
Asymptotic analysis and truncated backpropagation
for the unrolled primal-dual algorithm

Christoph Brauer∗†, Dirk A. Lorenz∗
∗Institute of Analysis and Algebra, Technical University of Braunschweig, Braunschweig, Germany

†Institute of Lightweight Systems, German Aerospace Center, Stade, Germany
Email: {ch.brauer, d.lorenz}@tu-braunschweig.de

Abstract—Algorithm unrolling combines the advantages of
model based optimization with the flexibility of data-based
methods by adapting a parameterized objective to a distribution
of problem instances from a finite sample from that distribution.
At inference time, a fixed number of iterations of a suitable
optimization algorithm is used to make predictions on unseen
data. To compute gradients for learning, the last iterate is
differentiated with respect to the parameters by backpropaga-
tion schemes that get expensive when the number of unrolled
iterations gets large. Therefore, only few unrolled iterations
are used which compromises the claimed interpretability in
terms of the underlying optimization objective. In this work, we
consider convex objective functions, derive an explicit limit of the
parameter gradients for a large number of unrolled iterations,
derive a training procedure that is computationally tractable and
retains interpretability, and show the effectiveness of the method
using the example of speech dequantization.

Index Terms—unrolling, learning to optimize, variational prob-
lems, convex optimization, speech dequantization

I. INTRODUCTION

We consider the task to recover an unknown ground truth
from observations x ∈ Rn by means of the variational
optimization [1] problem

ŷ ∈ argmin
y∈Rn

F (Ky) +G(y − x) (1)

where F : Rk → R and G : Rn → R are proper, convex and
lower semi-continuous functions and K ∈ Rk×n is a matrix.
The latter is assumed to be unknown and shall be learned
from data, whereas the aforementioned functions are fixed.
This induces a bilevel optimization [2] problem

min
K∈Rk×n

m∑
i=1

`(yi, ŷi) s.t. ∀i : ŷi ∈ S(K,xi) (2)

with training data (xi, yi) and a loss function `, and S(K,x)
denotes the set of solutions of (1). Computing a solution of
(2) can be hard for various reasons. First, there is often no
well defined solution operator S and hence, it is infeasible to
rewrite (2) in terms of an unconstrained objective. Second, in
order to perform gradient descent, one needs to differentiate S
with respect to K. If the objective in (1) is smooth and attains
a unique minimizer, this can theoretically be accomplished by
means of implicit differentiation which can, however, still be
numerically expensive.

A. Algorithm unrolling

The approach of unrolling [3]–[6] manages without differ-
entiation through the lower-level problem. Instead, iterates of a
suitable optimization algorithm for (1) are used to approximate
and replace the solution operator in (2). As a result, the bilevel
problem can be recast as an unconstrained problem

min
K∈Rk×n

m∑
i=1

`(yi, A
L(K,xi)) (3)

where AL(K,xi) is the L-th iterate of the chosen algorithm
applied to (1) with input data xi and linear operator K.
This term directly replaces the solution operator in (2), but
with the important difference that the former is single-valued
and can thus be shifted from the constraint into the loss. A
well-known and customized algorithm for (1) is the primal-
dual algorithm proposed by Chambolle and Pock [7] which
essentially performs alternating updates of primal and dual
variables yl and ψl, respectively, as well as an extrapolation
of the primal iterate. In our subsequent analysis of (3) we
choose AL(K,xi) = yLi to be the L-th iterate of the primal-
dual algorithm applied to (1) with fixed linear operator K and
data xi. As long as the context is clear, we omit the sample
index i for ease of notation. The primal-dual algorithm is
outlined in Algorithm 1. The convergence proof in [7] requires
στ‖K‖2 < 1 and θ = 1. In the dual update, F ∗ denotes
the convex conjugate of F and finally, proxσF∗ and proxτG
denote respective proximal operators.

B. Previous work and contribution

The authors of the seminal work [8] proposed LISTA, an
unrolled version of the iterative shrinkage-thresholding algo-
rithm (ISTA) [9] with learned dictionaries for sparse coding. In
particular, they showed that the number of iterations required
for a given accuracy of the predicted codes can be reduced
significantly by learning parts of the algorithm. This motivated
a line of work in which theoretical aspects, enhancements
and variants of LISTA were addressed. Other than ISTA, the
unrolling of different optimization algorithms like Chambolle-
Pock [10], proximal interior point methods [11] and plain
gradient descent [12] have been investigated, just to name a
few. Applications include communication systems [13], speech
[14] and image [15] processing, as well as compressive sensing

860ISBN: 978-9-4645-9360-0 EUSIPCO 2023



yl−2

zl−1
D ψl−1

zl−1
P yl−1

zl
D ψl

zl
P yl

zl+1
D ψl+1

zl+1
P yl+1

zl+2
D ψl+2

zl+2
P yl+2

zl+3
D

proxτG

σ(1 + θ)K

Id

−σθK

yl−2

zl−1
D ψl−1

zl−1
P yl−1

zl
D ψl

zl
P yl

zl+1
D ψl+1

zl+1
P yl+1

zl+2
D ψl+2

zl+2
P yl+2

zl+3
D

proxσF∗

−τK>

Id

Fig. 1. Computation of primal (left) and dual (right) iterates in Algorithm 1

Algorithm 1 Primal-dual algorithm [7]
Choose σ, τ > 0 and θ ∈ [0, 1]
Initialize y0 = y0 = x and ψ0 = 0
for l = 0, . . . , L− 1 do

zl+1
D = ψl + σKyl

ψl+1 = proxσF∗(z
l+1
D )

(Dual Update)

zl+1
P = yl − τK>ψl+1

yl+1 = proxτG(zl+1
P − x) + x

(Prim. Update)

yl+1 = yl+1 + θ(yl+1 − yl) (Extrapolation)

end for

[16]. We refer to [3]–[6] for a comprehensive list of references,
including further algorithms and application domains.

On the one hand, for several reasons, the number of
unrolled iterations is usually chosen to be relatively small
in practice. First, fewer iterations induce faster inference.
Second, memory requirements during training scale linearly
in the number of unrolled iterations. And third, state-of-the-
art results are yielded with few iterations. On the other hand,
due to their close connection with underlying optimization
problems, unrolling methods are often attributed a high degree
of interpretability [4], [17], although the connection between
problem and unrolled algorithm may be vague when the
number of unrolled iterations is insufficient for convergence.
This aspect can be mitigated by deep equilibrium architectures
[18], [19] which use fixed-point equations to virtually address
the unrolling of infinitely many iterations. In this work, we
take up a related point of view. In Section II, we provide
an asymptotic analysis of unrolled Chambolle-Pock and show
that, in the limiting case L → ∞, parameter gradients are
independent of primal-dual iterates (yl, ψl) and depend only
on the respective limits (y∗, ψ∗). Further, we show that under
mild assumptions, gradients computed during backpropagation
constitute a vanishing sequence. From the latter, we derive
a truncated backpropagation [20]–[22] scheme that can be
utilized to make the unrolling of large numbers of iterations
computationally tractable. Our investigation is similar to that
in [20], except that we focus specifically on variational lower-
level problems. Section III illustrates numerical experiments
that demonstrate efficiency and effectiveness of the proposed
method, and highlight that the unrolling of many iterations is

Algorithm 2 Backpropagated gradients
Choose σ, τ and θ as in Algorithm 1
Adopt yL, z1P , . . . , z

L
P , z

1
D, . . . , z

L
D from Algorithm 1

Initialize δL+1
P = ∇ŷ `(y, yL)

Initialize δL+1
D = δ

L+1

D = 0
for l = L, . . . , 1 do

δlP = JproxτG(zlP − x)>(δl+1
P + σK>δ

l+1

D ) (4)

δlD = JproxσF∗ (zlD)>(δl+1
D − τKδlP ) (5)

δ
l

D = δlD + θ(δlD − δl+1
D ) (6)

end for

favorable in terms of interpretability.

II. THEORETICAL ANALYSIS

Lemma 1. The gradients

δlP = ∇zlP `(y, y
L) and (7)

δlD = ∇zlD `(y, y
L) (8)

can be computed recursively as outlined in Algorithm 2 and
it holds that

∇K `(y, yL) =

L∑
l=1

σδlD(yl−1)> − τψl(δlP )> . (9)

Proof. In order to compute (7) and (8) recursively, we first
observe that zlP affects zl+1

P , zl+1
D and zl+2

D all through y` (see
Figure 1 left). Analogously, zlD goes into both zl+1

D and zlP via
ψl (see Figure 1 right). As a consequence, we can apply the
chain rule analogous to the well-known backpropagation pro-
cedure for neural networks [23], rearrange the terms slightly,
and obtain (4)–(6). Finally, as K affects the objective exactly
through z1P , . . . , z

L
P and z1D, . . . , z

L
D, one more application of

the chain rule gives us (9).

Up to this point, the number of iterations L has been fixed.
Next, we consider the limiting case L → ∞. Therefore, we
have to take into account that backpropagated gradients δlP
and δlD do not exclusively depend on the iteration index l
but also on the total number of iterations. To see that, recall
that the initialization δL+1

P in Algorithm 2 depends on L and
hence also the recursive sequence to compute backpropagated
gradients. We adapt our notation accordingly and write δl,LP
and δl,LD in the following.

861



Theorem 2. Suppose that there exist constants c ≥ 0 and
0 ≤ κ < 1 such that

‖δl,LD ‖ ≤ cκL−l and ‖δl,LP ‖ ≤ cκL−l (10)

hold for arbitrary L and l ∈ {1, . . . , L}. Then, the limits

∆P := lim
L→∞

L∑
l=1

δl,LP and ∆D := lim
L→∞

L∑
l=1

δl,LD (11)

exist and are finite. Moreover, it holds that

lim
L→∞

∇K `(y, yL) = σ∆D(y∗)> − τψ∗(∆P )> . (12)

Proof. First, we use (10) and deduce

lim
L→∞

L∑
l=1

‖δl,LP ‖ ≤ lim
L→∞

L∑
l=1

cκL−l

= lim
L→∞

c
1− κL
1− κ =

c

1− κ <∞ .

Hence, the limits (11) exist and are finite. To prove (12), we
start with (9) from Lemma 1 and obtain

∇K `(y, yL) =

L∑
l=1

σδl,LD (yl−1)> − τψl(δl,LP )>

=

[
L∑
l=1

σδl,LD (y∗)> − τψ∗(δl,LP )>

]
︸ ︷︷ ︸

L→∞−−−−→ (12)

−σrL1 + τrL2 .

Thus, it remains to show that both terms

rL1 =

L∑
l=1

δl,LD (y∗ − yl−1)> and rL2 =

L∑
l=1

(ψ∗ − ψl)(δl,LP )>

vanish with L → ∞. To see that, let ε > 0. As we have
yl → y∗ for l→∞, there exists a λ ∈ N such that

∀l ≥ λ : ‖y∗ − yl−1‖ < ε

limL→∞
∑L
l=1‖δ

l,L
D ‖

. (13)

Using (10) and (13), we further obtain

‖rL1 ‖ ≤
L∑
l=1

‖δl,LD ‖‖y∗ − yl−1‖

=

λ−1∑
l=1

‖δl,LD ‖‖y∗ − yl−1‖+

L∑
l=λ

‖δl,LD ‖‖y∗ − yl−1‖

≤ cmax
l<λ
{‖y∗ − yl−1‖}︸ ︷︷ ︸

const.

λ−1∑
l=1

κL−l︸ ︷︷ ︸
L→∞−−−−→ 0

+
ε
∑L
l=λ‖δ

l,L
D ‖

limL→∞
∑L
l=1‖δ

l,L
D ‖︸ ︷︷ ︸

L→∞−−−−→ const. ≤ ε

and thus, limL→∞ rL1 ≤ ε. By analogous arguments, it follows
that also limL→∞ rL2 ≤ ε. Finally, letting ε → 0 completes
the proof.

Fig. 2. Example of a ground truth signal y† (solid) and its quantized
counterpart x (dotted). Quantization at the bitrate β = 4 corresponds to a
partition of the signal range (−1, 1) into 16 quantization intervals. The entries
of x are located in the centers of these intervals and the goal of dequantization
is to recover y† from x.

III. NUMERICAL EXPERIMENTS

Our experiments are based on the variational problem

ŷ ∈ argmin
y∈Rn

‖Ky‖1 s.t. ‖y − x‖∞ ≤ η
2 (14)

that has previously been considered in [14], [24] for speech
dequantization. Therein, x is an observation that is known to
originate from an unknown ground truth signal y† through
quantization at a certain bitrate (see Figure 2). The constraint
in (14) reflects the prior knowledge that each value xt is
centered in a quantization interval of length η, and that the
corresponding value y†t must have been in the same interval,
i.e., in an η/2-environment of xt. Moreover, K ∈ Rk×n is an
analysis operator and the `1-norm incorporates the assumption
that the analyzed signal Ky is sparse. Regarding assumption
(10) in Theorem 2 it can be shown in the special case (14)
that

lim
L→∞

δl,LP ∈ ker(K) and lim
L→∞

δl,LD ∈ ker(K>) .

This can be seen by deducing that Algorithm 2 is itself an
instance of Chambolle-Pock and then reverse-engineering the
underlying optimization problem. As a consequence, as long
as K is square and has full rank, it holds that δl,LP , δl,LD → 0
for fixed l which is necessary for (10).

The dequantization objective (14) can be traced back to the
more general variational problem formulation (1) by means of

F = ‖·‖1 and G = I‖·‖∞≤ η2

where the latter is an indicator function encoding the `∞-norm
constraint. To implement Algorithms 1 and 2 we further need
the convex conjugate F ∗ = I‖·‖∞≤1 as well as the proximal
operators of F ∗ and G which are component-wise projections
min(α,max(−α, z)) with α = 1 and α = η

2 , respectively.
The Jacobians required in steps (4) and (5) of Algorithm 2
are diagonal matrices. Diagonal entries with associated entry
|zt| < α are one and, vice versa, diagonal entries with
corresponding |zt| > α are zero. In the case of |zt| = α
both Jacobians are only subdifferentiable. With regard to this,
we observed that using α = 1 in both (4) and (5) makes the
training procedure more stable and leads to better performance
when η is small.

862



Fig. 3. Comparison of full and truncated backpropagation (with b = 30) in
terms of the number of unrolled iterations during training LTraining and the
resulting mean squared error on 1024 test examples. LInference refers to the
number of iterations performed at inference time. Barplots illustrate running
times required for 20 epochs of training with full (blue) and truncated (orange)
backpropagation.

In accordance with [14], we use a training dataset of 504
sentences from the IEEE corpus [25], frame length n = 320
(resulting in a total of 66628 frames in the training data),
choose k = n, and the discrete cosine transform matrix
K = DCT as initialization (motivated by the model-based
approach in [24] where the same was used throughout). In
contrast to [14], we do not learn step sizes σ, τ along with
K. Instead, we fix σ . 10/‖K‖ and τ . 10−1/‖K‖ before
each gradient update so that the above-mentioned condition
στ‖K‖2 < 1 for convergence of the Chambolle-Pock algo-
rithm is always satisfied, and we fix θ = 1. For validation
(early stopping) and testing we reserve separate datasets with
1024 frames each. Full length signals are normalized to the
interval (−1, 1) before framing and afterwards quantized at
the bitrate β = 4. Thus, there are 2β = 16 quantization
intervals with length η = length[(−1, 1)]/2β = 0.125. All
experiments were conducted using TensorFlow [26] on an
Intel® Core™ i7-8550U CPU machine. We used the Adam
optimizer [27] with linear learning rate decay from initially
10−5 to eventually 10−8 after 20 epochs, and batch size
32. In order to maintain full control over the differentia-
tion procedure, we did not use the automatic differentiation
capabilities of TensorFlow but implemented the Chambolle-
Pock algorithm and all gradient computations manually. Our
results are reproducible and all code is available under
github.com/chrbraue/primal_dual_networks.

In Figures 3 and 4 we compare two different methods to
approximate gradients of (2). Full backpropagation (Full BP)
refers to gradient computation according to Lemma 1, i.e.,
to using exact gradients of the unrolled objective (3). Trun-
cated backpropagation (Truncated BP) refers to an alternative
approach derived from Theorem 2: We use iterates (yL, ψL)
to approximate (y∗, ψ∗) in (12), and a finite number of b
backpropagated gradients to approximate the series ∆P and
∆B . As a consequence, no iterates yl and ψl with l < L
are needed for gradient computation. By using zLP and zLD

Fig. 4. Comparison of full and truncated backpropagation (with b = 30) in
terms of the number of iterations at inference and the resulting mean squared
error on 1024 test examples. In addition, the performance of K = DCT
(cf. [24]) and the average error of unreconstructed signals are displayed.
LTraining = 30 corresponds to Regime 1 in Figure 3, LTraining = 80 represents
Regime 2, and LTraining = 1000 is an example for Regime 3.

throughout in (4) and (5), the backward pass becomes, except
for the initialization of δL+1

P , completely independent of the
forward pass. Thus, compared to Full BP where the required
working memory to store all yl, ψl, zlP and zlD vectors
grows linearly in L, Truncated BP requires only constant
memory and makes the unrolling of many iterations feasible
and efficient. Regarding inference, we assess two variants:
First, we apply Algorithm 1 with the same number of iterations
as during training which corresponds to the classical inference
procedure in unrolling. Second, we apply Algorithm 1 with
105 iterations which means that (14) is solved close to optimal.
Therefore, we refer to the latter as optimality inference.

With that in mind, Figure 3 can roughly be partitioned
as follows: Regime 1 is the area of few iterations where
Full BP and Truncated BP perform similarly well. At thirty
iterations, the error is minimal for the combination of Full
BP and classical inference, while the performance decreases
maximally towards optimality inference. In Regime 2, there is
no significant increase in performance, and Full BP exhibits
a slightly instable behavior. In transition to Regime 3, which
can be considered the area of many unrolled iterations during
training, errors decrease especially in the case of Truncated
BP and overall best results are attained for classical and
optimality inference. Figure 4 highlights the aforementioned
regimes from a different angle. The gap between classical and
optimality inference in Regime 1 becomes visible as a bump
in the dotted lines between 101 and 102 iterations for infer-
ence. This and similar minima at LInference ∈ {30, 80, 1000}
indicate that classical unrolling is prone to overfitting to the
number of iterations, especially when LTraining is too small
to ensure convergence of Algorithm 1. In other words, the
interpretability of the resulting predictive models in terms of
the underlying optimization objective is lower in these cases.
Regarding Regime 3 it becomes apparent that, although the
respective models are best in terms of the yielded error, they
also feature a comparatively low convergence speed here.

863



The running times illustrated in Figure 3 highlight two
aspects. First, forward and backward pass are closely related
instances of the primal-dual algorithm. As a consequence,
the overall complexity of a foward pass followed by a full
backward pass is about 2L times the complexity of a single
iteration. In contrast, the overall complexity of a forward pass
followed by a truncated backward pass is about L + b times
the complexity of a single iteration, where b is the number
of backward steps in Truncated BP. For large L and small b
(here we have fixed b = 30) the required running time for
Full BP is hence at least twice as high as the running time of
Truncated BP. Second, using only yL, ψL, zLP and zLD instead
of all respective intermediate iterates induces an additional
saving of computation time in the case of Truncated BP. In
view of Regime 3, it can be seen that the computational cost
can be more than halved by using Truncated BP, while at the
same time the test error is reduced.

While we did not explicitly track memory footprints of full
and truncated backpropagation in our numerical experiments,
a rough estimate can be made analogous to above. In the
case of full backpropagation, all iterates yl, ψl, zlP and zlD
from the forward pass need to stored for the backward pass
which corresponds to a total of 2L(k + n) variables. For the
proposed truncated backpropagation scheme, as stated above,
only the respective values from the very last iteration need to
be provided, corresponding to a total of only 2(k+n) variables.
Thus, in terms of the memory footprint, the savings from
using truncated backpropagation scale linearly in the number
of unrolled iterations.

IV. CONCLUSION

We provided a rigorous asymptotic analysis of gradients
of the unrolled Chambolle-Pock algorithm. Our results show
that, in the limiting case, gradients do not depend on in-
termediate iterates but only on optimal solutions. Based on
that, we derived a tractable method for truncated gradient
computation which was shown to outperform the usage of
full gradients in terms of running time, memory footprint
and reconstruction accuracy. Our empirical results obtained
on speech data moreover indicate that the interpretability in
terms of the optimization problem tends to get lost when the
number of unrolled iterations is small. The extension of our
work to a broader class of optimization algorithms and the
derivation of methods that combine high interpretability and
faster convergence will be subject of future work.

REFERENCES

[1] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen,
Variational Methods in Imaging. Springer New York, 2009.

[2] J. Bracken and J. T. McGill, “Mathematical programs with optimization
problems in the constraints,” Operations Research, vol. 21, no. 1, pp.
37–44, 1973.

[3] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, “Solving inverse
problems using data-driven models,” Acta Numerica, vol. 28, pp. 1–174,
2019.

[4] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.

[5] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin,
“Learning to optimize: A primer and a benchmark,” arXiv preprint
arXiv:2103.12828, 2021.

[6] W. Yin, “Learning to optimize: Algorithm unrolling,” CVPR Tutorial,
2022.

[7] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of mathematical
imaging and vision, vol. 40, no. 1, pp. 120–145, 2011.

[8] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proceedings of the 27th international conference on inter-
national conference on machine learning, 2010, pp. 399–406.

[9] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm with application to wavelet-based image deblurring,” in 2009 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2009, pp. 693–696.

[10] J. Adler and O. Öktem, “Learned primal-dual reconstruction,” IEEE
transactions on medical imaging, vol. 37, no. 6, pp. 1322–1332, 2018.

[11] C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, and
M. Prato, “Deep unfolding of a proximal interior point method for image
restoration,” Inverse Problems, vol. 36, no. 3, p. 034005, 2020.

[12] C. Brauer, N. Breustedt, T. de Wolff, and L. D. A., “Learning varia-
tional models with unrolling and bilevel optimization,” arXiv preprint
arXiv:2209.12651, 2022.

[13] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” in 2019 IEEE
International Workshop on Signal Processing Systems (SiPS). IEEE,
2019, pp. 266–271.

[14] C. Brauer, Z. Zhao, D. Lorenz, and T. Fingscheidt, “Learning to
dequantize speech signals by primal-dual networks: an approach for
acoustic sensor networks,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 7000–7004.

[15] Y. Li, M. Tofighi, V. Monga, and Y. C. Eldar, “An algorithm unrolling
approach to deep image deblurring,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 7675–7679.

[16] Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep admm-net for compressive
sensing mri,” in Proceedings of the 30th international conference on
neural information processing systems, 2016, pp. 10–18.

[17] J. Zhang and B. Ghanem, “Ista-net: Interpretable optimization-inspired
deep network for image compressive sensing,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
1828–1837.

[18] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[19] D. Gilton, G. Ongie, and R. Willett, “Deep equilibrium architectures
for inverse problems in imaging,” IEEE Transactions on Computational
Imaging, vol. 7, pp. 1123–1133, 2021.

[20] A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots, “Truncated back-
propagation for bilevel optimization,” in The 22nd International Con-
ference on Artificial Intelligence and Statistics. PMLR, 2019, pp. 1723–
1732.

[21] P. Vicol, L. Metz, and J. Sohl-Dickstein, “Unbiased gradient estimation
in unrolled computation graphs with persistent evolution strategies,” in
International Conference on Machine Learning. PMLR, 2021, pp.
10 553–10 563.

[22] C. Tallec and Y. Ollivier, “Unbiasing truncated backpropagation through
time,” arXiv preprint arXiv:1705.08209, 2017.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[24] C. Brauer, T. Gerkmann, and D. Lorenz, “Sparse reconstruction of
quantized speech signals,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
5940–5944.

[25] P. C. Loizou, Speech enhancement: theory and practice. CRC press,
2007.

[26] M. A. et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

864


