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Abstract—We consider a neural network architecture to solve
inverse problems, which is built by unfolding a forward-
backward algorithm. This algorithm is based on the minimization
of an objective function which corresponds to a penalized least
squares problem. In this context, ensuring stability is consis-
tent with inverse problem theory since it guarantees both the
continuity of the inversion method and its insensitivity to small
noise. The latter is a critical property as deep neural networks
have been shown to be vulnerable to adversarial perturbations.
The main novelty of our work is to analyze the robustness of
this inversion method with respect to a perturbation of the bias
parameter of the network. In our architecture, the bias accounts
for the observed data in the inverse problem. The analysis is
performed by using tools of fixed point theory. Our theoretical
results are illustrated by numerical simulations on a problem of
signal restoration.

Index Terms—neural networks, unfolding, stability, forward-
backward algorithm, inverse problems

I. INTRODUCTION

Inverse problems are commonly encountered in sig-
nal/image restoration [1], tomography [2], or inverse Laplace
transform [3]. They consist in finding x ∈ X from observed
data

y = Tx+ w (1)

where T is a bounded linear operator from a Hilbert space
X to a Hilbert space Y and w corresponds to an additive
measurement noise. The above problem is often ill-posed i.e.,
a solution might not exist, might not be unique, or might not
depend continuously on the data.

The ill-posedness of the inverse problem can be addressed
by regularization. Let (τ, µ) ∈]0,+∞[2 be regularization
parameters. Solving the inverse problem (1) often leads to the
resolution of the following optimization problem:

minimize
x∈X

Jτ (x) + µ g(x) , (2)

where

(∀x ∈ X ) Jτ (x) =
1

2
∥Tx− y∥2 + τ

2
∥Dx∥2, (3)

D is a bounded linear operator from X to some Hilbert space
Z , and g is a proper lower-semicontinuous convex function
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from X to ]−∞,+∞]. To impose smoothness of the solution,
D is usually chosen as a differential operator, while g may be
the indicator function of a nonempty closed and convex set
encoding some prior knowledge, e.g. some range constraint
or sparsity pattern.

Optimization techniques [4] are classically used to solve
Problem (2) but they require to set regularization parameters,
which is a tedious task. In addition, optimization algorithms
may be slow and their convergence behavior may strongly
depend on the choice of some parameters.
The use of neural networks for solving inverse problems
has become increasingly popular, especially in the image
processing community. A rich panel of approaches have been
proposed, either adapted to the sparsity of the data [5], [6],
or mimicking variational models [7], [8], or iterating learned
operators [9]–[13].
In iterative approaches, a regularization operator is learned,
either in the form of a proximity operator as in [9], [10],
[13], of a regularization term [14], of a pseudodiffential
operator [15], or of its gradient [2], [16]. Strong connections
also exist with Plug and Play methods [11], [17], [18], where
the regularization operator is a pre-trained neural network.
Other recent works solve linear inverse problems by unrolling
the optimization iterative process in the form of a network
architecture as in [19], [20]. Here the number of iterations is
fixed, instead of iterating until convergence, and the network
is often trained in an end-to-end fashion. Since neural network
frameworks offer powerful differential programming capabil-
ities, they are also used for learning hyper-parameters in an
unrolled optimization algorithm as in [21], [22].
All of the above strategies have shown very good numerical
results. However, few studies have been conducted on their
theoretical properties, especially their stability. In this paper,
we propose an algorithm based on a neural network archi-
tecture to invert (1). One of its main advantages is that the
structure of the neural network is interpretable and contains
few parameters which are learned. We study the stability of the
so-built neural network. The sensitivity analysis is performed
with respect to the observed data y which correspond to a bias
term in each of the layers of the proposed architecture. This
analysis is more general than the one performed in [21], in
which only the impact of the initialization was considered.
The outline of the paper is as follows: In Section II, we
describe our proposed unrolled neural network architecture. In
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Section III, we state our new stability results. In Section IV,
we provide some numerical experiments, before giving some
concluding remarks in Section V.

II. PROPOSED NEURAL ARCHITECTURE

A. Unrolled forward-backward algorithm

We define the solution to the inverse problem (1) as the
output of a neural network, whose structure is similar to a
recurrent network [23], [24]. Namely, by setting an initial
value x0, we are interested in the following m-layers neural
network with m ∈ N \ {0}:

Initialization:
b0 = T ∗y,

Layer n ∈ {1, . . . ,m}:
xn = Rn(Wnxn−1 + Vnb0),

(4)

where, for every n ∈ {1, . . . ,m},

Rn = proxλnµng
, (5)

Wn = 1l− λnT
∗T − λnτnD

∗D, (6)
Vn = λn1l. (7)

Hereabove, proxφ stands for the proximity operator of a lower-
semicontinuous proper convex function φ [25, Chapter 9], 1l
denotes the identity operator, and for every n ∈ {1, . . . ,m},
λn, µn, and τn are positive constants, which are learned during
training. Throughout this paper, L∗ denotes the adjoint of a
bounded linear operator L defined on Hilbert spaces.

Model (4) can be viewed as unrolling m iterations of an
optimization algorithm. Inded, when µn ≡ µ and τn ≡ τ , we
recognize a forward-backward algorithm [4], [26] applied to
variational problem (2).

B. Leakage factor

In order to gain more flexibility, we introduce positive
multiplicative factors (ηn)n≥1 on the bias. More specifically,
we replace the operator Vn in (7) by

Vn = λnηn−1 · · · η11l (8)

and η0 = 1. When n ≥ 1 and ηn < 1, the parameter ηn
can be interpreted as a leakage factor. In the original forward-
backward algorithm, the introduction of (ηn)n≥1 amounts to
introducing an error en in the gradient step, at iteration n,
which is equal to en = λn(ηn−1 · · · η1 − 1)b0.

C. Virtual neural network

To facilitate our theoretical analysis, we will introduce a
virtual network making use of new variables (zn)n∈N. For
every n ∈ N \ {0}, we define the n-th layer of our virtual
network by the following state-space model:

zn =

(
xn

bn

)
, zn = Qn(Unzn−1) , (9)

with 

Qn =

(
Rn

1l

)
,

Un =

(
Wn λn1l

0 ηn1l

)
.

(10)

When we cascade the layers of the virtual neural network, the
following triangular linear operator plays a prominent role:

U = Um ◦ · · · ◦ U1 =

(
W1,m W̃1,m

0 η1,m1l

)
, (11)

where, for every n ∈ {1, . . . ,m} and i ∈ {1, . . . , n},

W̃i,n =

n∑
j=i

λjηi,j−1Wj+1,n (12)

and, for every i ∈ {1, . . . ,m+ 1} and j ∈ {0, . . . ,m},

Wi,j =

{
Wj ◦ · · · ◦Wi if j ≥ i

1l otherwise,
(13)

ηi,j =

{
ηj · · · ηi if j ≥ i

1 otherwise.
(14)

III. STABILITY ANALYSIS

A. Elements of fixed point theory

Our analysis will be grounded on tools of fixed point
theory [27]. We recall some fundamental definitions.
Let us consider the Hilbert space X endowed with the norm
∥ · ∥ and the scalar product ⟨·, ·⟩.
An operator S : X → X is θ-Lipschitz with θ ∈]0,+∞[ if

(∀(x, y) ∈ X × X ) ∥Sx− Sy∥ ≤ θ∥x− y∥ .

If θ = 1, S is said to be nonexpansive. Moreover, S is said to
be α-averaged with α ∈]0, 1[ if, for every (x, y) ∈ X × X ,

∥Sx−Sy∥2+1− α

α
∥(1l−S)x−(1l−S)y∥2 ≤ ∥x−y∥2 . (15)

If S has a fixed point and it is averaged, then the iterates
(Snx)n∈N converge weakly to a fixed point of S.
If α = 1/2, we say that S is firmly nonexpansive. Let
Γ0(X ) be the set of proper lower semicontinuous convex
functions from X to ] − ∞,+∞]. The proximity operator
of any function φ ∈ Γ0(X ) is firmly nonexpansive. In the
investigated neural network (4), the activation operator is
a proximity operator. In practice, this is the case for most
activation operators, as shown in [28]. The neural network (4)
is thus a cascade of firmly nonexpansive operators and linear
operators.
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B. Assumptions

We will make the assumption that the degradation oper-
ator T defined in (1) and the differential operator D are
compact operators, so that we can define their singular value
expansions. Furthermore, we will assume that D∗D and T ∗T
commute. This arises in particular when T and D correspond
to filtering operations performed in a space of compactly
supported signals.
Based on the above assumptions, operators D∗D and T ∗T can
be diagonalized in the same orthonormal set of eigenvectors
(vp)p. We define their respective eigenvalues (βT,p)p and
(βD,p)p, as well as the following quantities, for every indices
p ∈ N, n ∈ {1, . . . ,m}, and i ∈ {1, . . . , n},

β(n)
p = 1− λn(βT,p + τnβD,p) , (16)

βi,n,p =

n∏
j=i

β(j)
p , (17)

β̃i,n,p =
n−1∑
j=i

β(n)
p · · ·β(j+1)

p λjηi,j−1 + λnηi,n−1 , (18)

with the convention
∑n−1

i=n · = 0. Note that (β
(n)
p , vp)p,

(βi,n,p, vp)p, and (β̃i,n,p, vp)p are the eigensystems of Wn,
Wi,n and W̃i,n, defined by (6), (13), and (12), respectively.

C. Lipschitz regularity

The virtual network acts on input (x0, b0) and delivers
output (xm, bm). Investigating the stability properties of such
a system is possible [29] but it is not very meaningful from
a practical viewpoint. A more insightful scenario consists in
setting x0 = b0 and looking at the behaviour of the output
xm. This means that the system of interest is

Rm ◦ Um ◦Qm−1 ◦ Um−1 · · ·Q1 ◦ Û1, (19)

where

Û1 = U1

[
1l
1l

]
(20)

Um = Dx ◦ Um (21)

and Dx is the decimation operator

Dx = [1l 0]. (22)

As a preliminary result based on the assumptions in Sec-
tion III-B, we quantify the spectral norms of the linear
operators involved in the considered multivariate model.
Lemma 1

Let m ∈ N \ {0} be the total number of layers. For every
layer indices n ∈ {1, . . . ,m} and i ∈ {1, . . . , n},

• the norm of Un ◦ · · · ◦ Ui is equal to √
ai,n with

ai,n =
1

2
sup
p

(
β2
i,n,p + β̃2

i,n,p + η2i,n

+
√

(β2
i,n,p + β̃2

i,n,p + η2i,n)
2 − 4β2

i,n,pη
2
i,n

)
;

(23)

• the norm of Un ◦ · · · ◦ U2 ◦ Û1 is equal to
√
â1,n with

â1,n = sup
p

(
(β1,n,p + β̃1,n,p)

2
)
+ η21,n ; (24)

• the norm of Um ◦Um−1 ◦· · ·◦Ui is equal to
√

ai,n with

ai,n = sup
p

(
β2
i,n,p + β̃2

i,n,p

)
; (25)

• the norm of Um◦Um−1◦· · ·◦U2◦Û1 is equal to
√
â1,m

with
â1,m = sup

p
(β1,m,p + β̃1,m,p)

2 . (26)

The calculation details can be found in [29].
By applying the results in [30, Theorem 4.2], we deduce

the following characterization of the stability of our unfolded
network through its Lipschitz properties.

Proposition 2
Let m ∈ N \ {0, 1}. For every i ∈ {2, . . . , n} and n ∈
{1, . . . ,m − 1}, let ai,n be defined by (23) and let ai,m be
given by (25). For every n ∈ {1, . . . ,m}, let â1,n be defined
by (24) and (26). Define (θ̂n)1≤n≤m recursively by

(∀n ∈ {1, . . . ,m− 1}) θ̂n =
√
â1,n +

n∑
i=2

θ̂i−1
√
ai,n ,

(27)

θ̂m =
√
â1,m +

m∑
i=2

θ̂i−1

√
ai,m . (28)

Then network (19) is θ̂m/2m−1-Lipschitz.

D. Averagedness properties

As shown in [28], averagedness may also be a desirable
property for neural networks since it is at the core of the
convergence proofs of many iterative fixed point strategies.

Proposition 3
Let m ∈ N \ {0, 1}. Let â1,m be defined in Lemma 1 and let
θ̂m be defined in Proposition 2. Let α ∈ [1/2, 1]. Define

b̂α = sup
p

|β1,m,p + β̃1,m,p − 2m(1− α)|. (29)

If
b̂α −

√
â1,m ≤ 2mα− 2θ̂m , (30)

then network (19) is α-averaged.

Note that this proposition only provides a sufficient condition
for the unfolded network to be α-averaged.

IV. NUMERICAL EXPERIMENTS

A. Inverse problem

In this section, we present numerical tests carried out on the
class of Abel integral operators. The Abel integral operator
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Noise δ
Lowess Neural Network Fourier

a = 1 a = 1/2 a = 1 a = 1/2 a = 1 a = 1/2
0.1 3.96% 2.52% 2.70% 0.51% 3.72% 0.75%
0.05 2.66% 2.54% 1.55% 0.18% 2.25% 0.23%
0.01 2.49% 2.68% 0.31% 0.03% 0.43% 0.01%

TABLE I
AVERAGED RELATIVE ERROR OOBTAINED FOR DIFFERENT NOISE STANDARD DEVIATION VALUES δ AND DIFFERENT TYPES OF SIGNALS.

operates from X = L2(0, 1) to Y = L2(0, 1) and associates
to a signal x ∈ X a signal v such that

(∀t ∈ [0, 1]) v(t) =
1

Γ(a)

∫ t

0

(t− s)(a−1)x(s) ds , (31)

where a > 0 and Γ is the classical Gamma function. The Abel
operator T is injective, linear, and compact.

Recovering x from a noisy measurement y = v + w is
an inverse problem linked to a large variety of experimental
contexts in physics. Indeed, the operator T allows to define
derivatives of fractional order for a < 1 and integrals of
arbitrary order for a > 1. The most common case is the
semi-derivative, when a = 1/2. A large number of physical
applications have been documented in [31].

B. Implementation

The differential operator D is here chosen equal to a
power Br of the Laplacian denoted by B (r = 1/2). This
choice ensures that the continuous operators T ∗T and D∗D
commute. To generate synthetic data, the Abel integral has
been approximated by the trapezoidal rule on a fine regular
mesh of N = 2000 points (ti)0≤i≤N−1 ⊂ [0, 1[. The operators
T ∗T and D∗D which are used in our neural network have been
approximated by projection onto the span of their K = 50 first
eigenvectors.

To create a diverse dataset of positively distributed func-
tions, we found convenient to use histograms of images from
a standard image dataset (BSDS500). We consider that 400
examples are enough to train the networks and 200 are used
to test it. In order to properly reflect the prior regularity, the
signals are first smoothed using a Savitzky-Golay filter, with
filter length 21 and polynomial order 5. Then, to ensure that
such signals are in the range of T ∗T , the signals are projected
into the eigenvector basis described above. After applying the
discretized Abel operator, a zero-mean white Gaussian noise
with a preset standard deviation δ is added.

C. Neural network

The activation function, namely operator Rn, corresponds
the proximal operator associated with g appearing in (2). To
reflect prior information, such a function can be chosen equal
to the indicator function of a nonempty closed convex set.
In this case, the proximity operator reduces to a projection
onto this set. However, such activation functions may show
vanishing gradient problems during the training procedure. To
alleviate this issue, we chose to consider instead a logarithmic

barrier g to enable prior knowledge in the algorithm, as
proposed in [21]. We have then
C = {x ∈ L2(0, 1) | ci(x) ≥ 0, 1 ≤ i ≤ p} ,

(∀x ∈ L2(0, 1)) g(x) =

{
−
∑p

i=1 ln (ci(x)) if x ∈ int C
+∞ otherwise ,

(32)
where (ci)1≤i≤p are suitable functions allowing us to de-
scribe the constraint set. The computation of the proximity
operator associated to logarithmic barrier functions [32], after
discretization, can be found in [21].

We experimented two possible choices for set C. First, we
consider that the signal x has a minimum value xmin and a
maximum value xmax. Then C can be rewritten as

C =
{
x ∈ L2(0, 1) | x ≥ xmin, −x ≥ −xmax

}
. (33)

Secondly, we consider an affine constraint such as, for j ≥ 0,

C =

{
x ∈ L2 | 0 ≤

∫ 1

0

tjx(t) dt ≤ 1

}
. (34)

This constraint reflects the fact that a physical quantity, e.g.
the total mass, linked to the signal is bounded.

For each layer n, three parameters (stepsize λn, quadratic
regularization parameter τn, and barrier parameter µn) are then
learned by proceeding similarly to [21]. The leakage factors
are set to 1, in these experiments.

D. Results

We compare the results obtained with our unfolded structure
with those provided by a Fourier technique [33] and temporal
filtering techniques, e.g. Lowess filtering [34]. If x̂ denotes
the restored signal, we report in Table I the averaged value
of the relative error ∥x̂ − x∥/∥x∥. In our approach, we used
m = 20 layers and Constraint (34) with j = 1, which turned
out to provide slightly better results. We observe a lower
error when a is smaller, which is related to the fact that the
higher the order of integration a in T , the higher the order of
differentiation performed in the inversion, hence the stronger
the impact of the noise. By using Proposition 2, we have also
been able to evaluate the Lipschitz constant of the network
which is close to 4.93× 10−2 when x0 = b0 = T ∗y.

V. CONCLUSION

This paper unfolded an algorithm derived from a variational
formulation of inverse problems. We focused on the forward-
backward algorithm which offers a versatile solution for a
variety of regularized quadratic fidelity terms. The advantage
of the resulting neural network is that it has a limited number
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of layers and a small number of parameters. Its training can
thus be performed in a few minutes while its inference time
is extremely fast.

We additionally performed a theoretical analysis of robust-
ness with respect to the observed data, which ensures the
reliability of the proposed inverse method.

Finally, we showed the applicability of this approach for
solving continuous one-dimensional inverse problems involv-
ing an Abel integral operator.

In future work, more sophisticated neural network struc-
tures could be considered or additional parameters (such as
the leakage factors we introduced in Section II-B) could
be learned. Also, training sets which would better suited to
specific applications could be employed.
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