,det(R) = 1}.

A. RTK Model

The main GNSS observations from the n-th satellite re-
ceived by the user are the pseudo-range Pn

u and carrier-phase
φnu. These observations are often modeled as

Pn
u = ρnu + Inu + Tn

u + c (δtu − δtn) + εnu, (1)
ϕn
u = ρnu + λKn

u − Inu + Tn
u + c (δtu − δtn) + ςnu , (2)

where ρ denotes the geometrical range between the GNSS
receiver and the satellite, λ represents the wavelength of the
GNSS carrier, K represents the carrier-phase ambiguity, I is
the ionospheric delay, T is the tropospheric delay, δt is the
receiver or satellite clock bias, and ε and ς lump errors from
other sources together with additive noise.

RTK positioning takes advantage of differencing operations
to virtually cancel common errors between the GNSS receivers
and satellites. First, the user’s and the GNSS BS’s measure-
ments collected simultaneously are differenced to eliminate
the satellite clock bias and atmospheric delays, resulting in
the single-difference (SD) model [21]:

Pn
ub = Pn

u − Pn
b = ρnub + cδtub + εnub,

ϕn
ub = ϕn

u − ϕn
b = ρnub + λKn

ub + cδtub + ςnub.

Defining the unit direction vector of the satellite-user line-of-
sight (LOS) as hn

u, we can obtain the following relationship
based on the far-field assumption:

ρnub = ρnu − ρnb = (hn
u)T(pu − pb). (3)

Subsequently, the SD observations are again differenced over
pairs of satellites to remove the receiver clock bias, which
yields the double-difference (DD) model:

Pnm
ub = Pn

ub − Pm
ub = (hn

u − hm
u )

T
(pu − pb) + εnmub ,

ϕnm
ub = ϕn

ub − ϕm
ub = (hn

u − hm
u )

T
(pu − pb) + λKnm

ub + ςnmub .

Without loss of generality, we take the 1-st satellite as a
reference and concatenate all the DD observations as

p = [P 21
ub , P

31
ub , . . . , P

N1
ub ]T ∈ RN−1, (4)

φ = [ϕ21
ub, ϕ

31
ub, . . . , ϕ

N1
ub ]T ∈ RN−1. (5)

The noise-free observation model of the RTK can be summa-
rized as

y1 =

[
p
φ

]
=

[
H
H

]
︸︷︷︸
B

pu +

[
0
λI

]
︸︷︷ ︸

C

k−
[
H
H

]
pb︸ ︷︷ ︸

b

∈ R2N−2, (6)

where

H =
[
(h2

u − h1
u), . . . , (hN

u − h1
u)
]T ∈ R(N−1)×3,

k =
[
K21

ub ,K
31
ub , . . . ,K

N1
ub

]T ∈ RN−1.

B. 5G Model

Besides the GNSS measurements, the user can receive
5G signals from L BSs. For simplicity, we assume that
an efficient channel estimator is applied and the angle-of-
departures (AODs) {θ`}L`=1 and channel delays {τ`}L`=1 are
available as the 5G observations [14]. Note that each AOD
θ` comprises an azimuth angle θaz

` and an elevation angle θel
` .

The 5G observation model is given by

θaz
` = atan2

(
[RT

B,`(pu−pB,`)]2, [R
T
B,`(pu − pB,`)]1

)
, (7)

θel
` = asin

(
[RT

B,`(pu − pB,`)]3/‖pu − pB,`‖2
)
, (8)

τ` =
‖pB,` − pu‖2

c
+ ∆, (9)

where [·]i denotes the i-th entry of a vector, c is the speed
of light, and ∆ is the unknown clock bias between the 5G
BS and the user. We further stack these 5G observations
as θaz = [θaz

1 , θ
az
2 , . . . , θ

az
L ]T, θel = [θel

1 , θ
el
2 , . . . , θ

el
L]T, τ =

[τ1, τ2, . . . , τL]T, and finally in one vector as

y2 = [(θaz)T, (θel)T, τT]T ∈ R3L. (10)

C. Problem Formulation

For a joint 5G-RTK localization formulation, suppose we
have two noisy observation vectors ŷ1 and ŷ2, and the
corresponding covariance matrices are available and denoted
as Qŷ1

and Qŷ2
. The unknown parameters are defined as

x , [pT
u ,k

T,∆]T ∈ RN+3. (11)

Based on the developed RTK model (6) and 5G model (7)–(9),
we can construct the following optimization problem

arg min
pu∈R3,k∈ZN−1,∆∈R

ε‖ŷ1−Ax+b‖2W1
+(1−ε)‖ŷ2−y2(x)‖2W2

,

(12)
where ε ∈ [0, 1] is a weighting factor, and ‖(·)‖2W ,
(·)TW(·). The matrix A is defined as

A ,

[
H 0 0
H λI 0

]
∈ R(2N−2)×(N+3), (13)

and the nonlinear function y2(x) are represented by (7)–(9).
In this work, we use the weight matrices W1 and W2 as

W1 = Q−1
ŷ1
/‖Q−1

ŷ1
‖F, W2 = Q−1

ŷ2
/‖Q−1

ŷ1
‖F, (14)

where ‖ · ‖F stands for the Frobenius norm.
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III. METHODOLOGY

This section proposes a gradient-based solution for (12) and
localization availability is discussed. To be clear, we start from
the typical RTK routine with integer least-squares (ILS), based
on which the proposed algorithm is developed.

A. ILS-based RTK Solution

According to the standalone RTK model (6), we have the
following (mixed) ILS problem [21]:

arg min
pu∈R3,k∈ZN−1

‖y1 −Bpu −Ck + b‖2W1
. (15)

It is not straightforward to solve (15) due to the presence of
the integer constraint on k. To simplify the problem, one can
first ignore the constraint to obtain a float solution as a starting
point to perform the integer search. Based on the least-squares
(LS) estimation principle, the float solution reads[

p̂u

k̂

]
=

[
BTW1B BTW1C
CTW1B CTW1C

]−1 [
BTW1 (y1+b)
CTW1 (y1+b)

]
, (16)

with the covariance matrix given by[
Qp̂u

Qp̂uk̂

Qk̂p̂u
Qk̂

]
=

[
BTW1B BTW1C
CTW1B CTW1C

]−1

. (17)

The objective function in (15) can be decomposed into three
easy-to-evaluate terms as [22]

‖y1−Bpu−Ck+b‖2W1

=‖y1−Bp̂u−Ck̂+b‖2W1
+‖k̂−k‖2

Q−1

k̂

+‖p̂u(k)−pu‖2Q−1
p̂u(k)

,
(18)

where p̂u(k) represents the LS solution conditioned on k. That
is

p̂u(k) = p̂u −Qk̂p̂u
Q−1

k̂

(
k̂− k

)
, (19)

and the corresponding covariance matrix is Qp̂u(k) = Qp̂u
−

Qp̂uk̂
Q−1

k̂
Qk̂p̂u

. The first term on the right-hand side of (18)
is given in a close-form. The last term of (18) is irrelevant to
the integer search and can be eliminated [22]. Therefore, the
optimization (15) reduces to

ǩ = arg min
k∈ZN−1

‖k̂−k‖2
Q−1

k̂

, (20)

The LAMBDA method is usually utilized to resolve the
unknown integers in (20) because of its high computational
efficiency and capacity to maximize the success rate [22].
Once the integer ambiguities are resolved, the updated receiver
position is given by p̌u = p̂u

(
ǩ
)
.

B. The Proposed Hybrid GNSS-5G Localization Algorithm

1) Initialization: Since (12) is a non-convex optimization
problem, proper initialization is essential to avoid local min-
ima. In general, one can consider using the float RTK solution
in (16) as an initial user position and float carrier-phase
ambiguities, and the clock bias can be randomly initialized
from a uniform distribution as ∆̃0 ∼ U(0, Tc) with Tc is the
clock cycle of the user, that is

x0 = [p̂T
u , k̂

T, ∆̃0]T. (21)

However, the standalone RTK solution may not be available
in some cases, as will be discussed in the next subsection.
Under these circumstances, we can initialize based on the 5G
observations using

x0 = [p̂T
u,0, k̂

T
0 , ∆̃0]T. (22)

Here, p̂u,0 is estimated as

p̂u,0 =
1

L

L∑
`=1

(pB,` + cτ`RB,`t`) , (23)

where t` =
[
cos(θaz

` ) cos(θel
` ), sin(θaz

` ) cos(θel
` ), sin(θel

` )
]T
.

The float carrier-phase ambiguities k̂0 can be estimated based
on the LS solution of (15) given pu = p̂u,0, i.e.,

k̂0 =
(
CTW1C

)−1
CTW1 (y1−Bp̂u,0+b) . (24)

2) Float Solution: With proper initialization, we can obtain
a float solution of (12) by ignoring the integer constraint on
k. In this case the problem (12) is reduced to

arg min
x∈RN+3

ε‖ŷ1−Ax+b‖2W1
+(1−ε)‖ŷ2−y2(x)‖2W2

. (25)

A gradient-based algorithm (such as gradient descent) can be
applied to solve (25). We define f1 , ‖ŷ1−Ax+b‖2W1

and
f2 , ‖ŷ2−y2(x)‖2W2

. The first-order derivatives ∂f1/∂x and
∂f2/∂x for the iterative algorithm are given by

∂f1/∂x = −2ATW1(ŷ1 −Ax + b), (26)

∂f2/∂x = −2

(
∂y2(x)

∂x

)T

W2 (ŷ2 − y2(x)) . (27)

The expressions of ∂y2(x)/∂x can be collected from the
following derivatives:

∂θaz
` /∂pu = s1

(uT
1 t`)RB,`u2 − (uT

2 t`)RB,`u1

(uT
1 t`)

2
,

∂θel
` /∂pu = s2

(
RB,`u3

d`
− (uT

3 t`)(pu − pB,`)

d3
`

)
,

∂τ`/∂pu =
pu − pB,`

cd`
,

∂τ`
∂∆

= 1,

where

u1 = [1, 0, 0]T, u2 = [0, 1, 0]T, u3 = [0, 0, 1]T,

d` = ‖pu − pB,`‖2, t` = RT
B,`(pu − pB,`),

s1 =

[
1 +

(
uT

2 t`
uT

1 t`

)2
]−1

, s2 =

[
1−

(
uT

3 t`
d`

)2
]− 1

2

.

3) Ambiguity Resolution: Suppose a float solution x̂ =
[p̂T

u , k̂
T, ∆̂]T is obtained by solving (25). The integer carrier-

phase ambiguity resolution step can be achieved by the same
routine as Subsection III-A, i.e., solving (20) using, e.g., the
LAMBDA methods. Therefore, the integer ambiguity estimate
is obtained as ǩ.
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TABLE I
DEMONSTRATION OF THE LOCALIZATION AVAILABILITY.*

L

(no, nu) N
0 1 2 3 4 5

0 (0, 3) (0, 3) (2, 4) (4, 5) (6, 6) (8, 7)

1 (3, 4) (3, 4) (5, 5) (7, 6) (9, 7) (11, 8)

* Here no and nu represent the number of observations and unknowns,
respectively. The nonlocalizable cases (no < nu) are marked by a
strikethrough.

4) Fixed Solution: After the ambiguity resolution, the fixed
solution can be obtained through the following optimization:

arg min
pu∈R3,∆∈R

ε‖ŷ1−Ax+b‖2W1
+(1−ε)‖ŷ2−y2(x)‖2W2

, (28)

with a fixed k = ǩ. The solution is returned as p̌u and ∆̌.
Finally, we have the joint estimate as x̌ = [p̌T

u , ǩ
T, ∆̌]T.

C. Localization Availability Analysis

Generally, the RTK technique requires at least 4 satellites
to perform localization. However, by incorporating the 5G
observations, this constraint can be further relaxed. The lo-
calization availability can be determined by comparing the
dimensionality of the observations and that of the unknowns.
In general, the number of observations should be equal to or
greater than the number of unknowns to make the estimation
problem solvable with a unique solution. In this paper, we
name the cases with the localization uniqueness (i.e., the
observations’ dimension is not less than unknowns) as the
localizable cases, otherwise nonlocalizable cases. Taking the
case where N = 3 and L = 1 as an example, we can check the
unknown x ∈ R6 in (11) and the observations [yT

1 ,y
T
2 ]T ∈ R7

in (6) and (10). As the dimension of the observations is higher
than the unknowns, the user is localizable when N = 3 and
L = 1. A summary of the localization availability in different
scenarios is presented in Table I. We can see that leveraging
5G observations enhances the localization availability. For
example, with a single 5G BS, localization is available in the
cases of N = 2 and N = 3. Note that having 5G observations
from two or more BSs is sufficient to perform localization
regardless of GNSS availability.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

The simulations are implemented using the actual satellite
orbit information in the GPS Yuma Almanacs file on January
01, 2023. The positions and the orientations of the 5G BSs are
generated randomly within a 50 m × 50 m × 50 m space. We
assume the observations y1 = [pT,φT]T and y2 to be contam-
inated with zero-mean additive Gaussian noises controlled by
their standard deviations. We set the standard deviation of the
carrier-phase measurements equal to a value σ and that of the
pseudo-range data equal to 100σ. The standard deviation of the
noise of y2 is fixed based on the Fisher information matrix of
the 5G channel estimation step, as detailed in, e.g., [23]–[25].

1 2 3 4
10−2

10−1

100

101

Noise standard deviation σ [mm]

R
M

SE
of

p̂
u

[m
]

N = 2, L = 1

N = 3, L = 1

N = 5, L = 0

N = 5, L = 1

N = 7, L = 0

N = 7, L = 1

Fig. 2. Evaluation of positioning RMSE versus the noise standard deviation of
the carrier-phase noise for different numbers of satellites N and L = {1, 0}.

In the cases where L = 0, the results are obtained from the ILS
solution in Subsection III-A. In all other cases, the proposed
method developed in Subsection III-B is used with a weighting
factor ε = 0.6. The iterative procedure for solving (12) is
implemented using the Manopt toolbox [26]. All the involved
root mean square errors (RMSEs) are computed through 500
Monte Carlo simulations.

B. Results Analysis

Fig. 2 presents the RMSE of estimated p̂u versus the noise
standard deviation σ for different number of satellites N and
fixed L = {1, 0}. In general, we can see that the RMSE
increases as the noise level increases. By comparing the cases
of L = 0 (dashed curves) and L = 1 (solid curves) for the
same N , we observe that adding one 5G BS offers a significant
reduction in estimation error, demonstrating that the utilization
of the 5G observations can provide a remarkable improvement
in localization performance. Moreover, it is noted that with
the 5G observations involved, localization in the cases where
N = 2 and N = 3 become not only localizable but also
with higher accuracy than the case with 5-satellite and no
5G aid (dashed blue curve). In addition, by comparing the
cases of different N with the same L, we observe that the
more satellites available, the lower the estimation error is. It
is also noted that the performance of the cases N = 2 and
N = 3 is very close, indicating that with insufficient satellites
(N < 4), the location information is mainly derived from the
5G observations and changing the number of satellite within
N < 4 cannot boost performance significantly.

Fig. 3 plots the RMSE of p̂u versus the carrier-phase
noise standard deviation σ for different numbers of 5G BSs
L and fixed N = {5, 7}. The results show that for the
same number of satellites, the more 5G BSs we deploy,
the better localization performance we obtain, especially for
L ∈ {0, 1, 2}. However, when more than two 5G BSs are
available, continuing to increase the number of 5G BSs may
not significantly improve performance.

Finally, we evaluate the success rate of carrier-phase am-
biguity resolution, an important performance indicator for
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1 2 3 4
10−2

10−1

100

101

Noise standard deviation σ [mm]

R
M

SE
of

p̂
u

[m
]

N = 5 , L = 0 N = 7 , L = 0

N = 5 , L = 1 N = 7 , L = 1

N = 5 , L = 2 N = 7 , L = 2

N = 5 , L = 3 N = 7 , L = 3

Fig. 3. Positioning RMSE versus carrier-phase noise standard deviation for
different numbers of 5G BS L ∈ {0, 1, 2, 3} and different numbers of
satellites N ∈ {5, 7}).

TABLE II
SUCCESS RATE OF THE CARRIER-PHASE AMBIGUITY RESOLUTION

L

N
2 3 4 5 6 7

0 0.00% 0.00% 7.02% 54.39% 94.66% 99.99%

1 36.08% 45.17% 51.24% 73.58% 99.06% 100.00%

GNSS-based positioning. Performance is computed from
10000 Monte Carlo trials for each case. The results are
shown in Table II. It is clearly visible that the introduction
of 5G observations can increase the ambiguity resolution
success rate. Additionally, in general, access to more satellite
observations is also helpful.

V. CONCLUSION

This paper formulated, analyzed, and solved a 5G-aided
GNSS localization problem in satellite-deprived environments.
A novel gradient-based algorithm, coupled with a proposed
ambiguity resolution method, is applied to estimate the user’s
location using GNSS and 5G observations simultaneously. The
presented results reveal that the proposed approach enhances
localization accuracy and GNSS ambiguity resolution success
rates, especially in scenarios with extremely limited satellite
visibility.
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