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Abstract—The race for color micro-cameras employing flat
meta-optics instead of conventional refractive lenses has rapidly
developed various end-to-end design frameworks. The meta-
optics produce a specially designed spatial modulation of light
wavefronts resulting in heavily blurred registered images. The
optimal modulation is engineered to achieve advanced sharp
imaging after computational data processing. The wavefront
modulation and the image reconstruction are the fundamental
micro-camera design problems with meta-optics. The popular
convolution-based blurred image modeling (kernel-based) does
not fit well with cameras with meta-optics. As a valuable
alternative, we develop for image reconstruction the kernelless
blind inverse imaging. This technique is based on a convolutional
neural network. Its efficiency is demonstrated in the frame of the
hardware-in-the-loop (HIL) joint optimization of meta-optics and
image reconstruction software. The developed HIL setup allows
us to overcome fundamental limitations of mismatch between
theory-based and resultant experimental image formation prob-
lems of meta-optics. The resulting camera achieves high-quality
full-color imaging for a 5 mm aperture optics with a focal length
of 5 mm. We have observed a superior quality of the images
captured by the developed hybrid meta-optical camera compared
to the compound multi-lens optics of a commercial camera.

I. INTRODUCTION

The miniaturization of cameras, while maintaining high
image quality, has become a major driving force in optics
and photonics research [1]. A solution to this conundrum
is computational imaging, where a digital backend augments
the deficiencies of the optical components and improves the
image quality [2]. A promising approach is to co-optimize
the meta-optics, and the computational backend in an ”end-
to-end” design framework, where the hardware and software
are equally considered, thus ensuring optimal system-level
performance [3]–[6].

There are three potential advantages of meta-optics: 1) they
can achieve significant size and weight reduction (thickness
in micrometers) [7]; 2) performance beyond conventional
systems is achievable in extended imaging modalities, such
as extended-depth-of-field [8]–[10], and face recognition [11];
3) nearly arbitrary sub-wavelength resolution manipulation of
wavefields due to the immense progress in nanofabrication
over the recent decades. Despite these promises, the image
quality of captured images using large-aperture (> 1 mm)
meta-optics is plagued with strong chromatic and geometric
aberrations [12], [13]. While complicated meta-atom engineer-
ing can help, fabricating large aperture meta-optics with small

Fig. 1. Hybrid optics of imaging system. Light waves from different distances
d1 propagate on the aperture plane containing DOE to be designed. The
DOE modulates the phase of the incident wavefront. The resulting wavefront
propagates through the lens to the aperture-sensor, distance d2.

features remains challenging. Also, the design tools to cre-
ate large aperture meta-optics are computationally expensive,
which poses a severe challenge, as the current state-of-the-art
”end-to-end” design approach [4], [14], [15] largely involves
numerical modeling of the optics.

In this work, we circumvent all these challenges by em-
ploying a hybrid refractive/meta-optics system (see Fig. 1)
with a computational backend, following a recently proposed
design methodology [2]. A hardware-in-the-loop strategy first
optimizes the desired phase profile (see Fig. 2), where the
DOE, implemented by a spatial light modulator, is configured
and updated, while a refractive lens and a sensor remain fixed.
This bypasses the expensive computational requirements to
design the optics, directly accounting for sensor noise and
precludes calibration errors. The optimized phase-mask is
then implemented using meta-optics. Using hybrid optics over
meta-optics-only systems improves the low light efficiency of
meta-optics [16], aberrations, and imaging quality [17], [18].

Simple meta-atoms are employed to ensure fabricability, and
the meta-atoms are designed only at 510 nm, where the spatial
light modulator operates. Although only a single wavelength
is considered, we still achieve high-quality full-color imaging,
as the meta-optics extend the depth-of-focus [19]. Thus, even
using simple meta-atoms optimized for only one wavelength,
we can realize high-quality broadband imaging thanks to
hybrid optics and a computational backend. The resulting
imaging systems have a focal length and aperture of 5mm.
To illustrate the potential of this camera, we compare it with
a single lens-only configuration and the compound multi-lens
optics of the Sony Alpha 1 III mirrorless commercial camera.
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Fig. 2. Schematic of the hardware-in-the-loop methodology to co-
optimize the encoding phase distribution and image reconstruction
algorithm (Software ISP) in an end-to-end framework. The camera
black-box model is composed of a spatial light modulator (SLM),
which updates the encoding phase in optimization iterations, while
sensor and hardware ISP are fixed. The output of this black-box forms
the input for the image processing algorithm (Software ISP).

This comparison confirms the efficiency of the meta-hybrid
optics in full-color imaging, whereas our designed hybrid
meta-optics camera volume is approximately 108× smaller
than the mirrorless camera.

II. END-TO-END OPTIMIZATION OF META-OPTICS AND
IMAGE RECONSTRUCTION

In this section we describe a nonlinear black-box optimizer
(summarized in Algorithm 1) to design the hybrid optics.

A. Computational design and imaging

Algorithm 1 follows an alternating methodology: fixing
hyperparameter ΘSLM , solving ΘNN for inverse imaging,
updating ΘSLM and so forth. We implement this methodology
because it is faster than training the CNN-based inverse
imaging per SLM-pattern iterations. This alternating process
starts by randomly selecting an SLM-pattern Θ

(0)
SLM and a

pre-trained inverse imaging CNN for a wide range of hy-
perparameter ΘSLM . After this, algorithm acquires a set of
blurred images at distances from sensor 0.5, 1.0, 1.8 m using
the ISP of the optical system, s(Θ(r)

SLM ), which is then passed
to the downstream reconstruction (deblurring using trained
CNN) module. The output of the task module is evaluated by
domains-specific evaluation metric which in this case is the
peak-signal-to-noise-ratio (PSNR), LHIL(s(Θ

(r)
SLM )). Then,

using the 0th-order stochastic evolutionary search method
CMA-ES [20] (documentation in python of the CMA-ES op-
timizer in https://pypi.org/project/cma/), Algorithm 1 updates
ΘSLM taking advantage of the tested SLM-patterns during the
R iterations. Once ΘSLM is updated, Algorithm 1 refines the
CNN-based inverse imaging by training it for the best Θ(r)

SLM .
Performing the previous alternating process Niter times

algorithm returns the updated ΘSLM , and ΘNN . The structure

Algorithm 1 HIL design and inverse imaging

1: input: λ,Niter, and Θ
(0)
SLM .

2: initialize CMA-ES: ΘSLM ← Θ
(0)
SLM , t← 1

3: Train initial inverse imaging CNN for 0.5, 1.0, 1.8m,
ΘNN ← Θ

(0)
NN for a wide range of hyperparameters

ΘSLM

4: while t ≤ Niter do
5: for r = 1 to R do
6: Θ

(r)
SLM ← randomly draw from Gaussian at ΘSLM

7: Add random noise to Θ
(r)
SLM

8: s
(
Θ

(r)
SLM

)
← get blurred data at 0.5, 1.0, 1.8m of

images I1, . . . , IJ and use Θ
(t)
NN -CNN to estimate them

9: LHIL

(
s
(
Θ

(r)
SLM

))
← compute average PSNR

among the estimated J -images at each distance
0.5, 1.0, 1.8m

10: ΘSLM ← update CMA-ES
11: end for
12: t← t+ 1
13: Θ

(t)
NN ← train inverse imaging CNN for best SLM-

pattern among {Θ(1)
SLM , . . . ,Θ

(λ)
SLM}

14: end while
15: return: ΘSLM ,ΘNN

of CNN developed for inverse imaging (optimization on ΘNN )
is shown in Figure 2. Algorithm 1 can be also initiated by
solutions obtained according to the model-based approach
from [21]. The number of ’global’ iterations of this algorithm
for ΘNN is Niter and R is the number of ’local’ iterations
for ΘSLM , where the time needed to process physical obser-
vations is about 1.01 seconds. This processing time involves
the deconvolution of the blur data is collected at the sensor,
and the decision of a new SLM-pattern. In this work we fixed
Niter = 3 and R = 500. In the following sections, more
details per each stage are described.

An appropriate loss function is required to optimize our
inverse imaging to provide the desired output. Thus, we use a
weighted combination of PSNR between estimated and ground
truth images, LPSNR, and perceptual losses given below by:

Perceptual loss: To measure the semantic difference be-
tween the estimated output and the ground truth, we use a
pretrained VGG-16 [22] model for our perceptual loss [23].
This is motivated by the fact that in [23] has been reported
that VGG promotes sharp details such as edges, and rapid
colour changes in an image making it suitable to design
optics. To evaluate this metric we have to extract feature maps
between the second convolution (after activation) and second
max pool layers φ22, and between the third convolution (after
activation) and the fourth max pool layers φ43. Then, the loss
LPercep is the averaged PSNR between the outputs of these
two activation functions for both estimated and ground truth
images. This means we are using second, third and fourth
layers of the VGG which returns feature maps [22] to estimate
the perceptual distance between the estimated and original
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image while designing the optics. For more details about this
semantic metric please refer to [22].

Adversarial loss: Adversarial loss [24] was added to
further bring the distribution of the reconstructed output close
to those of the real images. Given the swish activation function
[25] as our discriminator D, this loss is given as LAdv =
− log(D(Iest)) where Iest models the estimated image.

Our total loss for the proposed CNN inverse imaging while
training is a weighted combination of the three losses and is
given as, LCNN = σ1LPSNR +σ2LPercep+σ3LAdv , where,
σ1, σ2 and σ3 are empirical weights assigned to each loss.
In this work these constant are fixed as σ1 = 1.0, σ2 = 0.6,
and σ3 = 0.1. Lastly, the parameters of this networks to be
optimized are summarized in ΘNN .

Hardware-in-the-loop Optimization of Hybrid Camera

The HIL optimization is formalized using two models,
one for the black-box camera and the second for the image
reconstruction (inverse imaging) software. The observations
registered by the sensor are defined as

yi = Thard(ΘSLM , xi), (1)

where xi is a true image, yi represents the blurred image
collected at the sensor, and ΘSLM is the phase profile of the
flat optics at the SLM. The operator Thard in Eq. (1) includes
image formation due to light-beam propagation through optical
components of the system and signal transformations by other
hardware elements in the loop. The mathematical model of
this operator is unknown, and yi corresponding to xi can be
found experimentally only. The varying phase profile of SLM
ΘSLM is subject to optimization.

On the other hand, the inverse imaging software operator
TNN , parametrized by ΘNN , reconstructs an estimate of xi

from yi . This process is modeled as

x̂i = TNN (ΘNN , yi). (2)

The design of hybrid camera requires to find the encoding
phase modulation for DOE parametrized by ΘSLM and the
imaging software operator TNN with parameter ΘNN .

To design the flat optics and inverse imaging software
jointly, we use an end-to-end approach employing neural
networks. To this end, the set of training images {xi}Ni=1

is given, the operator TNN in Eq. (2) is defined by the
structure of DRUNet [26], and ΘNN are parameters of this
network. This network can handle various noise levels for an
RGB image, per channel, via a single model. The backbone
of DRUNet is U-Net. Therefore, the goal of our end-to-end
optimization is formulated as follows

(Θ̂SLM , Θ̂NN ) ∈ argmin
ΘSLM ,ΘNN

N∑
i=1

L(x̂i, xi), (3)

where L is a loss function composed from peak signal-
to-noise ratio (PSNR) values for accuracy evaluation and
perceptual metrics. Remark that combining Eqs.1 and 2, we
have that x̂i = TNN (ΘNN , Thard(ΘSLM , xi)) in Eq. (3).

Once the hybrid camera is designed, the attained solution
(Θ̂SLM , Θ̂NN ) enables image reconstruction given as

x̂i = TNN (Θ̂NN yi). (4)

Observe that the optics is fixed in Eq. (4), and it defines the
inverse imaging for any yi.

This image reconstruction algorithm approximates the in-
verse imaging operator for image formation by Thard. The
algorithm can be classified as a blind inverse imaging algo-
rithm as not using convolutional kernels invariant or varying.
This method is kernelless which is cardinally different with
respect to the conventional image inverse imaging algorithms
using various models of convolutional kernels and point spread
functions (PSFs) [1], [16], [27]–[29].

III. RESULTS

A. Design and implementation
The optical system have been designed for achromatic

extended depth of field (EDoF) imaging. To assess its per-
formance numerically and visually we captured images in two
scenarios: (1) three monitor imaging with three fixed distances
(0.5, 1.0, 1.8 m) between the imaging monitors and sensor and
(2) real-life scene with arbitrary locations of various colored
objects at several distances relative to the camera (Fig.5).
The three monitor scenario was used for the design: joint
optimization of phase characteristics of meta-optics and image
reconstruction CNN. The design of the phase modulation is
composed from two successive problems. The first one is opti-
mization of the SLM parameters in the frame of the developed
HIL methodology. The optimized phase distribution is then
directly translated to a meta-optic using simple square pillars
in SiN (700 nm height, 350 nm period) on a quartz substrate
(500 um thickness), which does not add a substantial thickness
to the refractive lens (4.5 mm thickness). Fig. 3 provides a
characterization of the general view and phase properties of
the manufactured meta-lens, the latter in comparison with the
optimized phase profile of SLM.

Fig. 3. Properties of the fabricated meta-mask. The bottom row show
scanning electron micrographs highlighting the structural integrity
across the device. The holographic characterization of the meta-
mask phase-delay indicates a close match between design (red) and
measurement (blue).

Importantly, although we consider the phase response for
only a single wavelength (511 nm), the resultant meta-optic
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Fig. 4. In-focus monitor imaging. The first and second columns
show the blurred (registered by sensor) and ground-truth images. The
distance from object to sensor (focal distance) d1 = 1.0 m. Columns
2 and 3 show the kernelless imaging with the proposed hybrid system
and the kernel-based inverse imaging left and right, respectively.

still yields an improvement over the entire visible range as
validated in full-color imaging experiments using a monitor
setup (Fig.4), as well as under ambient light (Fig.5). In
comparison to a single refractive lens-only configuration we
achieve better image quality, particularly for off-focus depths.
Even compared with a commercial compound lens we demon-
strate on-par or better performance. An additional improve-
ment of the designed hybrid meta-optics over the commercial
compound lens, and the lens-only setups is the extended depth-
of-field (see Fig.5). Essentially, by combining a refractive and
meta-optic in one hybrid system we circumvent otherwise
stringent limitations that otherwise restrict the performance
of either system alone. Specifically, no meta-optic has been
demonstrated up to date, with an equivalent combination of
image quality, large aperture size, low F -number, and depth-
of-field.

B. Imaging results

The in-focus monitor imaging configuration results are illus-
trated in Fig.4. The first and second columns show the blurred
and ground-truth images at a distance of d1 = 1.0 m. Columns
3 and 4 show the imaging results obtained with kernel-based
and kerneless inverse methodologies for the hybrid system.
These reconstructions are obtained from the modulated, heav-
ily blurred images captured by the sensor in column 1. In
column 3, we show the images reconstructed from these
blurred observations using the conventional type kernel-based
Wiener inverse imaging. Here we use the algorithm presented
in [21]. The comparison is clearly in favor of the developed
kernelless technique.

In the real-life scene, we further compare the hybrid optic
with a compound multi-lens camera, namely a Sony Alpha 1
III sensor with a Sony SEL85F18 lens (at the aperture limit
values of F/1.8 and F/22). For the fair comparison, the focal
distance of the multi-lens camera is fixed to 1 m as it is for
the designed hybrid. The columns 1 and 2 show the images
given by the camera. In the third column, one can see the
corresponding images obtained by the hybrid. Specific image
details, for objects at out-of-focus distances of 0.6 m and

Fig. 5. Real-life scene composed of multiple objects/toys of various
colors arranged at different depths relative to the sensor. The top
left shows a schematic of the compound lens, whereas top right
images show implementation of the hybrid system. The second
row (right columns) show the raw capture of the hybrid system.
The reconstructed images are presented in row 3 with enlarged
fragments in rows 4 and 5, corresponding to off-focus distances
of d1 = 0.6, 1.1 m, respectively. The results from compound-lens
camera are obtained at the limit aperture values of F/1.8 and F/22.

1.1 m, are enlarged in rows 4 and 5. The images obtained with
a hybrid optic exhibit sharper images with a better resolution
of details at both depths. Further, in comparison with the
compound camera and aperture of F/1.8, the hybrid shows
clearly better imaging quality across a larger depth range. Even
for the smaller aperture value of F/22, the images obtained
with the hybrid exhibit sharper details for out-of-focus depths
at 0.6 m.

IV. CONCLUSION

A full-color miniature computational camera composed of a
refractive lens and large aperture meta-optic is demonstrated.
The hybrid solution has an a low F -number of 1.0. A crucial
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aspect in the development is the design of the meta-optic,
where we employed a hardware-in-the-loop methodology to
optimize the phase distribution and the computational backend
in an end-to-end design framework. Specifically, the wavefront
modulation and the image reconstruction are the fundamental
micro-camera design problems with meta-optics. The popular
convolution-based blurred image modeling (kernel-based) does
not fit well with cameras with meta-optics. As a valuable
alternative, we developed for image reconstruction the ker-
nelless blind inverse imaging. This technique is based on a
convolutional neural network. Its efficiency was demonstrated
in the frame of the hardware-in-the-loop joint optimization of
meta-optics and image reconstruction software. The developed
HIL setup allows us to overcome fundamental limitations of
mismatch between theory-based and resultant experimental
image formation problems of meta-optics. We envision that
the developed design concept, where a hardware-in-the-loop
methodology is married with an kernelless computational
backend in an end-to-end design framework, will be extended
in future works towards diverse tasks, ranging from hyper-
spectral imaging, to classification or object detection tasks.
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