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Abstract—We propose DANSE - a data-driven non-linear state
estimation method. DANSE provides a closed-form posterior of
the state of a model-free process, given linear measurements
of the state in a Bayesian setup, like the celebrated Kalman
filter (KF). Non-linear dynamics of the state are captured by
data-driven recurrent neural networks (RNNs). The training of
DANSE combines maximum-likelihood and gradient-descent in
an unsupervised framework, i.e. only measurement data and no
process data are required. Using simulated linear and non-linear
process models, we demonstrate that DANSE - without knowledge
of the process model - provides competitive performance against
model-based approaches such as KF, unscented KF (UKEF),
extended KF (EKF), and a hybrid approach such as KalmanNet.

Index Terms—recurrent neural networks, neural networks,
state estimation, deep learning

I. INTRODUCTION

Short Background: Kalman filter (KF) is a well-known
Bayesian state estimation method, providing posterior of states
given measurements [1]. KF has a linear measurement model,
and it uses a linear state model of underlying process dy-
namics. KF has a-priori knowledge of the process model. KF
has limitations when the process is non-linear (and complex).
Non-linear complex processes are in abundance today.
Purpose: In this article, we consider a non-linear complex
process that do not have a good tractable model. Therefore we
have to deal with a model-free process. Further, we have no
access to process data. The process data can not be collected
easily. Therefore we can not create labelled data between a
measurement and the corresponding process state. This is an
unsupervised learning scenario for a state estimation method.
The question is: Can we design a Bayesian unsupervised state
estimation method for a complex model-free process using a
data-driven approach? Yes, we can. We propose DANSE —
Data-driven Nonlinear State Estimation method.

Application context: DANSE can be used for many applica-
tions where there is no dearth of measurement / observation
data, but it is difficult to collect the (hidden) state data for
supervised learning or design of a tractable model of the non-
linear process. For example, positioning and navigation of
autonomous systems in hazardous conditions, say under-water
/ off-road conditions where GPS (global positioning system)
and/or GNSS (global navigation satellite system) helps are not
available to create labelled data [2].

Aspects of DANSE: Using a set of measurements as training
data, the key aspects of the proposed DANSE are as follows.

1) DANSE can handle a model-free process.
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2) It provides closed-form Bayesian posterior of state given
a tractable prior parameterized by data-driven recurrent
neural networks (RNNs).

3) Unsupervised learning of DANSE parameters can be
realized using a standard Bayesian principle.

4) Causal system, and can be used for forecasting problems.

5) An interpretable system, comparable to white-box KF and
its non-linear extensions, such as UKF and EKF.

A. Literature Survey

There can be three broad approaches for state estimation: a
model-based approach, a data-driven approach, or a combina-
tion of the two. The model-driven approach is traditional, and
the famous example is KF [1], [3]. Since dynamical systems
are often non-linear in nature, an extension to the Kalman
filter, namely the extended Kalman filter (EKF), was proposed
to account for the non-linear variations [4]. The beauty of the
EKF scheme is that it maintains analytical tractability like
KF using an approximately linear, time-varying state space
model (SSM). Another non-linear extension of the KF is the
Unscented Kalman filter (UKF) that seeks to approximate the
unknown dynamics using a derivative-free approximation as
opposed to the EKF [5]. Schemes based on sequential Monte
Carlo (SMC) sampling such as the particle filters (PFs) are also
capable of handling non-linear, non-Gaussian dynamics but are
often computationally intensive [6]. A review of model-based
approaches has been provided in [7].

A second approach is the data-driven one, where deep neural
networks, mainly RNNSs are used such as gated recurrent units
(GRUgs) [8] and long short-term memory networks (LSTMs)
[9]. Approaches for state estimation using prediction error
methods and RNNs were proposed in [10]. In general, a
data-driven approach does not require explicit models, such
as the Markovian relation between states. They often involve
modeling the distributions of the underlying SSM using (deep)
neural networks. Example schemes include the class of dy-
namical variational autoencoders [11], [12] where training is
performed using approximate Bayesian inference called vari-
ational inference (VI). The use of VI and complex relational
structures does not provide closed-form analytical expressions,
owing to the black-box nature of purely data-driven methods.
Specifically, it is not possible to obtain a closed-form Bayesian
posterior of the state. The training is also computationally
intensive.
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The third approach, known as the hybrid approach, seeks
to use the best of both worlds. It incorporates both model-
driven and data-driven approaches. A recent example is the
KalmanNet method [13] that proposes an online, recursive,
low-complexity, and data-efficient scheme based on KF archi-
tecture. KalmanNet involves modeling the Kalman gain using
deep neural networks (DNNs), thus ensuring the structure
of the model-based KF but incorporating some data-driven
aspects. The architecture is however learned in a supervised
learning approach using the true states and noisy observations.
A modification to the above scheme is also proposed as an
unsupervised KalmanNet in [14], which involves a learning
scheme using only the noisy measurements. KalmanNet as-
sumes knowledge of the underlying process model.

B. Notations

We use bold font lowercase symbols to denote vectors, and
regular lowercase font to denote scalars, e.g. x represents a
vector while x; represents the 4t component of x. A sequence
of vectors X1, Xo, ..., X; is compactly denoted by x;.;, where
t denotes discrete time index. Upper case symbols in bold
font, like H, represent matrices. The operator () denotes the
transpose. A (-;m, L) represents Gaussian distribution with
mean m and covariance matrix L.

II. PROPOSED DANSE
A. Bayesian Inference and Unsupervised Learning

For DANSE, we have an unsupervised Bayesian setup.
Let, there be a dynamical signal x;.r (with x; € R™),
representing a model-free process of length 7. The process
may be arbitrarily complex and we have no prior knowledge
of the process. Neither do we know its statistical properties
nor have direct access to the process data in the learning stage.
We assume that we have access to the linear measurements
y+ € R” of the process, where

yt:Htxt—FWt,t:l,Q,...,T. (1)

Here w; ~ N (0,C,,) is a standard measurement noise with
zero mean and covariance C,, € R™*", and H; € R"*™ de-
notes the known measurement system. Maintaining causality,
the Bayesian inference tasks are mentioned below.

(T1) State estimation problem: The inference task is to es-
timate the posterior of the current state x; given yi.,
denoted by p(x¢|y1,¥2,...,¥:) = p(x¢|y1.). In addition
to estimate the posterior of the time series x;.;, denoted
by p(x1,X2, .-, Xe|y1,¥2, -+, ¥i) = p(X1alyiee).

(T2) Forecasting problem: The inference task is to estimate
p(Xe41ly1:e) and p(yes1lye).

To develop DANSE, we have to learning its parame-
ters. We have a training dataset D comprised of N time-
series measurements as D = {yil)T(”}iV:l Here y%)Tm =
yy),yg),...,yg()i) is the i*" time-series measurements of
length 7(". We do not have access to state x;. Due to the
absence of x; in D, the learning problem is unsupervised.

\
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Fig. 1: DANSE architecture. The dash-dotted line represents
the gradient flow during the training phase, solid lines indicate
information flow during training/inference. Training/inference-
specific blocks are shown within dashed borders. The ‘Accu-
mulator’ block collects observations recursively.

B. DANSE System

The proposed approach seeks to utilize the tractability
provided by model-based approaches such as KF and EKF
while utilizing linear measurements for calculating certain
model parameters. Principally, we model the unknown prior
probability distribution p (x¢|y1.:—1) as a Gaussian distribution
parameterized using an RNN. At time instant ¢, an RNN
recursively uses the input sequence y;.;—; and provides the
parameters of the Gaussian prior as the output, collectively
denoted as cyi;—1. An RNN has its own parameters 6,
thus its output also depends on 6. To indicate this, we write
Qy1:i—1 = ayj1:4—1(0). A block diagram of DANSE is shown
in Fig. 1.

1) Bayesian State Estimation (Solution of TI): The task
is to obtain current state posterior p(Xt|y1,...,¥Yt—1,¥¢)
p(x¢|y1:¢), and the time-series posterior p(X1.¢|y1.¢). The prior
p(x¢|y1..—1) and the observation distribution p (y;|x;) are
shown below in (2).

Prior : p(x¢|y1:4-1) £ N (x¢; mt\l:t—l(a)vLtll:t—l(a))»
Such that {mm:t_l(@), Lt|1:t_1(0)} = at|1:t_1(0),
Q11 ) £ RNN(y1:¢-1;0).
Observation : p(y¢|x;) = N (y:; Hix¢, C).

@)

Here, my|;.4_1 (@) and Ly, (@) denote the mean and co-
variance matrix of the Gaussian prior distribution, respectively.
Lyj1.4—1(0) is modelled as a diagonal covariance matrix. Then,
using ‘completing the square’ approach [15, Chap. 2], the
posterior distribution of the current state p (x¢|y1.¢) is obtained
in closed-form as

P(x¢|y1:e) = N (x5 mt|1;t(0)a Lt|1:t(0))a

my) 14 (0) = my.—1(0) + K164,
Lt|1:t(9) = Lt|1:t—1(9) - Kt\l:tflReKth:t—p

3)

where the second equation in (3) is obtained using the
Woodbury matrix identity/matrix inversion lemma, K., e
Lt|1:t71(0)H;rRe_1a R. £ HtLt\lztfl (0> H;r + Cw and
€ = y; — Himyj1,,_1(0). We note in (3) a similarity with
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the standard KF update equations [16, Chap. 5]. We can also
estimate closed-form posterior of the time series xi.; as

P(X1;t|Y1:t) =p (Xt|y1:t7 X1:t71)]9 (X1:t71 b’m)

= p(Xe|y1:6) P (X1:e-1[y1:0-1) )
= Hg:l p (XT|Y1:7—)
= HleN(XT;mTIlZT(0)7LT|1:T(0))‘

2) Unsupervised learning of DANSE: Now we address
how to learn the RNN parameters # in DANSE using D =

{yl T0) 1 We first express p(yt|y1 . 1) as follows -

p(yt |y1:t71)
= [ p(yelxe)p(xe|yie—1) dx:

:/ N(Yt§HtXt,Cw)N(Xz; mt|1:t71(9)7 Lt|1:t71(9)) dx; ®)

= N(yﬁ Htmt\l:t—l(o)a Cu + HtLt|1:t—1(0)H;r)
£ p(yelyre-1;0).

Here we introduced the notation p(y¢|yi..—1;6) to show the
dependency of p(y:|yi.t.—1) on 8. Now, using the chain rule
of probability, we can write

(4)
P (i) = THp (v71vi0-.:0). ©)

Therefore, using the dataset D, the maximum-likelihood
based unsupervised learning problem is

N ®
0* = arg maxg log [ [, HtT 1P <Yt \Y1 it 170>

= argmaxg Y0, thl log p (yt )|Y1:f,—130> 7
= arg ming Zfil L (yng)r() ; 9) .

with p (y Z)|y§71 1,0) defined in (5) and £ (y1 TG ),0) =

Zt 1 log P (h )|y1 MIPK 0) The above optimization prob-
lem can be further formulated as a Bayesian learning problem
if we have a suitable prior of 8 as p(f); e.g. a Gaussian prior.

The optimization in (7) requires gradient-descent to learn
the parameters . The learning problem is a suitable combina-
tion of Bayesian learning (or maximum-likelihood learning)
and data-driven learning (of RNNs). Note we need not use
variational inference (VI) to optimize (7). VI is an approxi-
mate Bayesian learning method. Instead, we endeavor direct
optimization without approximations.

3) Bayesian Forecasting (Solution of T2): Note that (2) and
(5) provide the solution of the forecasting problem T2.

4) On RNNs and further scopes: We can use prominent
RNNs, such as GRUs [8] and LSTMs [9]. Here we used GRUs
owing to their simplicity and popularity [17]. Specifically, for
modeling the mean vector and diagonal covariance matrix
of the parameterized Gaussian prior in (2), we transformed
the latent state of the GRU using feed-forward networks. We
used rectified linear unit (ReLLU) activations to model the non-
negative variances. Note that RNNs allow causality. If we let
go causality, then we could use attention-based methods such
as transformers to produce a sequence of {m;,L;}7 ;| given
the whole sequence y1.7 [18].

III. EXPERIMENTS AND RESULTS

The architectures for the RNN and the feed-forward net-
works were found experimentally by cross-validation. For
the RNN, we used a 2 layer GRU model with 30 hidden
nodes. The feed-forward networks were shallow nets with a
single hidden layer having 32 hidden nodes. We implemented
DANSE in Python and PyTorch [19] and trained using GPU
support ! The training algorithm was mini-batch gradient
descent with a batch size of 64. The optimizer was Adam
[20] with an adaptive learning rate set at a starting value
1072 and decreased step-wise by a factor of 0.9 every fixed
number of epochs. The maximum number of training epochs
was 2000, and early stopping was used as regularization.
We evaluate the schemes in terms of the ability to estimate
state sequences from measurement data. The performances are
reported in terms of average normalized-mean-squared-error
(NMSE) between estimated state sequences {X; } and true state
sequences {x;}, where for the i** state sequence

Sl —

Sl 13
The estimated state X; for DANSE corresponds to the posterior
mean in (3). For comparability, our experimental setup is
inspired from [13], [14]. We experiment with measurement
and state sequences generated from two different SSMs with

additive white Gaussian noise. In the measurement model (1),
the measurement noise level is varied.

A(i)Hz
t 2

NMSE® = 10log,,, (8)

A. Baselines

The performances of our method are compared with base-
line methods that estimate the state sequence from the mea-
surement data. We used classical, model-based approaches
such as KF, EKF, UKF and data-driven hybrid approaches such
as the offline-trained unsupervised KalmanNet model [14]. We
implemented KF, EKF, and UKF using PyTorch and FilterPy
[21]. KalmanNet assumes knowledge of the state dynamics;
KF, EKF, and UKF also assume perfect knowledge of the
state dynamics and process noise. These are strong practical
constraints, which are not required by our method.

B. Linear SSM

We first perform a proof of principle experiment with a
linear SSM as follows:

x; = Fxy_1 + ey,

9
yi = Hxy + wy,

where t = 1,2,...,7, F ¢ R™™ H € R™™,
N(0,C.) is the white Gaussian process noise variable with
C. = 021, and w; ~ N(0,C,) is the white Gaussian
measurement noise with C,, = anIn (I,, denotes the n x n
identity matrix). The matrices F, H were time-invariant and
constructed similar to the setup in [13], [14].

We simulated (9) using m = 2, n = 2 and generated
our training dataset. We compared our approach with the

e ~

IThe code is available at https://github.com/anubhabghosh/danse.
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standard KF and an offline-trained unsupervised KalmanNet.
We trained DANSE using dataset parameters N = 500,7 =
500. KalmanNet was trained on shorter trajectories of length
T = 80 as described in [14], due to convergence issues during
training for longer trajectories. The quantity 1/02 was varied
from between —10 and 30 dB, where 1/02 is proportional
to the signal-to-noise ratio (SNR). o, is controlled by a ratio
parameter v = 02 /a2 . All the methods were evaluated on the
same test set. The results are shown in Table L.

TABLE I: NMSE (in dB) for 2 x 2 linear SSM, averaged over
Niest = 100 trajectories with Ty = 1000, v = 0 dB.

1/02 [dB] -10 0 10 20 30
KE —49.64 | —50.12 | —50.75 | —50.31 | —49.75
+4.56 | 4+3.87 | +£3.52 | 43.67 | +4.17
DANSE —46.42 | —49.96 | —50.45 | —50.28 | —49.74
+4.97 | 4+3.77 | £3.51 | 43.69 | +4.16
KalmanNet | —47.54 | —49.96 | —50.64 | —50.20 | —49.55
[14] +5.76 | 43.97 | £3.59 | 43.74 | +£4.29

Interpretation of results: In Table I, we find that across noise
levels, the standard KF performs similarly, at around —50
dB. KF is optimal for the linear SSM and the performances
are matched by DANSE and KalmanNet at 1/0% > 0 dB.
Both KalmanNet and DANSE achieve similar performances
at 1/02 = —10 dB, and slightly under-perform compared
to standard KF. We note also that all the standard deviation
of the NMSE performances of all the models increases at
1/02 = —10 dB. Also for 1/02 > 0, DANSE performs
comparably to KalmanNet, despite it not knowing the exact
process model, i.e. matrix F and process noise covariance
C.. This is of primary importance since in practice, these
quantities are seldom exactly known.

C. Lorenz attractor SSM

We also experiment with a non-linear Lorenz attractor SSM
[22]. The SSM is specified here with a discrete-time, time-
varying dynamics similar to [13]:

xt = Fy(x¢-1)xi1 + ey, (10)

where x; € R3, e; € R3 is similar to the linear SSM in (9),
ie. e, ~ N(0,C,.) with C, = ¢2I3, and

—-10 10 0
Fixe1)=exp | | 28 —1 -z 11|A], (D
0 x—11 -3

3
with the step-size A = 0.02 seconds. In our simulations, we
used a finite-Taylor series approximation of 5" order for (11).
We assumed H; = I3 in the measurement model (1). The
measurement noise was w; ~ N(0,C,,) with C,, = o2 Is.
We trained DANSE using the simulated dataset parameters
N = 500, T" = 1000, while for KalmanNet we used N =
500,7T = 100 [14]. The value of the ratio parameter was kept
at —20 dB. A 3D plot of the true state trajectory of length
T = 2000 at v = —20 dB is depicted in Fig. 2.

Since the process dynamics are non-linear, we compared our
method with UKF, EKF, and the offline-trained unsupervised

o xtrue

Fig. 2: True state trajectory of the Lorenz attractor SSM

KalmanNet. The quantity 1/02 was varied from —25 to 20
dB. All the methods were evaluated on the same test set. The
results are shown in Table II.

TABLE II: NMSE (in dB) for Lorenz attractor SSM, averaged
over Ny = 100 trajectories with Ti. = 2000, v = —20 dB.

1/02 [dB] 25 20 -10 0 10 20

UKF —9.95 | —13.73 | —19.52 | —20.97 | —21.20 | —21.19
+0.27 | £0.34 | +0.31 | +0.18 | +0.17 | +0.13
EKF —9.53 | —13.69 | —19.59 | —21.01 | —21.23 | —21.22
+0.35 | £0.37 | +0.32 | +0.18 | +£0.17 | +0.13
DANSE | —9-16 | —13.00 | —19.12 | —20.99 | —21.19 [ —21.21
+0.30 | £0.38 | +0.32 | +0.18 | +0.17 | +0.13

KalmanNet | —8.74 | —12.49 | —18.78 | —20.18 | —21.00 | 21.14
[14] +0.31 | £0.38 | +0.49 | +1.85 | +£0.91 | +0.13

Interpretation of results: Table II shows that across the values
of 1/02, DANSE shows only marginally different NMSE
compared to both EKF and UKF. Notably, DANSE matches
their performances without knowing the exact process model
a-priori. Also, DANSE exhibits slightly better performances
than KalmanNet at low values 1/02 < 0 dB. We further
perform experiments with imperfect knowledge of the process
model.

1) EKF and UKF with incorrect process noise information:
To further show the relevance of our method, we performed
an experiment where incorrect process noise statistics are
provided to the methods. The evaluation data were generated
with a parameter v* = —20 dB, Ny = 100 and Ti. = 2000.
We then provided inaccurate values of v to EKF and UKF.
Specifically, we experimented with an under-estimated process
noise level obtained using the ratio v = 0.50* and an
over-estimated process noise level using v = 1.5v*. The
relative increases in average NMSE performances are shown
in Table III.

Interpretation of results: Table III shows that, as expected, the
performances of DANSE remain stable for varying v, the slight
variations in performances are due to the randomness in the
data generation. At values 1/02 = —25 and —20 dB, the mean
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TABLE III: Relative increase (%) in average NMSE (in dB) for
Lorenz attractor SSM with incorrect noise statistics compared
to perfect knowledge (from Table II).

1/02 [dB] v 25 -20 -10 0 10 20
UKE 0.50* | +16.62 | +14.90 | +6.36 | +2.63 | +2.22 | +0.92
1.50* +15.70 +9.62 +2.96 | +0.31 | +0.05 | —0.09
EKF 0.50* | +27.00 | +22.18 | +3.40 | +0.28 | +0.13 | +0.09
1.50* +15.44 +10.74 +3.66 +0.54 +0.20 +0.04
DANSE 0.50* —0.52 —0.17 | 40.04 | —0.09 | +0.13 | +0.07
1.50* —0.75 —0.17 +0.05 | +0.04 | +0.14 | 4+0.03
KalmanNet | 0.50* —0.21 —0.20 —0.24 | +3.53 | —0.10 | +0.08
[14] 1.50* —0.66 +-0.09 —0.05 | +2.46 | +0.12 | +0.05

NMSE performances of EKF and UKF clearly degrade. When
v = 0.5v*, the performances of EKF degrade by 27.00% and
22.18% respectively, and the performances of UKF degrade
slightly less, by 16.62% and 14.90% respectively. Overesti-
mating the noise level by providing v = 1.50*, seems to limit
the degradation in performances of EKF to 10.7% and UKF
to 9.6% at 1/02 = —20 dB. Furthermore, the degradation
of DANSE is quite comparable to KalmanNet for all 1/02,
where KalmanNet knows the process dynamics and is also
unaffected by changes in process noise statistics. This clearly
shows the relevance of DANSE.

2) Example state trajectory estimates: We provide an
example result of state trajectory estimation at SNR level
1/02 = —10.0 dB, with process noise using v* = —20 dB
and incorrect information provided to EKF and UKF with
v = 0.5v*. In Fig. 3, we show the estimation of the grd
state component for EKF, UKF, DANSE and KalmanNet. The
state trajectory estimates of UKF and EKF are very close,
except at the beginning where UKF is less accurate. DANSE
and KalmanNet generally show similar trajectory estimation
as EKF and UKF, with more accuracy at local optima of the
state trajectory.

Xukr —*— Xpanse “m*=" XKNET

100 120

Fig. 3: Estimation of state x3 of the Lorenz attractor model

IV. CONCLUSION

We propose DANSE, a non-linear state estimation method,
and evaluate it for two different synthetic SSMs and at varying
measurement SNR. Our method matches the performances of

the KF, EKF, and UKF, with only slight underperformance
at low SNR. We also find a slight improvement in perfor-
mance compared to KalmanNet for a nonlinear SSM. Notably,
DANSE performs state estimation without knowledge of the
process dynamics or the process noise, which is practically
advantageous. In the case of imprecise process noise informa-
tion, we have shown that DANSE outperforms both EKF and
UKEF.
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