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Abstract—The tight integration of Global Navigation Satellite
Systems (GNSSs) and low-cost Ultra-Wide Band (UWB) is a
prospective positioning solution for autonomous mobile robots
that operate in harsh environments with poor satellite visibility.
Thanks to the complementarity of the two systems in terms
of coverage and ranging performance, the UWB nodes can be
used as anchors providing additional ranging measurements.
However, the selection of the integration scheme may be a
critical issue since high-accuracy positioning performance has
to be traded off with the computational complexity of the
implementation. This paper compares the performance of two
common Bayesian filtering algorithms - the Extended Kalman
Filter (EKF) and the Sequential Importance Resampling Particle
Filter (SIR-PF) - for the GNSS/UWB tight integration in a
dynamic environment. Considering the error sources triggered
by the linear approximation employed in the EKF, simulation
results show that the performance of the EKF deteriorates more
than the SIR-PF when the user’s kinematics changes rapidly and
when the user gets close to the UWB anchor. Compared to the
EKEF, the SIR-PF can therefore guarantee superior positioning
accuracy even if at the cost of higher computational complexity.

Index Terms—Global Navigation Satellite System, Ultra-Wide
Band, Extended Kalman Filter, Particle Filter.

I. INTRODUCTION

UTONOMOUS mobile robots highly rely on accurate

and robust positioning solutions for their navigation
and control loops [1]. On the one hand, Global Navigation
Satellite System (GNSS) can provide positioning solutions in
absolute reference frames. On the other hand, Ultra-Wide Band
(UWB) can achieve centimeter-level accurate ranging over
short distances [2]. Hence, the integration of GNSS and UWB
is growing popularity as a solution for autonomous mobile
robots to overcome the GNSS performance degradation due
to multipath and signal blockages [3].

GNSS/UWB  integrated systems generally leverage
Bayesian formulations of maximum-a-posteriori state
estimation [4]. As a matter of fact, GNSS and UWB
measurement functions are inherently non-linear; it follows
their first-order Taylor approximation in the Extended Kalman
Filter (EKF) state-space formulation [5]. Alternatively,
sequential Monte-Carlo (MC) methods such as the Sequential
Importance Resampling Particle Filter (SIR-PF) can directly
handle state-estimation over non-linear and non-Gaussian
state-space distributions [6]. However, besides avoiding
linearizations, these algorithms come at the cost of increased
computational loads, and techniques have been proposed
in literature to mitigate this [7]. Overall, for a specific
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application, the filter selection should be determined based on
whether the accuracy gain is worth the extra computational
cost.

Two scenarios are typically considered when addressing the
integration of GNSS and UWB sensors; on the one hand,
UWB anchors can be deployed in fixed and geo-referenced
locations [8], [9]. Alternatively, UWB transceivers can be
installed on moving platforms such as Unmanned Aerial
Vehicles (UAVs) [10]. Both approaches aim at exploiting the
high-accuracy ranging potential of UWB, although a limited
coverage can be afforded by this technology. In the case of
mobile platforms, however, uncertainties in the determination
of the locations of UWB anchors can induce extra errors in
the estimated position of the receiver.

Focusing on GNSS/UWB tight integration, this paper aims
at comparing the performance based on the EKF and PF
schemes in the specific scenario in which the GNSS mea-
surements are integrated with ranging measurements from
UWB mobile sensors locally deployed. In this scenario, it is
theoretically shown how the linearization process embedded
in the EKF introduces approximation errors, while the PF
architecture is more effective. Besides, the specific factors in
the GNSS/UWB tight integration causing EKF approximation
errors are analyzed and concluded. The simulation compares
the positioning accuracy and computational loads for both
filtering architectures, providing guidelines for the design of a
suitable integration scheme.

II. BACKGROUND

In this Section, the Bayesian recursive formulations of both
the EKF and the Sequential Importance Resampling Particle
Filter (SIR-PF) are briefly reviewed [11].

A. Extended Kalman Filter

The EKF undertakes a discrete, linear and Gaussian state-
space approximation, and it pursues Position, Velocity, Timing
(PVT) estimation in two steps:

a) Prediction step:

z, = f(@k-1) )]
P, = AP, A +Q, 2)
b) Update step:
Ky, =P, HI (H,P; H! + R;,)™" 3)
& =z, + Ki(yr — h(z;)) “4)
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where:

e &, is the prior state estimate at epoch k;

e &y is the posterior state estimate at epoch k;

e f(-) is a set of state transition functions;

e A, is the Jacobian matrix of the state transition function
w.r.t. the state vector xj,

e Hj is the Jacobian matrix of the measurement function
w.r.t. the state vector xj

. Pk_ is the prior estimate of the state covariance matrix
at epoch k;

« P, isthe posterior estimate of the state covariance matrix
at epoch k;

e Yy is the vector of measurements at epoch k;

e h(-) is a set of measurement functions;

o K is the Kalman gain matrix at epoch k;

o I the identity matrix.

B. Sequential Importance Resampling Particle Filter

In the family of sequential MC methods, the SIR-PF can
directly handle non-linear, non-Gaussian state-space represen-
tations. The SIR-PF algorithm is summarized as follows:

« Initialization: Sample N particles ac((f) from the prior
state distribution p(xo) and assign them equal weights

w((f):

" ~ p(o)

(i) ) (6)
wy’ =1/N,i=1,..,N

o Recursive estimation: For every filtering epoch, the
following steps are operated:

1) Sample particles from the importance distribution:
) ~p(my | zh), i=1,..,N (]

which is set as the transition probability distribution
p(@k | Tp—1) [11].

2) Update particle weights:

wy? ocw? plye | ) (®)
where p(yy. | :cg)) is the conditional probability dis-
tribution of the measurements given the -th particle
realization " . Weights {w'"}2V | are normalized
and sum to unity.

3) Compute the effective number of particles [11]:

N 2\ !
- () e

i=1

and compare the N.y; with a predefined threshold
Nyp, to decide whether or not to execute resampling.

III. METHODOLOGY

The detailed state transition and measurement functions of
the state-space model for GNSS/UWB tight integration can be
found in [12]. The PF is not able to leverage the motion model
consisting of acceleration since there are no measurements in
both GNSS and UWB reflecting acceleration. To make a fair
comparison, the state transition model only contains the states
of position, velocity, receiver clock bias, and drift. Tailored
to this framework, the choice of using either the EKF or the
SIR-PF consists in making a trade-off between the positioning
performance and the computational burden.

In order to decide which is the most profitable way to
implement the integration, it is worth investigating the factors
impacting the EKF accuracy performance and the specific
degree of accuracy deterioration. As it is known, the Kalman
Filter (KF) has been proven as the optimal filter for linear
state-space models and Gaussian noises [11]. In the prediction
step, both the EKF and SIR-PF use the same discretization
strategy to model the dynamics of the user, which results in the
same level of prediction errors. For the update step, instead, the
SIR-PF can precisely approximate the non-linear measurement
functions with increasing particle numbers using the Monte
Carlo method. On the other hand, the EKF linearization of
the measurement function brings about approximation errors.
These errors are caused by the omission of terms in the Taylor
expansion, which is shown as follows:

. . 1 L .
Yk = h(@y) + Hyj(xr — @) + 5 (xr — 2 )" By j(wr — &7,

+ Oz — &), ) + w5

(10)
where yy, ; is the j-th scalar component of the measurement
vector Yy, Hj; and By ; are the Jacobian and Hessian
matrices of the j-th measurement function w.r.t. the state
vector xj. O;(x — @, ) lumps all the items in the Taylor
expansions whose orders are higher than two and wy, ; is the
measurement noise for the j-th measurement at epoch k.

The approximation error is the sum of all the terms whose
order is higher than one since the EKF only employs the first-
order term of the Taylor expansion. Due to the component
of the factorial’s reciprocal, high-order terms are increasingly
smaller in quantity w.r.t. the second-order term, so they can
be neglected to simplify the analysis.

Hence, the decomposition of the second-order term reveals
the error sources, listed as:

o x, — &, is the difference between the prior and true

states, which is called the prediction error;

e B is the Hessian matrix, which is related to the mea-

surement function at the linearization point.

Based on the state transition function for GNSS/UWB tight
integration, the prediction error depends on two factors which
are the dynamic motion of the user and the time interval be-
tween measurements. Higher dynamics, i.e., higher changing
rate for velocity and position, means larger prediction errors.
Similarly, the longer the time interval of measurements, the
lower the prediction accuracy will be.
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The second component is the Hessian matrix, which col-
lects the second-order partial derivatives of the non-linear
measurement function about the linearization point. For the
GNSS/UWB tight integration, non-linear measurement func-
tions involve both the GNSS pseudorange function and the
UWB ranging function, which are both spherical functions.
Regarding GNSS, the position of the satellite is the sphere
center, while the measured pseudorange is the radius. Sim-
ilarly, for UWB the position of the UWB tag is the center
and the ranging measurement of the UWB transceiver is the
radius. Implementing a linear approximation using the Taylor
expansion to a spherical function, the result will be a plane
tangent to the sphere at the linearization point. Therefore, in a
given neighborhood of the linearization point, a small radius
results in a large curvature, consequently leading to large
approximation errors. The Hessian matrix reflects this kind
of approximation errors. In this research, the UWB spherical
measurement function’s radius is much smaller than that of
GNSS, so the UWB linearization error is larger than that of
GNSS.

IV. RESULTS

This section presents simulation results to compare the per-
formances between the EKF and the SIR-PF for GNSS/UWB
tight integration, analyzing approximation errors.

A. Simulation set-up

The simulated environment is generated from a Radio
Frequency GNSS simulator — IFEN Network Constellation
Simulator (NCS) Titan. All the GNSS measurements (pseu-
dorange and Doppler-shift) are from GPS L1 C/A signals
collected at a frequency of 10Hz. To focus on the impact
of the filter selection on the positioning performance, the
simulated GNSS pseudorange measurements are only impaired
by receiver noise, but free from all other error sources such
as atmospheric delays, ephemeris errors, etc. The receiver
noise follows a Gaussian distribution with zero mean and 1 m
standard deviation. The GNSS simulator provides the ground
truth so the positioning error can be computed. The ground
truth is a Bernoulli Lemniscate trajectory, as shown in Fig. 4.

To investigate the impact of the approximation error in the
EKF due to UWB measurements, only one UWB anchor is
deployed. This anchor is placed 20 m away from the center
of the trajectory, with a height of 5m. UWB measurements
are synthetically generated following the model from [13].
In addition, UWB and GNSS measurements are accurately
synchronized and processed at 10 Hz rate.

Given the aforementioned set-up, two trajectories are simu-
lated at different average receiver speeds of 2m/s and 10m/s,
respectively.

For both the EKF and the SIR-PF, the details about the
process noise covariance parametrization can be found in [12].
As regards measurement noise covariance statistics in Ry,
the model proposed in [14] is leveraged for GNSS. While
the standard deviation of the UWB measurement noise is set
as 0.05m based on the model from [13]. Furthermore, the

number of particles is set to 10% for the SIR-PF, and N, is
set to 0.5. The experimental results of the SIR-PF are based
on 20 Monte Carlo simulations.

B. Analysis of EKF approximation errors

Given the analysis in Section III, it was determined that
the prediction error is larger with an increase in dynamics.
Therefore, the aim of the experiment is to test this by com-
paring positioning results from two datasets with different
vehicle velocities: 2m/s and 10m/s. The positioning errors
under a local East North Up (ENU) coordinate system are
shown in Fig. 1. It can be seen that the positioning errors
of EKF and the SIR-PF are pretty similar in the dataset
with 2m/s of user velocity, while the performance gap in
favor of the SIR-PF is larger for the dataset with 10m/s.
In the latter scenario, the positioning error contains several
spikes, which are marked with their exact values in the
plots. Fig. 2 gives the Cumulative Density Function (CDF)
curves of positioning errors for both filters under different user
velocities. Table I summarizes the whole trajectory positioning
Root-Mean-Square Error (RMSE)s for the two architectures
in each experiment. All the results show that the accuracy
deterioration of the SIR-PF is much smaller compared to
that of EKF when the dynamics increase. For the sake of
completeness, we also provide a comparison of computational
loads, the EKF and the SIR-PF take 1.6907s (946 epochs
per second) and 7.4827s (213 epochs per second) for the
entire trajectory (1600 epochs), respectively, based on the
aforementioned simulation settings.
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Fig. 1: Horizontal and vertical positioning error for the EKF and the
SIR-PF architectures shown for different vehicle velocities.
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Fig. 2: Horizontal and vertical positioning CDFs for the EKF and the
SIR-PF architectures shown for different vehicle velocities.

Several error spikes appear periodically in both horizontal
and vertical directions in Fig. 1. To analyze the relationship
between these spikes and the prediction errors, the data from
one period of the trajectory are isolated. Then, Fig. 3 shows
the time series of the Euclidean norms of prediction errors, as
well as accelerations from the ground truth, and aligns them
with the positioning errors over time. Unmodeled accelerations
can be viewed as noises in the state transition function and
lead to prediction errors. Based on the discussion in Section
III, prediction errors further amplify approximation errors for
the EKF. In other words, linearization of a sphere function
causes an error proportional to the second-term of the Taylor
expansion, and the linearization point for the EKF is based
on the predicted state, which in turn also suffers from errors
due to discretization of user dynamics, thus further amplifying
the linearization error. Since the SIR-PF does not perform
linearization, it suffers less impact from the prediction error.
This explains well why the peaks in acceleration values match
the maximum prediction and positioning errors.

Furthermore, Fig. 4 depicts the whole trajectory in one
period with the corresponding prediction error value of every
point. The leftmost and rightmost endpoints of the trajectory
have the largest accelerations of the vehicle’s dynamic, match-
ing the two error peaks.

C. Analysis of EKF errors due to the Hessian matrix

Based on the analysis in Section III, the Hessian ma-
trix is also a component of the second-order term besides
the prediction error. However, the physical meaning of the
Euclidean norm of a matrix is not as obvious as it for a

TABLE I: Positioning RMSEs for the EKF and the SIR-PF under
different vehicle velocities for the whole trajectory.

Vehicle velocity  Filter type RMSE [m]
Horizontal ~ Vertical
EKF 0.6881 0.8384
2 m/s SIR-PF 0.6187 0.5486
EKF 1.0248 2.6060
10 m/s SIR-PF 0.7652 0.8084
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Fig. 3: Horizontal and vertical position and prediction errors for the
EKF and the SIR-PF architectures.
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Fig. 4: Vehicles trajectory and location of the UWB anchor. The
prediction error along the path follows the colorscale.

vector. With the aim of interpreting the results, this experiment
focuses more on the effect of the Hessian matrix on the
linear transformation in the second-order term of the Taylor
expansion. As it happens, the prediction errors are the same
for all different measurements under one epoch. Therefore, the
values of the second-order terms % (z, — &, )" By, j (@ — &y, )
are only influenced by their Hessian matrices, which reflects
the geometry for GNSS and UWB. This provides us with a fair
and easy way to monitor the influence of Hessian matrices,
which is to compare the values of second-order terms from
different measurement functions under a given epoch.

Fig. 5 shows all the second-order terms in the Taylor
expansion for every GNSS satellite in one period of the
trajectory. First-order terms are provided as a reference. All the
second-order terms of GNSS are negligible if compared to the
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first-order terms. The latter shows that linear approximation
is more accurate for GNSS measurements. However, UWB
measurements perform differently as depicted by Fig. 6. The
value of second-order terms is much larger for UWB mea-
surements, thus indicating that approximation errors are much
higher w.r.t. GNSS measurements. In addition, two spikes are
found with different magnitudes in the second-order terms.
From the result of the previous subsection, it is known that the
prediction errors of these two spikes are closely related to the
acceleration, which means that the peak’s value of the spike is
only determined by the Hessian matrix. Moreover, the larger
spike corresponds to the vehicle’s location being closest to the
UWB anchor. This experimentally validates the assumptions
in Section III that a smaller radius of UWB ranging leads to
a larger linear approximation error.
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Fig. 5: A comparison between the first and second-order terms of the
Taylor expansion for GNSS pseudorange measurements.
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Fig. 6: A comparison between the first and second-order terms of the
Taylor expansion for UWB range measurements

V. CONCLUSIONS

For the GNSS/UWB tight integration, this paper analyzes
and compares two classical Bayesian filters — the EKF and the
SIR-PF. From the Taylor expansion utilized in the EKF, the
approximation error sources are determined as the prediction
error and the Hessian matrix of measurement functions w.r.t.
states. For the specific integration scheme as the UWB/GNSS
tight integration, this research concludes that the prediction
error is caused by the sampling interval of measurements
and the user’s dynamic. Meanwhile, the Hessian matrix is
determined by the distance from the UWB anchor to the
user. According to the above factors causing approximation

errors, simulated experiments are designed. Experimental re-
sults demonstrate that EKF produces large positioning errors
in high-dynamic scenarios and when the user is closer to the
UWB anchors. On the contrary, the SIR-PF performs much
better under the above conditions. The results of this paper
provide a reference to select a suitable integration scheme for
GNSS/UWB integration depending on the scenario.
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