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Abstract—Terrain-aided navigation is often used for unmanned
aerial vehicles. This method consists in estimating the current
dynamics and position of a vehicle by matching terrain profiles
obtained by exteroceptive sensors with onboard maps. Whereas
the resolution of the map plays a crucial role in minimising
positioning errors, accurate reference maps are difficult to upload
when transmission restrictions are experienced. In this context
of sparse communications, we propose to model the maps by
Gaussian Processes completely characterised by a mean function
that can be interpreted as a low resolution approximation of
the map and a covariance kernel to account for the spatial
correlations. The objective of this paper is then to perform
simultaneous localisation and mapping by leveraging radio-
altimetric data. The inference is carried out by a non-linear
Bayesian filter that takes advantage of the conditional linear
Gaussianity of the state space model: the Rao-Blackwellised
particle filter.

Index Terms—Terrain-Aided SLAM, Gaussian Processes, Par-
ticle Filtering

I. INTRODUCTION

In GPS-denied navigation [1], unmanned aerial vehicles
(UAV) only take advantage of onboard sensors. Terrain-Aided
Navigation (TAN) consists in estimating the current dynamics
and position of a vehicle by matching terrain profiles obtained
by exteroceptive sensors with onboard maps. Usually a Digital
Elevation Map (DEM) is carried onboard the vehicle.

In this context, we consider a radio-altimeter based TAN
scenario where transmission restrictions are experienced. For
instance, the size and resolution of the uploaded reference map
can be constrained when the vehicle is sent to successive areas
without a pre-established schedule. Consequently, since we
cannot dispose of a high resolution elevation map onboard
during the flight, we propose to represent the elevation map
by a parametric statistical model, which is plugged into the
navigation inference process. More precisely, the altimetric
map is modeled using a Gaussian Process (GP) [2]. A GP is
completely characterised by a mean function and a covariance
kernel. The former can be interpreted as a low resolution
approximation of the map, while the latter accounts for the
spatial correlations.

Our idea is then to solve the navigation problem by using
a Simultaneous Localisation and Mapping (SLAM) [9], [10]
approach. More precisely, we jointly estimate a marginalised
version of the GP (i.e., some altitudes at fixed x-coordinates),
and the position and dynamics of the vehicle. The inference
can be carried out by a non-linear Bayesian filter: the Rao-
Blackwellised (or marginalised) Particle Filter (RBPF [4], [5]),
that takes advantage of the conditional linear Gaussianity of
the navigation model. Such a combination of GP and RBPF
has been previously proposed for bathymetric SLAM [12], for
extended target tracking, [3], and more closely related to our
work, for magnetic field SLAM [6]–[8]. However, in [7], [8],
the magnetic map is parameterised by a significant number of
parameters, and the underlying model is linear as the authors
consider a linear GP kernel. Also, since no prior information
is exploited, the GP parameters have to be updated over time.

The remainder of the paper is organised as follows. A short
introduction on GPs is presented in Section II. Sections III
and IV are dedicated to the methodology: in Section III,
the GP-based map model for altimetric TAN is discussed,
while Section IV introduces our SLAM state space model
and the inference algorithm. Section V presents the results
in a navigation scenario where the UAV trajectory is planar.
Section VI concludes the paper.

II. GAUSSIAN PROCESS BACKGROUND

A GP [2] is a stochastic process suitable for modelling
correlated variables. It can be considered as a Gaussian distri-
bution over functions. The GP is completely characterised by
its mean function µ (u) and covariance kernel k (u, u′). Let
f(u) be a vector-valued GP, we denote:

f(u) ∼ GP (µ(u), k (u, u′)) (1)

where u is an input, and

µ(u) = E [f(u)] (2a)

k (u, u′) = E
[
(f(u)− µ(u)) (f(u′)− µ(u′))

>
]

(2b)
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A GP is a generalisation of a multivariate Gaussian probabil-
ity distribution in the sense that the function values evaluated
for any finite collection of inputs u = [u1, . . . , uN ]> are
normally distributed: f (u1)

...
f (uN )

 ∼ N (µ(u), K(u,u)) (3)

where µ(u) = [µ(u1), . . . , µ(uN )]> and

K(u,v) =

k(u1, v1) ... k(u1, vNf )
...

...
k(uN , v1) ... k(uN , vNf )

 (4)

with v = [v1, . . . , vNf ]>, andN (m,P ) denoting the Gaussian
distribution of mean m and covariance matrix P .

The GP model can be used to infer an unknown function
by exploiting observed data. Let us consider the following
measurement model, for k = 1, . . . , N :

zk = f(uk) + εk, εk ∼ N (0, R) (5)

where zk is a noisy measurement of the function f(.) for
the input uk, and εk is an independent and identically dis-
tributed (i.i.d.) Gaussian noise. The set of measurements
z = [z1, . . . , zN ]> can be used to learn the function values
f = [f(v1), . . . , f(vNf )]> for new inputs v. Their joint
distribution is:[

z
f

]
∼ N

([
µ(u)
µ(v)

]
,

[
K(u,u) + IN ⊗R K(u,v)

K(v,u) K(v,v)

])
(6)

where ⊗ denotes the Kronecker product. From equation (6)
one can deduce the conditional distribution (see [2] for more
details):

f |z ∼ N (µ(v) +A (z− µ(u)), P ) (7)

where

A = K(v,u) (K(u,u) + IN ⊗R)
−1 (8a)

P = K(v,v)−AK(u,v) (8b)

The equations (7) and (8) are commonly referred to as the
GP regression equations [2].

III. GAUSSIAN PROCESS BASED ALTIMETRIC MAP
MODEL FOR TERRAIN-AIDED NAVIGATION

A. Altimetric terrain-aided navigation

The radar-altimeter measures the distance between the ve-
hicle and the terrain. The UAV is assumed to have a planar
motion described in a local frame of reference with axis x
and z as represented in Figure 1. Let us denote pc,xk the x-
coordinate and pc,zk the z-coordinate (altitude) of the vehicle
at time k. The measurement model is given by:

yk = pc,zk − DEM(pc,xk ) + vk (9)

where vk is a centered white Gaussian noise of known variance
σ2
R. The DEM is a non-linear function taking as input the

Sea level
x-coordinate

Ground level

pc,zk yk

map(pc,xk )

Fig. 1. Measurement model for TAN method.

position (i.e., the x-coordinate) and yielding the corresponding
terrain elevation.

The TAN method is based on onboard maps of the over-
flown terrain. When grid-based DEMs are considered, the
accuracy of the navigation solution notably depends on the
resolution of the latter. For the transmission-limited scenario
described in Section I, high resolution DEMs are excluded.
Thus, we propose to replace the DEM by a GP statistical
model (see Section II).

B. Statistical map model for TAN

As suggested above, we model the reference map by a GP,
where only the hyper-parameters of the mean and covariance
functions are transmitted. The transmission load depends on
the choice of these functions and the associated parameters.
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Fig. 2. DEM-based terrain profile (black solid line), and a Gaussian realisation
(blue translucent line) with a polynomial mean of 30 degrees (red solid line)
and a SE covariance (red dashed lines, 3-σ interval around the mean).

Several options of mean function have been proposed in
the GP literature [2] (e.g., polynomial, spline, or deep neural
network). The covariance function is generally a squared
exponential (SE) kernel with three hyperparameters that can
be estimated by Maximum Likelihood (ML) [2], [8]. Figure 2
shows a true terrain profile (black line) and a realisation of
a GP-based approximation for a polynomial mean of degree
30 and a SE covariance with three hyperparameters estimated
by ML (blue line). A preliminary study on fitting from high
resolution DEM data must be carried out in anticipation of
the proposed GP-based method, in order to find the mean and
covariance functions which contain enough terrain information
without being too costly in our reduced transmission scenario.
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In the following, we take advantage of this statistical
model to perform SLAM. For that purpose, we estimate
a marginalised GP at various discretised locations, while
inferring the position and motion of the UAV. To build the
corresponding state space representation, we use the regression
equations (7) and (8). Let us emphasize that the classical
TAN method is a special case of this GP-based SLAM model.
Indeed, by taking a mean function equal to an approximation
of the true terrain (e.g., DEM) and an impulsive covariance
kernel (i.e., considering no spatial correlation between the
elevation values), we retrieve the classical TAN measurement
model (9). Taking into account spatial correlations thanks
to the GP formalism makes it possible to develop a SLAM
approach that is expected to outperform a coarse map based
TAN. In practice, this only requires the storage of three extra
parameters, as the kernel is parametric.

IV. SLAM STATE SPACE MODEL AND INFERENCE

In this section, we will derive the state space model,
consisting of the dynamic equation, the measurement equation
and the initial prior density. The interest of the SLAM is to
retrieve information on the vehicle position by correlating it
with the elevations of chosen reference locations. For that
purpose, the vehicle state, denoted xck, is augmented with m
unknown elevations given for m fixed x-coordinates denoted
pm,xk = {pi,xk }i=1:m. The elevations are gathered in a vector
hmk = {hik}i=1:m, leading to the following overall state vector,
at time k:

xk = [xck, h
m
k ] (10)

with the vehicle state given by:

xck = [pc,xk , pc,zk , vc,xk , vc,zk ]
T (11)

where pc,xk is the x-coordinate (m), pc,zk the z-coordinate (m),
and vc,xk and vc,zk are respectively the horizontal and the
vertical velocities (m.s−1).

A. Motion model
The vehicle dynamic is described by the following quasi-

constant velocity model [15]:

xck+1 = F c xck + εck (12)

where εck ∼ N (0, Qc) is i.i.d, and

F c =

(
I2 ∆t I2
02 I2

)
, Qc = σ2

q

(
∆3
t/3 I2 ∆2

t/2 I2
∆2
t/2 I2 ∆t I2

)
(13)

In equation 13, σq stands for the standard deviation of the
acceleration.

In the present work, for the sake of simplicity, we choose
to keep the m x-coordinates unchanged over time pm,xk . Thus,
the dynamic of the m unknown elevations is constant:

hmk+1 = hmk (14)

Finally, we build an augmented description of the dynamics
together with the initial a priori density:

xk+1 = F xk + εk, εk ∼ N (0, Q) (15a)
x0 = N (m0, P0) (15b)

where

F =

(
F c 0m
0m Im

)
, Q =

(
Qc 02×m

0m×2 0m×m

)
(16a)

m0 =

[
mc

0

µ (pm,x0 )

]
, P0 =

(
P c0 02×m

0m×2 K (pm,x0 ,pm,x0 )

)
(16b)

where µ and K are respectively the mean vector and covari-
ance matrix of the prior marginalised GP.

B. Measurement model

The measurement equation expresses the relationship be-
tween the vehicle state and the elevations. It can be obtained by
using the GP regression equations (7) and (8) (see Section III).
It takes the form:

yk = pc,zk − [H (hmk − µ (pm,xk )) + µ (pc,xk )] + v′k (17)

where v′k ∼ N (0, σ2
R + σ2

Rm), and

H = Kc,m
k (Km,m

k )
−1 (18a)

σ2
Rm = k(pc,xk , pc,xk )−Kc,m

k (Km,m
k )

−1
(Kc,m

k )
T (18b)

with Kc,m
k , K(pc,xk ,pm,xk ), and Km,m

k , K(pm,xk ,pm,xk ).
Due to the GP, the noise should be correlated over time, but,
based on the same assumption as in [3], we don’t take into
account this dependency.

C. Inference algorithm

From the state space model (15)-(17) derived in the previous
sections, it is possible to compute the posterior distribution of
the state by using standard inference techniques. In this work,
the inference is carried out by the RBPF [4], [5]. The RBPF is
a variance reduction method for conditionally linear Gaussian
models. The principle is to separate the state variables into
two groups. The non-linear part is dealt with a particle filter,
thereafter a Regularised Particle Filter [14] (RPF), while a
Kalman filter is applied to the conditionally linear part. In
this work, the non-linear part is the vehicle state (position and
velocity) and the conditionally linear part is composed of the
elevations.

The RPF is based on kernel estimation approaches, which
provides more accuracy by considering mixtures of weighted
bounded kernels. The kernel and its associated bandwidth
parameter are chosen to minimise the Mean Integrated Square
Error (MISE) between the true conditional density and the
corresponding regularised empirical density. When all the
particles have the same weight, which is the case immediately
after the resampling step, the optimal kernel is the Epanech-
nikov kernel [14].

As for the implementation, the theoretical load in terms
of total number of floating point operations for the RBPF
is provided in [16] assuming linear dynamics. The costs
introduced by the proposed measurement equation (17) are
limited, as the matrix Km,m

k remains the same over time and
over the particles, and therefore is inverted only once. Since
the complexity is polynomial with respect to the number of
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particles, the computation can be performed in real-time on
Graphics Processing Unit. Furthermore, particle filter opera-
tions are highly parallelisable in practice [17], making them
suitable for real-time applications.

V. APPLICATION

The reference map and the generation of the UAV trajectory
are described in Section V-A. The choice of the GP mean
and covariance functions are discussed in Section V-B. The
simulation parameters are summarised in Section V-C. Finally,
the results are presented in Section V-D.

A. Reference trajectory and map

The reference trajectory of the UAV is simulated using the
state model (12). Thus, as illustrated by the red solid line
in Figure 3, the vehicle follows a quasi uniform rectilinear
motion. The reference DEM [13] is extracted from the Shuttle
Radar Topography Mission (SRTM), and is represented by
the black solid line in Figure 3. The vehicle flies over a
steep terrain profile with significant elevation changes and
ambiguities, which is expected to make the navigation task
difficult.

B. GP-based measurement models

The measurement model is detailed in Section IV-B. The
mean function considered for the GP-based SLAM method is
a polynomial function of degree 30, as illustrated in Figure 2.
The mean parameters are estimated by a least-squares fit. The
chosen GP covariance function is the Squared Exponentiel
(SE) kernel, which is parameterised by three hyperparameters:
the length-scale lc, the signal variance σ2

f , and the noise
variance σ2. The SE kernel expression is:

Kθ(u, v) = σ2
f exp

(
− 1

2 l2c
|u− v|2

)
+ σ2 δuv (19)

where θ = [lc, σf , σ], and δuv is the Kronecker delta function,
i.e., δuv = 1 if u = v, and 0 otherwise. The hyperparameters
of the GP covariance function are estimated by ML and are
approximately equal to θ ≈ [1000, 100, 10].

C. Parameters

The rest of the parameters is given in Table I. For the RPF
inside the RBPF, the regularisation bandwidth parameter of
the Epanechnikov kernel [14] is also provided in Table I.

D. Results: a comparison between a standard TAN and our
SLAM approach

In order to evaluate the performance of the proposed SLAM
approach, we compare it to a standard TAN formulation. The
TAN method is implemented using an RPF [14], where only
the vehicle state vector xck is estimated. In this scenario, a
high-resolution DEM is carried onboard, thus the RPF yields
very accurate estimates as illustrated by the blue translucent
line that follows the true trajectory (red solid line) in Figure 3.

TABLE I
SIMULATION SETTINGS.

Sampling period ∆t = 6 s
Number of altimetric measurements 700
Number of elevations to estimate m = 100
Number of particles N = 2000
Resampling threshold Nth = 0.75 N
Regularisation bandwidth parameter µ = 0.3

Initial position [120000, 5000]>m
Initial velocity [100, 0]> km/h
Initial uncertainty in position (st.d.) [500, 5]m
Initial uncertainty in velocity (st.d.) [0.5, 0.05]m/s
Process noise (st.d.) σq = 0.01m/s
Measurement error (st.d.) σR = 5m
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Fig. 3. True vehicle trajectory (red solid line), and three estimated trajectories:
the one estimated by a RPF (blue translucent line), a RBPF (green solid line),
and a RBPF trajectory averaged over 35 Monte Carlo runs (orange solid line).

To achieve this ideal navigation, the UAV must receive
a DEM of 3181 map points (x and z coordinates). In the
proposed SLAM approach, a trade-off is made between the
amount of data to be transferred and the accuracy of the
navigation. For our choice of GP mean and covariance func-
tions, it only requires the transmission of 33 parameters. As
a counterpart, the estimation of the vehicle state is slightly
degraded, which represents for the z-coordinate a mean error
of 60m for 35 Monte Carlo runs. Nevertheless, the trajectory
obtained by the RBPF, e.g., the green solid line, still follows
the reference trajectory represented by the red solid line in
Figure 3. It should be noted that the RBPF exhibits a stable
behavior in the sense that, whatever the noise realisations,
the estimated trajectory remains close to the true one. It is
confirmed by the trajectory averaged over 35 Monte Carlo
runs, and depicted in the orange solid line.

Besides providing a satisfying navigation solution, the pro-
posed SLAM method uses the spatial correlations captured
by the GP to refine the estimation of some elevations. For
a Monte Carlo run, the estimation of the elevations, at three
different steps of the UAV trajectory, is shown in Figure 4. The
spatial correlation captured by our GP-based map approxima-
tion allows us to estimate with precision only the elevations
underneath the UAV trajectory depending on the SE kernel
length-scale. Indeed, the 3-σ interval narrows around the x-
estimate of the UAV as it navigates.

833



0

400

800

1200

50 100 150 200 250

a
el

ev
at

io
n

(m
)

x-coordinate (km)

0

400

800

1200

50 100 150 200 250

b

el
ev

at
io

n
(m

)

x-coordinate (km)

0

400

800

1200

50 100 150 200 250

c

el
ev

at
io

n
(m

)

x-coordinate (km)

Fig. 4. DEM-based reference terrain profile (black solid line), and the hundred
estimated elevations (red solid line) at the x-coordinates represented by red
crosses, with the associated 3-σ interval (red dashed lines). Three different
instants of the trajectory are represented: the initial time before the first
measurement (figure a), at the middle of the trajectory (after 350 altimetric
measurements - figure b), and at the last measurement (figure c). The true
position of the vehicle is represented by the blue solid vertical line and the
RBPF estimated position is given by the green solid vertical line.

As the UAV trajectory is not a priori known, a significant
number of elevations (here 100) must be estimated to cover
the entire terrain profile. However, not all the elevations can
be refined, as illustrated by the constant 3-σ interval at the left
and right of the trajectory. In order to reduce the number of
elevations and keep only relevant ones, the m x-coordinates
could be dynamically moved according to the UAV estimated
position.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a solution for performing
navigation with a limited-size reference map (summarised by
only 33 parameters instead of the 3000 map points). The
originality is to represent the map by a Gaussian process that
is well-suited to model spatial correlations in the elevation
profile. The inference is led through a Rao-Blackwellised
particle filter. The results on a 2D radio-altimetric scenario
demonstrate its ability to estimate the trajectory while refining
the map.

Several perspectives can be mentioned. A possible direction
of future work could be to dynamically move the x-coordinates
of the unknown elevations according to the estimated position
of the vehicle, which could drastically accelerate the SLAM
process. Another direction would consist in extending the
approach to 3D scenarios. In such cases, the predetermination
of the GP map will be more challenging, involving non-
stationarity or piecewise non-stationarity.
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