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Toulouse, France

Jordi Vilà-Valls
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Abstract—State estimation techniques appear in a plethora
of engineering fields. Both standard Kalman filter (KF) and
its nonlinear extensions, as well as particle filters, consider a
known system model (i.e., functions and noise statistics), an
assumption which may not hold in practice. A problem of
particular interest is how to deal with outliers in the observation
model. A possible solution is to resort to the framework of robust
statistics, where a robust score function is used to mitigate the
impact of outlying measurements, leading to robust M-type KFs.
In this contribution, some of these robust filtering results are
extended to the case where states may live on a manifold (unit
norm quaternion), and propose robust iterated error-state M-
type KF solutions. An illustrative example is provided to show
the performance of the proposed filter and support the discussion.

I. INTRODUCTION

Attitude estimation refers to finding the relative orientation
between two Cartesian frames or, in other words, to the deter-
mination of the spatial orientation for a platform. Orientation
information is fundamental to aid vehicles with large inertia,
such as airplanes or ships, and to operate systems equipped
with pointing devices, such as satellites. The attitude problem
also arises in computer vision applications, being used to relate
keyframes or register point clouds.

Within the context of navigation, recursive attitude estima-
tion is addressed with nonlinear extensions of the original
Kalman Filter (KF), such as the Error State KF (ESKF) [1], [2]
or the Invariant KF (IKF) [3]–[5]. The aforementioned filters
preserve the geometrical properties for the attitude estimates
or, conversely, assure that the sequence of estimates remain in
the corresponding manifold. The underlying concept relates
to estimating a vector of perturbations around the state on
the algebra associated with the target manifold. For three-
dimensional attitude systems, for instance, that manifold is
SO(3), while for the rotation-translation pair is SE(3). When it
comes to sensor integration, attitude systems typically include
relative (i.e., angular rate) and absolute (i.e., observation
models for the orientation) attitude information. Relevant
works on recursive attitude estimation include the use of star-
trackers and magnetometers for space applications [6]–[8],
or visual sensors and Global Navigation Satellite Systems
(GNSS) antenna arrays for vehicular platforms [9]–[11].
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Unfortunately, outlying measurements are often captured
by attitude-related sensor modalities. This is related to signal
reflection and multipath in GNSS, wrong data association
in visual systems or unexpected magnetic fields in magne-
tometers. Moreover, gyroscope systems may experiment scale
issues or misaligments, with the subsequent deterioration of
the angular rate integration. Under the presence of contam-
inated data, the performance of conventional attitude filters
rapidly degrades and the estimates become unreliable. On the
positive side, a number of resilient alternatives exist which
may be categorized in: i) robust statistics-based filters, which
are nearly-optimal under nominal Gaussian conditions, while
outlier insensitive under normal mixture noise distributions
[12]–[14]; ii) variational inference-based filters, designed for
state estimation under heavy-tailed parametric distributions
[15]–[17]; iii) fault detection and exclusion algorithms, which
identify the faulty measurements based on statistical tests
[18], [19]; and iv) recent contributions on linearly constrained
filtering also provide a new paradigm for protecting against
model mismatch on prediction and observation models [20],
[21], whose extension on manifold-based estimation is also
available [22].

With the exception of a few examples [23]–[25], the topic
of robust filtering has not been applied to the attitude topic.
More specifically, a connection between robust estimation
and the most widespread attitude filters (i.e., the ESKF and
IKF) has not been drawn. In this work, we lay the focus on
robust statistics-based filters, which make use of a robust score
function to mitigate the impact of outlying measurements.
This leads to a family of so-called (linear or nonlinear) M-
type KFs. In this contribution, we propose two new nonlinear
robust iterated ESKFs for states living on a manifold (unit
norm quaternion), which overcome some of the limitations of
existing solutions. An illustrative example is provided to show
the performance gain with respect to standard techniques.

The rest of the paper is structured as follows. Section II
introduces the discrete state space, with Section III showcasing
the basics for ESKF and its iterated extension. The main
contribution of this work is introduced in Section IV-B,
with a list of robust M-type filters for the attitude problem.
Finally, Sections V and VI present the Monte Carlo (MC)
experimentation and the concluding remarks, respectively.

840ISBN: 978-9-4645-9360-0 EUSIPCO 2023



II. SYSTEM MODEL

The following state-space model (SSM) is considered,

xk = fk−1 (xk−1,ωk−1,vk−1) , (1)
yk = hk (xk) + ηk, (2)

with known process and observation functions, fk−1(·) and
hk(·); vk−1 ∼ N (0,Qk−1) and ηk ∼ N (0,Σk) the process
and (nominal) measurement noise sequences; and ωk−1 a
system input (e.g., gyroscope measurements). The state is

x⊤
k =

[
q⊤
k ,b

⊤
ω,k

]
, xk ∈ S3 × R3, (3)

where qk denotes a unit norm quaternion rotation and bω,k

an unknown input bias/disturbance. The goal is to recursively
estimate xk from measurements up to time k, y1:k. If the
system is linear, the optimal solution in the mean square
error (MSE) sense is provided by the well-known KF, but for
nonlinear models as in (1)-(2) one must resort to nonlinear KF-
type solutions (i.e., the linearized extended KF (EKF) being
the simplest one) or sequential MC methods. In the particular
case considered in this contribution, the recursive estimation
must preserve the inherent nonlinear geometric constraint, i.e.,
the unit norm of the quaternion [26], [27].

III. ON THE ERROR-STATE KF

The problem stated above is typically addressed with geo-
metric tools such as Lie group theory [28]. A possible solution
is given by the so-called error-state KF (ESKF) or indirect
KF [1], where xk belongs to a manifold and its perturbations
δxk ∈ R6 “live” in the tangent space of that manifold (i.e.,
the algebra of the manifold), which allows to formulate the
unknown state as the composition xk = x̂k ⊕ δxk,

xk = x̂k ⊕ δxk =

{
q̂k ◦ δqk

b̂ω,k + δbω,k
, δxk = xk ⊖ x̂k, (4)

with ◦ the quaternion product, and δqk the quaternion obtained
from the rotation vector for the attitude errors δψk (δx⊤

k =
[δψ⊤

k , δb
⊤
ω,k]). Indeed, the Euclidean space for δψk connects

to the Lie algebra uφ ∈ s3 (with u an unit vector of rotation
and φ the rotated angle) with the isomorphism (·)∧ : R3 7→ s3.
Then, the Lie algebra connects with the 3D unit-sphere S3

manifold through exponential mapping. The overall procedure
is given by

δψ ∈ R3 (·)∧7−−→ uφ ∈ s3
exp(·)7−−−−→ δq ∈ S3, (5)

(δψ)∧ :

{
u = δψ

∥δψ∥2

φ = ∥δψ∥2
, exp(uφ) :

[
cos(φ/2)
u sin(φ/2)

]
,

then q{δψ} corresponds to the mapping between the Eu-
clidean and unit quaternion spaces via the relationships in (5),

q{δψ} ≜ euφ/2 = cos
φ

2
+ u sin

φ

2
=

[
cos(φ/2)
u sin(φ/2)

]
.

With respect to (4), and considering the relationships above,
δqk = q{δψk}. Refer to [28]–[30] for a detailed discussion
on Lie group theory.

A. Standard Error-State (Extended) KF Formulation

For the problem at hand, in order to preserve the unit norm
quaternion constraint, the ESKF uses the ⊕ operator in (4)
(i.e., instead of the standard addition) to linearize and update
the system. This ensures that the state estimate stays on the
smooth (usually Riemannian) manifold. If x̂k−1|k−1 denotes
the state estimate at discrete time k − 1, and Pk−1|k−1 the
corresponding estimation error covariance, then the ESKF is

x̂k|k−1 = fk−1

(
x̂k−1|k−1,ωk−1

)
(6a)

Pk|k−1 = Fk−1Pk−1|k−1F
⊤
k−1 +Qk−1, (6b)

Kk = Pk|k−1H
⊤
k

(
HkPk|k−1H

⊤
k +Σk

)−1
, (6c)

x̂k|k = x̂k|k−1 ⊕Kk(yk − h(x̂k|k−1)), (6d)
Pk|k = (I−KkHk)Pk|k−1 (6e)

where Fk−1,Hk, represent the Jacobians of the process and
observation models, fk−1,hk (i.e., w.r.t. xk = x̂k ⊕ δxk).

B. Iterated Error-State (Extended) KF

It is known that the EKF loses the optimality guarantees of
the linear KF mainly due to linearization errors. A possible
solution to such problem is to use the iterated EKF, which
aims at finding the best linearization point for the measurement
Jacobian at each update using a Gauss-Newton scheme [31].
Therefore, iterated schemes are particularly useful when the
linearization errors of the measurement function are the main
source of instability. In the ESKF context and considering
states living on manifolds, the iterative sequence (x̂

(i)
k|k)i≥0 to

compute x̂k|k leading to an iterated ESKF (I-ESKF) is (using
the associated ⊕,⊖ operators and x̂

(0)
k|k = x̂k|k−1) [32], [33],

x̂
(i+1)
k|k = x̂k|k−1

⊕K
(i)
k

(
yk − hk(x̂

(i)
k|k) +H

(i)
k (x̂

(i)
k|k ⊖ x̂k|k−1)

)
, (7)

where H
(i)
k is the Jacobian computed at x̂

(i)
k|k, and K

(i)
k the

Kalman gain computed from Pk|k−1 and H
(i)
k . Such iterated

correction step is sketched in Algorithm 1.

Algorithm 1: Iterated ESKF Correction Step
Input : x̂k|k−1, Pk|k−1, yk,Σk

1 Initialize x̂
(0)
k|k = x̂k|k−1

for i = 0, 1, 2, . . . until convergence do
2 Compute Jacobian H

(i)
k from x̂

(i)
k|k

3 Compute Kalman gain
K

(i)
k = Pk|k−1H

(i)⊤
k (H

(i)
k Pk|k−1H

(i)⊤
k +Σk)

−1

4 Update x̂
(i+1)
k|k from (7)

5 Return: x̂k|k = x̂
(i)
k|k, Pk|k = (I−K

(i)
k H

(i)
k )Pk|k−1
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IV. ROBUST M-TYPE ERROR-STATE KFS

A. Robust Filtering: M-Estimation Approach

The KF correction step for a general nonlinear problem can
be expressed as a maximum a posteriori (MAP) optimization

x̂k|k = argmin
xk

(
∥xk − x̂k|k−1∥2Pk|k−1

+ ∥hk(xk)− yk∥2Σk

)
and, for states living on a manifold, as

x̂k|k = argmin
xk

(
∥xk ⊖ x̂k|k−1∥2Pk|k−1

+ ∥hk(xk)− yk∥2Σk

)
.

Alternatively, filters based on the robust statistics framework
provide a solution to the following minimization,

x̂k|k = argmin
xk

(
∥xk − x̂k|k−1∥2Pk|k−1

+ ∥hk(xk)− yk∥2Σ̄k

)
where a modified measurement noise covariance matrix Σ̄k

allows to account for outlying observations. Indeed, the use
of robust score functions may mitigate the effect of outliers
on the final state estimate. Conditional on a set of estimated
weights, such covariance is given by

Σ̄k = Σ
1/2
k W−1

k Σ
⊤/2
k , (8)

where Σ
1/2
k is the Cholesky factorization of Σk and Wk is a

weighting matrix given by

Wk = diag
[
w

(
Σ

−1/2
k

(
yk − hk(xk)

))]
, (9)

with w(·) a function derived from a robust score function
(e.g., Huber, Tukey or IGG weighting functions in Fig. 1) [12],
[34]. The application of robust statistics’ weighting functions
within conventional KF schemes can be done by exploiting
the information KF form [34], or reformulating the KF as a
regression problem [12], [13]. The extension of the former
when some state elements may live on a manifold (e.g., such
as the quaternion) was recently done in [24]. Hereinafter, this
work focuses on its regression-based counterpart.

Fig. 1. Score (left) and weighting (right) functions for conventional LS
(ℓ2), Huber, Tukey and IGG functions, with tuning parameters set for 95%
efficiency (i.e., to the nominal Gaussian distribution).

B. Regression-Based M-Type KF (M-KF)

The standard Euclidean (extended) KF can be reformulated
as a regression problem and solved with a least squares (LS)
estimator. In that case, the state prediction x̂k|k−1 is used as
an observation, and included into an augmented observation

vector, ỹk, with the corresponding measurement noise covari-
ance, Σ̃k, and observation model Jacobian matrix, H̃k,

ỹk =

[
yk − hk(x̂k|k−1) +Hkx̂k|k−1

x̂k|k−1

]
, (10a)

Σ̃k =

[
Σk

Pk|k−1

]
, H̃k =

[
Hk

I

]
. (10b)

Using (10a)-(10b), the (E)KF update step can be reformulated
as,

x̂k|k = x̂k|k−1 ⊕
(
H̃⊤

k Σ̃
−1
k H̃k

)†
H̃⊤

k Σ̃
−1
k ỹk, (10c)

Pk|k =
(
H̃⊤

k Σ̃
−1
k H̃k

)†
, (10d)

where (·)† is the Moore–Penrose inverse. Considering the
regression-based update step in (10c)-(10d) and the robust
covariance solution briefly introduced in (8)-(9), the M-KF
x̂k|k is computed by an iterative process (x̂

(i)
k|k)i≥0 (i.e., over

the weights as in the standard M-estimator) until convergence
is reached [12], starting at i = 0 with x̂

(0)
k|k = x̂k|k−1,

x̂
(i+1)
k|k = x̂k|k−1 ⊕

(
H̃⊤

k Ω
(i)
k H̃k

)†
H̃⊤

k Ω
(i)
k ỹk, (11a)

Ω
(i)
k = Σ̃

−⊤/2
k W̃

(i)
k Σ̃

−1/2
k , (11b)

W̃
(i)
k = diag

[
w

(
Σ̃

−1/2
k (ỹk)

)]
. (11c)

Once convergence is reached, the covariance matrix of the
associated estimate is,

Pk|k =
(
H̃⊤

k Ω
(∗)
k H̃k

)†
, (12)

with Ω
(∗)
k computed with the final weighting matrix.

For on-manifold systems, we can follow a similar reasoning,
nonetheless it is actually easier to directly adapt the (iterated)
ESKF update formula as in (7).

C. Robust Iterated Error-State Quaternion KFs

Notice that i) for nonlinear systems the previous M-KF
formulation assumes that the first order Taylor approximation
of the measurement function is good enough (i.e., no iterative
procedure over the measurement Jacobian linearization point),
and ii) such formulation is not adapted to state elements
living on a manifold (e.g., such as the quaternion). An iterated
formulation of the (nonlinear) M-KF for the problem at hand
is not available in the literature, and its derivation is the main
goal of this contribution.

1) Robust I-ESKF (RI-ESKF): The easiest way to merge
the iterated linearization, the quaternion state estimation and
a robust weighting function is to modify Algorithm 1, which
uses (7), as in Algorithm 2. Notice that there is a first iterative
process to deal with the linearization, and a second iterative
process over the weights as in the standard regression M-
estimator.
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Algorithm 2: RI-ESKF Correction Step
Input : x̂k|k−1, Pk|k−1, yk,Σk

1 Initialize x̂(0) = x̂k|k−1, W(0) = I
for j = 1, 2, . . . until convergence do

2 Update Σ̄k = Σ
1/2
k (W(j−1))−1 Σ

⊤/2
k

3 Obtain x̂(j), P(j) from Alg. 1, with inputs x̂(j−1),
Pk|k−1, yk, Σ̄k

4 Compute W(j) from (9) with x̂(j)

5 Return: x̂k|k = x̂(j), Pk|k = P(j)

Algorithm 3: R2I-ESKF Correction Step
Input : x̂k|k−1, Pk|k−1, yk,Σk

1 Initialize x̂(0) = x̂k|k−1, W(0)
y = I, W(0)

x = I
for j = 1, 2, . . . until convergence do

2 Update Σ̄k = Σ
1/2
k (W(j−1))−1 Σ

⊤/2
k

3 Update P̄k|k−1 = P
1/2
k|k−1 (W

(j−1)
x )−1 P

⊤/2
k|k−1

4 Obtain x̂(j), P(j) from Alg. 1, with inputs x̂(j−1),
P̄k|k−1, yk, Σ̄k

5 Compute W
(j)
y from (9) with x̂(j)

6 Compute

W
(j)
x = diag

[
w

(
P

−1/2
k|k−1

(
x̂k|k−1 ⊖ x̂(j)

))]
7 Return: x̂k|k = x̂(j), Pk|k = P(j)

2) Outlier-Free Prediction Robust I-ESKF (R2I-ESKF): A
further refinement of the previous robust I-ESKF, in order to
mitigate possible outliers at the KF prediction step (i.e., doubly
robust), is to consider a robust weighting of the prediction
error covariance Pk|k−1. In that case, Algorithm 2 is udpated
as in Algorithm 3. The resulting R2I-ESKF with outlier-
free prediction is equivalent to Algorithm 2 but with x̂

(j+1)
k|k

computed with Algorithm 3. Notice that such formulation
reminds the regression-based M-KF which also weights both
measurements and state prediction.

V. ILLUSTRATIVE EXAMPLE

To evaluate the performance of the different robust M-
type KFs presented in this contribution, w.r.t. the standard
I-ESKF, the recursive Wahba’s problem is considered [35].
Thus, the state estimation problem in Eqs. (1)–(3) is assumed.
The dynamical model consists of the integration of gyroscope
measurements, while the observation model includes a set
of baseline observations collected over N + 1 antennas on
a vehicle, such that yk ∼ N (vec(RkL), σ

2
ρIn). Here, L =

[l1, . . . , lN ] is a set of three-dimensional N = 4 baselines on
the local frame, Rk the local-to-inertial frame rotation at kth
time instance, n = 3 · N the total number of observations.
The number of MC experiments is set to M = 100, the total
duration of the experiment is 1000 s, with the prediction and
correction steps being processed at 1 Hz. For three periods
of 150 s, corresponding with the gray areas in Fig. 2, the
observations captured by one of the baselines are outliers.

TABLE I
MC SIMULATION PARAMETERS.

Initial
std. dev.

Attitude: 1 [deg]
Gyroscope bias: 0.1 [deg/h]

Process noise
std. dev.

Gyroscope: 0.02 [deg /
√
s3]

Bias random walk: 2 · 10−5 [deg /
√
s3]

Obs. noise
std. dev. Code zenith-referenced (σρ): 0.1 [m]

Outliers 25%, α = 100, σ = ασρ

As a metric of performance, the following intrinsic mean
squared attitude error (IMSE) at time k is considered

1

M

M∑
i=1

Log∨SO(3)

(
R−1

k

(
R̂k

)
i

)
⊤ Log∨

SO(3)

(
R−1

k

(
R̂k

)
i

)
where (R̂)i is the i-th realization estimate.

Figure 2 depicts the IMSE of the quaternion for the pro-
posed filters. On the one hand, the performance of the I-
ESKF is significantly degraded when outliers are present as
the observations are directly affected by them, and the filter
is not capable to recover from them when nominal conditions
are back. On the other hand, both robust filters achieve much
better performance (very close to the ideal I-ESKF), especially
during the outliers intervals.

VI. CONCLUSIONS

In this paper, we propose two new robust counterparts to
the iterated ESKF for states living on a manifold (unit norm
quaternion) in order to mitigate the impact of outliers in the
observation model, which may otherwise cause a performance
breakdown. Hence, we leverage M-estimation methodology to
apply it to attitude estimation. To handle the nonlinearities
arising from the observation model and the M-estimator,
two cascaded iterative processes are implemented. Thus, we
proposed to use 1) a robust iterated ESKF (RI-ESKF), whose
update uses an inner loop for the robust weighting function,
and 2) an outlier-free prediction robust I-ESKF (R2I-ESKF)
which not only applies robust weighting to the measurements,
but also to the prediction state in order to robustify both
prediction and correction steps. The impact of outliers on
standard I-ESKF, and the capacity of the proposed filters to
mitigate them, were illustrated on numerical examples. In
conclusion, the proposed robust filters are much less impacted
by the outliers and their performance is highly similar to the
ideal one, contrary to standard I-ESKF.
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