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Abstract—A seismic survey captures a wave field for detecting
earth properties that support geological explorations. The seismic
data is acquired through the use of sources and receivers located
in the study field. The captured data, organized in a 3D dat-
acube, can be incomplete because of environmental limitations,
hardware malfunction, or undetonated sources to reduce costs
and environmental impact. The missing data from removed
sources, so-called missing shots, has been computationally re-
covered by compressive-based methods that usually vectorize the
datacube, destroying the natural structure and redundancies in
the seismic data. This work introduces a shot recovery method
for a commonly used orthogonal seismic acquisition geometry,
inducing a non-local self-similarity prior through the Plug-and-
Play framework (PnP). The proposed method relies on the
flexibility and versatility of the PnP to employ a denoiser as
the promoter of the high-structural redundancies over the 3D
datacube. Experiments over a synthetic-realistic dataset show
the proposed method’s effectiveness, obtaining improved recovery
quality and reduced computational time compared to the state-
of-the-art methods.

Index Terms—Plug-and-Play framework, Seismic shot recov-
ery, Orthogonal acquisition geometry, Cross-spread domain.

I. INTRODUCTION

Seismic surveys are used in geophysics exploration to de-
termine the structure of subsurface rocks and soils, supporting
the decision-making on oil, gas, and mineral exploration and
extraction [1]. A seismic survey is acquired through the
generation of seismic waves in the ground using devices called
sources, then, the wave reflections and refractions are recorded
by sensors called receivers.

The 3D orthogonal geometry is a seismic acquisition con-
figuration where lines of receivers and sources are deployed
in a grid pattern, with the lines crossing each other at right
angles; the intersection between a line of receivers and a line
of sources forms a cross-spread, a basic 3D seismic unit.
The collected data can be processed to form a geophysical
image [2] or organized in a 3D datacube to be computationally
treated in denoising, super-resolution, and processing tasks.

Seismic surveys face several challenges, such as equipment
failure, poor data quality, and gaps in the acquisition geometry
by missing devices, causing the loss of information during the
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acquisition and consequently reducing the quality and accu-
racy during the posterior geophysical image generation [3].

The nature of the loss of information is an essential issue for
companies conducting seismic surveys. In particular, missing
receivers lead to missing seismic traces, corresponding to
1D columns in the seismic datacube, usually completed with
interpolation techniques [4]. Meanwhile, undetonated sources,
an exciting scenario from an economic and ecological point
of view, lead to missing 2D slices, referred to as shots, in the
cross-spread 3D datacube, whose reconstruction is a challeng-
ing research and industry problem yet to be explored [5].

Data processing and interpolation techniques have recently
addressed the seismic shot reconstruction problem, using prior
information such as sparsity on a transformation basis [6]
and interpolation neural networks [7]. However, the works
mentioned above usually fail in the reconstruction of the 3D
structure of the cross-spread and disregard the high non-local
intrinsic redundancies, a prior used to improve the accuracy of
seismic noise attenuation [8] and, to a lesser extent, for seismic
interpolation [4]. A possible solution is the use of a non-local
self-similarity (NSS) prior, which relies on the assumption that
regions with similar patterns are not necessarily located in the
same spatial region [9], [10]. In a seismic array, the NSS can
be attributed to the distribution of the wave phenomena across
adjacent subsurface surfaces.

Therefore, this work introduces a seismic shot reconstruc-
tion algorithm that takes advantage of the NSS presented in
the seismic slices of the cross-spread using a patch-based plug-
and-play (PnP) framework (Section II). The PnP is introduced
flexibly through a tensor factorization that enables applying the
NSS prior independently through the different datacube dimen-
sions. Experiments using a synthetic-realistic database show
a better performance of the proposed algorithm, in terms of
reconstruction quality and computation time-saving, compared
to the state-of-the-art interpolation algorithms (Section III).

II. PLUG-AND-PLAY LOW-RANK PRIOR METHODOLOGY
FOR SEISMIC SHOT RECOVERY

This section describes the mathematical modeling of the
seismic acquisition process with sub-sampled shots, the for-
mulation of the proposed optimization problem for seismic
shot reconstruction, and the developed numerical algorithm.
Throughout the section, definitions will use the tensor notation
and operations defined in [11].
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Fig. 1: Proposed method overview. Section I) represents the orthogonal seismic geometry with undetonated sources (shown
in red). The input of the algorithm is the sensing matrix encoding the position of the missing shots. Section II) outlines the
proposed reconstruction algorithm process. There, the PnP step is solved in two different tensor dimensions.

Figure 1 illustrates the proposed method, divided in the
two following sections, the sub-sampling acquisition and the
reconstruction algorithm.

A. Seismic Shot Sub-sampling Observation Model

Mathematically, let X € RIxI2XIs define a 3D tensor
that represents the seismic datacube of a cross-spread with
I receivers and I3 sources, recorded in I; time samples.

The seismic acquisition observation model with sub-
sampled shots, representing the phenomena when a certain
number of sources are not detonated, can be mathematically
formulated with the following tensor forward linear model

V=4 Xx3®, 6]

where Y € RI1*12%I3 denotes a 3D captured datacube with
missing shots and ® € {0,1}%*s denotes the shot sub-
sampling matrix. @ is a binary diagonal matrix encoding
the detonated and undetonated shots with one and zero,
respectively, where the zeros produce the missing shots in
Y. Figure 1 highlights as the input, an observed tensor with
missing shots, as well as their corresponding sensing matrix.

B. Seismic Shot Recovery Problem Formulation

The seismic shot recovery is an ill-posed challenging inverse
problem aiming to reconstruct the seismic datacube X from
the captured datacube ) and the sub-sampling matrix ®. To
mitigate the ill condition, this work takes advantage of the self-
similarities exhibited by the seismic features (i.e., hyperbolic
and linear events), considering the high non-local redundancies
in the structure of the underlying subsurface rocks, where the
same seismic pattern can be found at different locations. The
optimization problem for shot reconstruction is proposed as

minimize

1
X6R11><12><13 iHy_X X3¢H§+I’L||X||NL7 (2)

where the first term corresponds to an ¢3-norm minimizing
the distance between the observed and estimated incomplete

datacube, ensuring the condition given in (1), and the second
term corresponds to the non-local-norm regularizer defined
in [12] promoting the NSS prior.

This work aims to promote the NSS over the different
seismic datacube dimensions. A tensor factorization will be
used to separate the regularizer in each independent dimension
of the seismic datacube.

If X € RI*12%I3 defines an arbitrary third-order tensor,
then the ¢** € {1,2,3} dimension of the tensor can be
factorized with the m-mode product as

X = Zp xo Py, 3)

where P, € R7¢*7 defines a basis matrix and Z, € RI1x2xIs
defines a coordinate tensor, with INH = rp when Kk = ¢, and
I, = I, otherwise. Depending on the selection of the basis
matrix Py, the tensor Z, will exhibit certain properties. For
instance, when P, is computed with the 7, most significant
principal components of the matrix X{y, the tensor Z, pre-
serves the spatial structures in the slices of the £** dimension.

Considering the factorization introduced in (3), the non-
local-norm can be separated in two terms, for the temporal
and receiver dimensions, as shown in Fig. 1, as

pl|XIve = pil| 21 x1 Pil|nz + p2l| 22 x2 Pollnz,  (4)

with the separation of the regularizer parameter p = fi1 + 9.
The formulation in (4) does not include the third dimension,
i.e., the source dimension, because the seismic datacube is
sub-sampled in this dimension, leading to an ill-conditioning
problem in the factorization.

Notice that the non-local-norm in (4) is applied directly to
the Z, x ¢ P, tensors, which is equivalent to compute the norm
into X'. Nevertheless, it can be assumed that the NSS prior of
X is preserved on the /*" dimension slices of the coordinate
tensors Zy, with a proper selection of P,. Therefore, the non-
local-norm can be approximated as follows

pll XNz ~ pal| 21l vz + pell 22l N 3)
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Introducing the norm definition in (5), in the optimization
problem (2), the proposed seismic shot reconstruction results
in the following optimization problem with separated variables

L 1

minimize ||V — X x5 @[3 + ]| Z1llve + p2l Z2llve
X2, 2

subject to X:Zl X1 ].:’17 X:ZQ X9 PQ.

(6)
C. Seismic Shot Recovery Numerical Algorithm

The proposed numerical algorithm follows the Alternating
Direction Method of Multipliers (ADMM) framework to find
the solution of the optimization problem formulated in (6),
considering that the cost function is composed of a sum of
independent terms with respect to each optimization variable.

The augmented Lagrangian of the problem is defined as

1
EP(XaZKaWZ) = 5”3} — X x3 ¢||%
+M1||Zl||NL+§HX—Z1 x1 Py + W3 @)
‘|| 22N + gHX — 2y x9 Py +Wsl3,

where W, € RI*I2xIs are the dual variables for each
constraint of the problem, and p > 0 is the dual parameter that
weights the importance of the constraint in the cost function.
The ADMM iteratively minimizes the augmented La-
grangian function in (7), updating each variable as follows

X' ¢ arg min Ly(X, 2], W) ®)
x

Zit € arg min £,(X'T Z,, W) )
Z

Wit = xtt — Zit L Wl

for indexes ¢ € {1,2}.

The update details defined in (8)-(10) are summarized in
Algorithm 1. There, line 1 computes the basis matrices P,
from the r, principal components of the unfolding matrix of )
on the /** dimension. Lines 3-4 initialize the Z, variables from
the tensor ) and the dual variables W, as null tensors. Line 7

(10)

Algorithm 1: Seismic shot reconstruction algorithm

Input: Acquisition data: ), ®.
Algorithm parameters: p, Ly, 7¢, Niter-
Output: Reconstructed cube X™ter

/ the transformation basis
1 Py« PCA(Y[@]J“Z)

2t 0

3 2L Yx,P]

a Wi+ 0

5 while ¢ < n;se, do

6 St(—ZfX1P1+Z§X2P2—W1—W2
7| AL (V4 pSY) x5 (B + 200) !

8 | ZM <« BM3D, (X +W)) x, P/, 0y)
o | Wit e attt - Zpt W)

10 t—t+1

* PCA as selected

updates X’ following the optimization problem in (8), involving
a differentiable function composed of the summation of three
tensors {5 norms. Hence, (8) is solved using a closed solution
by finding the zeros of the derivative of the cost function.
Lastly, line 8 updates the auxiliary variables Z; by solving an
optimization problem with the form

s Pyt t
minimize §||Xerl — Zyxe P+ WEE + el Zellvr, (11)
£
reformulated as a proximal operator optimization given by

minimize
Zy

2}‘3”25(XHIWVE)XePeTH%HIZeIINL, (12)
where o, = +/u¢/p defines the parameter related to the
proximal operator. Equation (12) connotes that Z, is a noisy
version of (X't + W}) x, P/, so that, the problem can
be solved by the PnP methodology using a greedy denoising
algorithm. In particular, this work adopted the channel-wise
BM3D denoiser [13] considering the patch-based nature of
the algorithm, where the block-matching step leads to pro-
moting the NSS prior. Therefore, the solution of (12) can be
approximated by

Z, =BM3D, (X" + W) x P} ,00),  (13)

with BM3Dy(+) defining the BM3D applied through the time
or receiver slices for £ = 1 and ¢ = 2, respectively.

III. SIMULATIONS AND RESULTS

This section measures the performance of the proposed
algorithm and the comparison of the quality results against
various data completion algorithms in the literature.

A. Experimental design

The experiments employ the “SEAM Phase II-Land Seismic
Challenges, Foothills model” dataset [14], a synthetic-realistic
acquisition, including sharp topography, soft alluvial fill at the
surface, and complex structures at depth features. A datacube
with 61 shots was resized to 128 x 128 time and receiver
samples, given that some comparison methods require dyadic
dimensions. In the simulations, 25% of the shots were removed
from the seismic datacube in a randomized scheme following
the formulation in (1), and then reconstructed by each method.

This work builds a comparative benchmark adapting state-
of-the-art reconstruction methods, given that the seismic shot
reconstruction problem has not been widely addressed. The
algorithms used in the comparison benchmarking are: the
consensus equilibrium (CE) [6], using multiple regularizers
for the shot reconstruction problem; the multichannel singular
spectrum analysis (MSSA) [15], using rank-reduction to re-
construct 1D columns in the seismic datacube; an interpolation
neural network using a ResNET proposed in [16], where the
model was trained taking advantage of the similarities between
the shots and receiver slices; and a traditional optimization
promoting a sparsity prior solved with an ADMM algorithm.

The reconstruction quality is measured in terms of: the
mean-squared error (MSE), quantifying the value-to-value
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Fig. 2: Surface plot of the reconstruction PSNR for different values of i1, p2, and p. The p, values are in the [1071% 1071
logarithmic range, and p in the [107%, 1] logarithmic range. The z and y axis represent the order for the pj, p2, and p
parameters, and the z axis represents the obtained PSNR. A smooth variation across the evaluated parameters can be observed,
achieving the highest values for p = 0.001 and y, in the 1076 order.

difference; the peak signal-to-noise ratio (PSNR) and the
signal-to-noise ratio (SNR), measuring the power of the re-
construction error with respect to the desired signal; and the
structural similarity index (SSIM), measuring the similarity in
the inner structures and events of the shots. Additionally, the
computing time was recorded in each simulation.

B. Algorithm setup

The regularization parameters selection is a critical issue in
the ADMM-PnP approach. Therefore, the proposed algorithm
parameters were selected through a cross-validation strategy to
find the best configuration. The non-local regularizer parame-
ters 1, were varied in a logarithmic scale in the [1071%,1071]
range, and the dual parameter in the [10~%, 1] range.

Figure 2 depicts a surface showing the results of the cross-
validation process. There, a smooth behavior can be seen
around an optimal pair of parameters, where the highest
quality reconstruction is achieved when both p, parameters
are in the order 10~°. Furthermore, notice that the proposed
algorithm is sensitive to the dual parameter, marking a signif-
icant quality difference for reconstructions using p = 1073,

Besides, the number of principal components used in the
matrix basis P, was tuned to r, = 75 after cross-validation
of 25 7, values uniformly distributed in the range [5,100].
Although the PnP strategy does not guarantee algorithm con-
vergence, it was determined experimentally that for a number
of 200 iterations, the algorithm reached a stable solution.

The CE method’s parameters were tuned using a cross-
validation procedure following the referenced metrics in the

TABLE I: Quantitative seismic shot reconstruction results.

The MSE is scaled in the 103 order. The PSNR and SNR

are measured in decibels [dB], and the computation time is
measured in seconds [s].

| Proposed | CE [6] | ResNET [16] | MSSA [15] | ADMM

MSE 1.54 2.29 21.57 2.20 2.87
PSNRT 28.12 26.40 16.66 26.57 25.42
SNRT 22.18 20.45 10.71 20.62 19.47
SSIM™ 0.81 0.74 0.37 0.65 0.53
Time 808 3305 6262 5362 2752

author’s paper. In the MSSA algorithm, the rank parameter was
varied in the range [5,80] with a 5-unit step and the selected
frequencies in the [0, 80] range. For the ResNET, the network
architecture and optimizer were selected as in [16]. Lastly, the
sparsity regularization parameter in the ADMM method was
varied in a logarithmic scale in the [10~°,10~%-%] range, and
the dual parameter was varied uniformly in the range [0.5, 1.5],
taking 10 values from the range in each case.

C. Shot reconstruction results

Table I summarizes the results of the simulations carried
out to measure the performance of the proposed algorithm
against the comparative benchmark. The proposed algorithm
outperforms the literature methods for all evaluated metrics,
obtaining a gain of up to 1.55 [dB] of PSNR and 0.06 of SSIM.
The gain in the SSIM can be interpreted as an improved ability
of the algorithm to reconstruct the internal structures exhibited
in the missing shots, which is essential for good-quality surface
image generation and analysis. Likewise, Table I compares the
execution time to measure computational complexity, where
the developed algorithm presents a significant reduction in
computing time.

Figure 3 visually compares the structures in the recon-
structed shots. The first row shows an amplitude map of a
reconstructed shot by each method; the second row shows
two zoom sections showing important differences between the
reconstructions; and the third row shows the absolute error
map between the reconstructed and ground-truth shot.

The shots reconstructed by the proposed algorithm exhibit a
better definition of the seismic events, presenting a lower error
in the peaks of the events compared to the other methods.
The cyan section highlights two important features. In the
right part, a set of events are well reconstructed with the
proposed method, while the same events are estimated with
very reduced amplitudes or lost completely as in the ResNET
and ADMM cases; on the other hand, the left part shows noise,
well reduced by the proposed method, while intensified by the
others. The red section shows well-reconstructed events using
the proposed method, while the comparison methods have a
loss of amplitudes. The absolute error maps report the amount
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Fig. 3: Seismic shot visual reconstructions. Each column presents the results using a different method. The first row shows
one reconstructed shot in the amplitude domain. The second-row zooms in and highlights the reconstruction differences in two
shot sections. The third row reports the normalized absolute difference between the reconstruction and the ground truth.

of missing information for all the methods, with the highest
errors located in the highlighted sections. Notice that the
ResNET error map presents the highest values, showing that
its performance is affected by poor amplitudes reconstruction.

IV. CONCLUSIONS

This work proposed a seismic shot reconstruction algorithm
that takes advantage of the non-local self-similarity property
present in the time and receiver dimension of the seismic
datacube in the cross-spread domain. Specifically, a PnP
methodology is flexibly introduced in an ADMM algorithm
using a low-rank tensor factorization to apply the non-local
prior through two different dimensions. Simulations show that
the proposed algorithm achieves better reconstructions than
the methods in the comparative benchmark in an experiment
with 25% of sub-sampled shots. Experimentally, the developed
algorithm has a faster execution time compared with the
specialized seismic interpolation methods; this is, the use of
the PCA tensor factorization, unlike the sparse transformation
in CE algorithm [6], helps to reduce computational complexity
and achieve reconstructions with lower loss of seismic events
information. Finally, the regularization parameter setup of the
proposed algorithm was analyzed through a cross-validation
methodology, where slight variations in the dual parameter
were found to produce a significant difference in the quality
of the reconstructed shots.
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