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Abstract—In this work, we address the problem of cone beam
computed tomography (CBCT) image resolution enhancement by
exploiting a newly introduced deep unrolled quantum denoiser,
based on quantum interaction theory adapted to computational
imaging. Following recent advances in image restoration using the
Plug-and-Play (PnP) framework, we impose this external deep
learning denoiser as a regularizer within the super-resolution
(SR) problem. The quantum-based deep unrolled denoiser com-
bined with a computationally efficient way to deal with the
degradation operators, and the PnP scheme, result in an original
way of approaching the image resolution enhancement problem.
Experiments conducted on dental CBCT images are presented
to illustrate the efficiency of the proposed model for image
resolution enhancement tasks. The numerical results suggest
that the proposed method allows better restoration performances
compared to existing state-of-the-art approaches.

Index Terms—Super-Resolution, Plug-and-Play, Unrolling,
Deep learning, Quantum denoising, DIVA, Quantum image
processing.

I. INTRODUCTION

Root canal treatment is a common procedure routinely
performed by dentists to treat dental infections. Despite its
increasing use in clinics, the success rate is only 60%–85%
[1], [2] due to the low spatial resolution of dental computed
tomography (CT) images leading to root canal-related en-
dodontic therapeutic failure. Therefore, a better visualization
of the internal structure of the root canal by enhancing spatial
resolution in post-processing is an important factor in medical
imaging. Estimating high-resolution (HR) images from low-
resolution (LR) observations is a classical inverse problem
known as super-resolution (SR). Traditional SR algorithms
can be broadly classified into two categories: model-based
[3]–[7] and learning-based approaches [8]–[12]. Recently,
model-based deep learning (DL) algorithms [13]–[16] brought
another alternative by combining the advantages of model-
or learning-based methods. DL-aided models [17]–[19] are
hybrid algorithms that use traditional model-based inference,
hence improved using the power of convolutional neural
network (CNN). The focus of this work is to design a new
DL-aided scheme for SR problem by exploiting a quantum
mechanics-based deep unrolled denoiser and a computational

efficient way to deal with the decimation and blurring oper-
ators simultaneously by taking advantage of their underlying
properties in the frequency domain.

In the last few years, algorithms based on quantum mechan-
ics theory have been successfully applied in various image
processing applications [20]–[24]. This work proposes a way
of solving the SR problem by exploiting a newly introduced
quantum-based DL denoiser [25], [26], hereafter denoted as
DIVA (Deep denoising by quantum InteractiVe pAtches),
which unrolled the baseline adaptive quantum denoising al-
gorithm (De-QuIP) proposed in [22], [23]. DIVA inherently
absorbs the idea of quantum interaction and Hamiltonian oper-
ator from De-QuIP [23], while efficiently exploiting the power
of CNN architecture. More precisely, the quantum interactions
preserve local similarity between neighboring patches, while
convolution kernels efficiently solve the hyperparameter tuning
problem. The main novelty of this work is (i) the integration
of the deep unrolled denoiser into the DL-aided framework
combined with a model-based analytical inference to handle
the degradation operators and (ii) the experiments on dental
CBCT images.

II. PROPOSED DEEP LEARNING-AIDED
SUPER-RESOLUTION SCHEME

A. Problem Formulation

In the single image SR problem, the acquired image y ∈ RN

is modeled as a LR observation of a noisy, blurry and deci-
mated version of a hidden HR image x ∈ RdN , mathematically
expressed by

y = SHx + e, (1)

where S ∈ RN×dN is the decimation operator, H ∈ RdN×dN

the blurring operator, assumed to be a block circulant matrix
with circulant blocks (BCCB), e ∈ RN an additive white
Gaussian noise (AWGN). Note that y, x and e are column
vectors representing images reshaped in classical lexicographic
order.

Following a classic Bayesian framework, the maximum-
a-posteriori (MAP) estimator expresses this highly ill-posed
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estimation problem of the HR image from the observed LR
data as the minimization of a cost function:

x̂ = arg min
x

1

2
∥SHx − y∥22︸ ︷︷ ︸

Data fidelity

+ λg(x)︸ ︷︷ ︸
Regularization

, (2)

where x̂ is the restored HR image and λ is a hyper-parameter.
The data fidelity term is quadratic under the Gaussian noise
assumption, and the regularization term results from an a
priori statistical distribution of the latent image x. Thus,
the optimal choice of this regularization term is crucial to
obtain a reliable solution. The most common prior distributions
exploited in the literature are based on the sparsity or piece-
wise smoothness of the HR image.

A breakthrough was made in the literature in the last decade,
enabling the use of a state-of-the-art denoisers instead of
an explicit regularization function by redefining the image
restoration problem into a chain of denoising processes using
the PnP framework [27], [28]. Over the past few years, nu-
merous denoiser-based priors have been proposed, exploiting
different mathematical tools, among which the non-local self-
similarity (NLSS) [29], [30] is an extensively exploited prop-
erty due to its promising image denoising performances. The
PnP framework intelligently utilizes these advantages of the
NLSS-based denoisers by integrating them as an underlying
prior in the image restoration process [31]–[36].

Despite the success of these NLSS-based denoisers, their
computational cost represents an important challenge ampli-
fied by their iterative use within the PnP framework. Fur-
thermore, these external denoisers are associated with internal
hyperparameters that are usually related to the level of noise,
and need thus to be tuned at each iteration of the PnP scheme
to obtain the best restoration result [18], [19]. Although
it is possible to fix these hyperparameters based on some
presumptions [18], [32], that choice is not optimal in most
cases, particularly in medical imaging applications.

The CNN-based denoisers [37]–[39] mitigate these limi-
tations by harnessing a large training dataset to learn the
map between the noisy and latent images. In recent years,
model-based DL (known as deep unrolling) architectures [40],
[41] have been attracting increasingly attention due to their
explanatory properties compared to traditional CNN-based
models [37]–[39], while reducing the disadvantages of the
model-based regularizers by exercising the power of back
propagation. In this work, we exploit such a deep unrolled
denoiser, denoted as DIVA [25], [26], inspired by the princi-
ples of quantum many-body physics, which acts as an implicit
prior function in the PnP framework for solving the SR
problem expressed in (1). The following subsections present
the key concepts of the DIVA network architecture built on
the baseline quantum-based De-QuIP algorithm [22], [23] and
its implementation into a SR algorithm using the PnP scheme.

B. Quantum-Based Deep Unrolled DIVA Network for Denois-
ing

Built on an underlying many-body quantum theory, DIVA
consists in a deep denoising network by unrolling the baseline

De-QuIP algorithm initially proposed in [23]. The many-body
quantum theory deals with more than one quantum particle,
where interactions between particles inevitably arise. De-QuIP
exploits this theory of interactions and extends this concept to
imaging problems by dividing an image into small patches,
where every image patch behaves like a single-particle system
and interacts with neighboring patches similar to a many-
body system. These interactions exploit the NLSS between
neighboring patches that significantly enhance the denoising
performance of De-QuIP by updating the adaptive wave
functions used for the patch decomposition. These adaptive
wave functions, the solutions of the Schrödinger equation,
i.e., the eigenvectors of the respective Hamiltonian operator,
characterize the values of different image pixels using different
level frequency bands. We refer readers to the seminal works
[21]–[23] for more details about these adaptive wave functions
and the De-QuIP algorithm.

DIVA proposes a CNN network while preserving the core
philosophies of the De-QuIP framework. Indeed, to enrich
the adaptive nature of the baseline algorithm, patch-based
computations with fixed hyperparameters are replaced by
convolutional layers. Furthermore, harnessing the power of
backpropagation, the unrolled DIVA network efficiently solves
the hyperparameter tuning problem associated with its baseline
De-QuIP algorithm [25], [26]. The DIVA network architecture
is primarily composed of seven main layers. The first layer ex-
tracts all patches from the noisy input image and creates their
respective local neighboring groups. The next layer computes
the total interaction for each local group using a convolution
operation followed by Rectified Linear Unit (ReLU) function.
The ReLU is used to trim any redundant contributions to inter-
actions. Following the baseline algorithm, DIVA constructs a
Hamiltonian kernel C2a = Ka∇2+Ja+Ia for the a-th patch,
where Ka, Ja and Ia are respectively a learnable kernel
associated with hyperparameters, noisy patch/original poten-
tial, and the total interaction computed in the previous layer.
This Hamiltonian kernel plays a role in the next convolutional
layer to get the projection coefficients. Note that the gradient
operator ∇ does not change during the training process to
preserve the quantum principles of the original De-QuIP. Next,
thresholding is done by a nonlinear ReLU activation function,
and a convolution operation with a learnable kernel is used to
obtain denoised patches. Finally, by accumulating all restored
patches in the aggregation layer, DIVA recovers the denoised
image. Note that the exploitation of a quantum-based deep
unrolled denoiser is highly original in this context. For more
detailed mathematical construction of DIVA, the reader may
refer to the recent works [25], [26], [42].

C. Plug-and-Play SR Algorithm Using Deep Unrolled DIVA

One common way to solve SR problems is to use an iterative
convex optimization algorithm, e.g., alternate direction method
of multipliers (ADMM) [6]. Under the umbrella of ADMM,
PnP provides an elegant way to decompose the restoration task
(2) into two subproblems of image denoising coupled with
an inverse task, where an off-the-shelf denoiser tackles the
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denoising step separately [32]. The most interesting feature of
PnP is that there is no need to specify an explicit regularization
function g(x), rather a mutual dependence exists between the
regularization and off-the-shelf denoising operator D intrinsi-
cally.

With appropriate parameterization, ADMM can be used
to reformulate the MAP estimator (2) into the following
constrained-based optimization problem:

x̂ =
1

2
arg min

x
∥SHx − y∥22 + λg(v), s.t. x = v, (3)

with an associated augmented Lagrangian function,

L(x,v,u) =
1

2
∥SHx − y∥22 + λg(v) +

β

2
∥x − v + u∥22 , (4)

where β and u are respectively a hyperparameter and the
Lagrangian multipliers. After variable splitting, the problem
(4) can be solved iteratively as:

vk+1 = arg min
v

λg(v) +
β

2

∥∥xk − v + uk
∥∥2
2
, (5a)

xk+1 = arg min
x

∥SHx − y∥22 +
β

2

∥∥x − vk+1 + uk
∥∥2
2
, (5b)

uk+1 = uk + xk+1 − vk+1. (5c)

One may notice that eq. (5a) can be rewritten as,

vk+1 = arg min
v

λg(v) +
β

2

∥∥v − (xk + uk)
∥∥2
2
, (6)

which is actually a denoising algorithm assuming g(v) a prior
on the noisy image (xk + uk). Hence, as already mentioned
above, PnP formulation gives us the freedom to integrate the
deep unrolled denoiser DIVA for solving eq. (5a) (or eq. (6))
without any explicit prior construction, this leads to

vk+1 = D
(
xk + uk

)
, (7)

where D is the symbolic notation for DIVA. Moving to
eq. (5b), that is called data fitting subproblem, it has a closed-
form solution

xk+1 =
(

HHSHSH+βI
)−1(

HHSHy+β(vk+1−uk)
)
. (8)

Under the cyclic boundary assumption, the blurring operator H
and its conjugate transpose HH are diagonalizable in Fourier
domain as, H = FHΛF and HH = FHΛHF, where the
matrices F and FH are respectively the Fourier and inverse
Fourier transforms, and the diagonal matrix Λ = diag{Fh},
where h is the first column of H. Here SH and I are associated
with the conjugate transpose of the decimation operator S and
the identity matrix. For large-scale problems, the analytical
solution of eq. (8) is not practical because of the non-
diagonalizable nature of the operator S, which restricts its
efficient implementation in the Fourier domain. Traditional
iterative optimization [4] and sampling [43] based computa-
tionally expensive algorithms are generally used to solve (8).
However, the observations in [6] ensure the computationally
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Fig. 1. Three restored tooth images from the µCT dataset containing 60 LR
images. The dark region inside the tooth corresponds to the root canal.

efficient analytical solution for the eq. (8) in the Fourier
domain by rewriting the (8) as

xk+1 = FH
(1
d
ΛHΛ+ βI

)−1

F
(

HHSHy + β(vk+1 − uk)
)
,

(9)
where Λ = [Λ1,Λ2, · · · ,Λd] ∈ CN×dN , where the
blocks Λj ∈ CN×N for j = 1, 2, · · · , d satisfy
diag{Λ1,Λ2, · · · ,Λd} = Λ. Lastly, the third step (5c) updates
the Lagrangian multiplier. Hence, the proposed PnP-ADMM
algorithm consists in three iterative steps (given by eqs. (7),
(9) and (5c)) while exploiting quantum-based DIVA denoiser
as the PnP denoising engine.

III. EXPERIMENTAL RESULTS

This section summarizes SR experiments conducted on
dental CT datasets to illustrate the potential of the proposed
PnP algorithm with DIVA, denoted by PnP-DIVA. In dental
applications, cone beam CT (CBCT) imaging is often used
for medical diagnosis due to its low exposure to X-ray doses.
Hence, CBCT suffers from reduced spatial resolution and
high level of noise, in particular for specific applications such
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CBCT (LR image) FSR-TV PnP-BM3D PnP-TNRD PnP-DIVAPnP-De-QuIP𝝁CT
Fig. 2. One restored tooth image from the CBCT dataset. The dark region inside the tooth corresponds to the root canal.

as endodontics that concern the thin structure of root canal
[1], [2]. On the other hand, µCT data provides high quality
volumes, but only permits the imaging of extracted teeth
because of the use of high radiation dose. Therefore, in this
work, µCT is used to obtain the ground truth HR images. The
first objective is to train the DIVA denoiser for CT images
before moving toward the SR problems.

1) Training of DIVA: The DIVA network was trained in a
supervised manner on a total of 500 µCT images (200 axial,
150 sagittal and 150 coronal slices) contaminated with AWGN
with different signal-to-noise-ratios (SNRs). The model archi-
tecture was implemented in Keras and trained using NVIDIA
GTX 1080 Ti GPU, with small batches of size 128 containing
40×40 patches, using the Adam optimizer with a learning rate
that exponentially decays from 10−3 to 10−5 over 60 epochs.
The mean squared error between the original and predicted
residual is considered as the training loss [26].

2) Testing Datasets of PnP-DIVA: The first test dataset
consists of 60 synthetic LR images (20 axial, 20 sagittal
and 20 coronal slices) created from the µCT dataset using
a 9× 9 Gaussian smoothing kernel with standard deviation of
3, downsampling factors of 2 in each spatial direction, and an
AWGN corresponding to blurred-signal-to-noise-ratio (BSNR)
of 10 dB (Fig. 1). Within the second set of experiments, 60
CBCT images are used as LR image inputs, whose ground
truths are not available directly. Hence, the respective µCT
images acquired on the same tooth are considered as the
HR data for the comparison perspective (Fig. 2). Note that
the point spread function is unknown for the CBCT dataset,
thus approximated for the axial, sagittal and coronal slices
respectively by a Gaussian kernel with std 6.2, 0.4 and 3.3, by
direct estimation from the CBCT data itself using the approach
in [44].

3) Comparison methods: The proposed model is compared
with four standard methods from the literature to illustrate its
efficiency: i) a TV regularization based fast SR algorithm [6]
denoted by FSR-TV, ii) the PnP algorithm using BM3D de-
noiser [27] denoted by PnP-BM3D, iii) PnP with the trainable
nonlinear reaction diffusion (TNRD) denoiser [45], which uses
a convolutional neural network-based flexible learning method
for denoising, referred as PnP-TNRD, iv) PnP combined with
the baseline De-QuIP algorithm as an external denoiser [46],
denoted as PnP-De-QuIP.

4) Result Analysis: The resulting mean peak-signal-to-
noise-ratio (PSNR) and structure similarity (SSIM) of the
recovered µCT and CBCT images are regrouped in Table I.
Quantitative data show that the proposed method provides
better PSNR and SSIM matrices than existing state-of-the-art

approaches. Furthermore, a notable gain is observed against
the PnP-De-QuIP algorithm, which is a consequence of finely
tuned hyperparameters in the DIVA model compared to its
baseline De-QuIP scheme. Finally, the visual assessment of
the restored HR µCT and SR CBCT images, respectively
presented in Fig. 1 and Fig. 2, confirms the superiority of
the proposed SR technique for enhancing the CBCT images,
and especially to enhance the dark region of interest in the
center of the tooth, corresponding to the root canal.

IV. CONCLUSION

This paper introduced a new SR algorithm that combines
a quantum-based deep unrolled denoiser and an analytical
solution for the inversion process. This deep unrolled denoiser
DIVA takes advantage of quantum mechanical theory and ex-
ploits the powerful representation properties of DL networks.
Integration of these key elements from two different branches
of science increases the efficiency of the DIVA network
while acting as a PnP prior in a SR problem. Experimental
results on dental CT images demonstrated the restoration
ability of our proposed PnP-DIVA scheme against benchmark
techniques in SR CT imaging applications. As a continuation
of this work, one can extend the proposed PnP scheme to
the 3D SR problems or to non-Gaussian noise models, where
a 3D extension of the DIVA network can be used for the
regularization. Furthermore, the convergence analysis of such
a PnP scheme under a deep unrolled denoiser is also interesting
for future studies.

TABLE I
QUANTITATIVE SR RESULTS. THE BEST VALUES ARE IN BOLD.

Methods Output Tooth Image Slices
Axial Sagittal Coronal

µ
C

T

FSR-TV PSNR(dB) 33.61 34.26 34.25
SSIM(%) 94.83 94.92 96.05

PnP-BM3D PSNR(dB) 34.40 35.48 35.61
SSIM(%) 95.60 95.79 96.11

PnP-TNRD PSNR(dB) 34.67 35.72 35.21
SSIM(%) 96.18 95.92 96.58

PnP-De-QuIP PSNR(dB) 34.65 35.89 35.25
SSIM(%) 96.21 95.99 96.53

PnP-DIVA PSNR(dB) 36.12 36.78 36.69
SSIM(%) 97.84 98.12 97.95

C
B

C
T

FSR-TV PSNR(dB) 22.59 22.43 23.70
SSIM(%) 75.01 78.41 79.45

PnP-BM3D PSNR(dB) 22.53 22.75 23.67
SSIM(%) 79.53 77.14 86.56

PnP-TNRD PSNR(dB) 22.52 23.31 23.78
SSIM(%) 79.79 78.97 89.51

PnP-De-QuIP PSNR(dB) 22.47 22.85 23.77
SSIM(%) 80.44 77.96 89.52

PnP-DIVA PSNR(dB) 23.77 23.97 24.46
SSIM(%) 82.27 79.36 90.78
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[20] Ç. Aytekin, S. Kiranyaz, and M. Gabbouj, “Quantum mechanics in
computer vision: Automatic object extraction,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), 2013, pp. 2489–2493.

[21] S. Dutta, A. Basarab, B. Georgeot, and D. Kouamé, “Quantum
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