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Abstract—Federated learning (FL) is an attractive paradigm
where a number of users can improve their local models via
sharing trained models or model increments with a central server,
while the users’ data is kept private. However, when model sizes
are huge, FL incurs a significant communication overhead. In
such scenarios, strategies that perform user sampling, so that
only informative users communicate their models to the server,
are desired. In this paper, we make several contributions on user
sampling in FL. On the theoretical side, we consider a general
framework that exhibits user heterogeneity across several dimen-
sions: activation probabilities, gradient noise variance, number
of updates per epoch, and communication channel quality. In
this setting, we derive convergence rate of the FedAvg method.
The rate explicitly characterizes the effects of heterogeneity and
enables us to derive optimal user sampling probabilities in an
offline setting, when the sampling probabilities are pre-computed.
We then show how these derived probabilities naturally connect
with existing optimized sampling strategies in an adaptive-online
setting. On the practical side, we study visual crowd counting
(VCC) as a representative deep learning application with huge-
sized models. We provide an implementation of the FL system
over real-world data across three pilot sites – Valetta, Trento
and Novi Sad. The evaluation results demonstrate significant
model accuracy benefits through employing FL over the multiple
cities, and significant communication savings via non-uniform
user sampling strategies.

Index Terms—Federated learning, Optimized client selection,
Visual crowd counting, Communication efficient protocol.

I. INTRODUCTION

Federated learning (FL) refers to the concept where a num-
ber of users collaboratively learn a global machine learning
model with the assistance of a global coordinator (server), e.g.,
[1]. During the FL process, users do not share their raw data
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but only share locally trained models or model increments with
the server, hence making FL attractive from data protection
and privacy points of view in various applications [1], e.g.,
visual crowd counting (VCC) in smart cities [2].

In this paper, in pursuit of communication-efficiency [3], the
strategy of interest is optimized user sampling, i.e., selecting
a subset of appropriately defined most informative users at
each training epoch. This is in contrast with the standard
uniform sampling strategy in FL that selects S out of N
users uniformly at random; see, e.g., [4]–[6]. In more detail,
we consider a general non-uniform sampling framework for
FL in the presence of various sources of system heterogene-
ity. Therein, each user i is active, i.e., transmits its model
increment, with a user-dependent probability qi. The users
perform the federated averaging (FedAvg) training method
[7], where each user at each epoch makes a user-dependent
number Ki of local stochastic gradient (SGD) steps. The user-
dependent Ki’s model heterogeneous users’ capabilities in
terms of computational and storage power, processor speed,
etc, e.g., [8]. In addition, the noise variances introduced with
users’ local SGD steps are user-dependent, hence modeling
different data quality or different batch sizes across users.
Finally, we allow that the user-server links may be unreliable,
so that transmission of an active user is received at the server
with a user-dependent probability ki. The ki’s here account
for communication channel imperfections, such as finite user
transmit power, packet droputs, etc.

There have been several recent works that consider non-
uniform user sampling in FL and propose optimized user
sampling strategies, e.g., [9]–[11]. A user sampling strategy
can be considered in an offline setting, where user activation
probabilities qi’s are determined beforehand. On the other
hand, in an online setting, user activation probabilities are
calculated adaptively at each training epoch based on the FL
algorithm progress.

In this paper, we make several theoretical and practical
contributions towards better understanding of how users should
be sampled for communication-efficient FL. First, on the
theoretical side, we consider a general heterogeneous offline
user sampling framework, as described above. For this frame-
work, we derive convergence rate of FedAvg assuming either
strongly convex or convex user losses. We then explicitly
quantify the achieved rate with respect to various sources of
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system heterogeneity. Next, optimal user activation probabili-
ties qi’s are derived that maximize the convergence rate subject
to a given per-epoch communication budget and user-server
link capacities, i.e., probabilities ki’s. These results generalize
existing bounds [9] to the case of heterogeneous local user
variances, and, more importantly, to heterogeneous numbers
of local SGD updates Ki’s. This reveals several useful insights
regarding practical user sampling strategies in FL. First, a user
sampling probability should be inversely proportional to its
number of local updates Ki; intuitively, performing more local
work leads to better variance reduction and more informative
updates, allowing users to communicate with the FL server less
frequently. On the other hand, interestingly, the user activation
probability should be proportional to its local variance, i.e.,
higher variance users should be polled more frequently. This is
explained intuitively by the fact that users with more inherent
local noise should be active more frequently in order to filter
out the noise, in view of the underlying law of large numbers
phenomenon. For the online (adaptive) client sampling setting,
we describe how the results we derive are in accordance with
the optimal adaptive user selection strategy in [9].

Second, on the implementation and application side, we
develop a FL system for VCC in smart cities, with a real-world
system deployment over three cities, Valetta, Trento, and Novi
Sad. VCC is an important task with numerous applications
in smart cities, such as people density estimation in public
squares, pedestrian counting in traffic areas, and monitoring
large-scale events by unmanned aerial vehicles (UAVs). The
deployed FL system for VCC supports heterogeneous client
sampling. Specifically, we employ the optimal adaptive (on-
line) client sampling strategy from [9]. Extensive numerical
experiments demonstrate that, for the training sites (cities)
that lack sufficient data beforehand, FL leads to significant
accuracy improvements of VCC. Moreover, the results demon-
strate significant communication savings when non-uniform,
optimized user sampling is performed.

II. PROBLEM SETUP

A. Federated learning model

We consider a FL system with N users that wish to
collaboratively minimize the following function:

f(w) =

N∑
i=1

pifi(w). (1)

Here, quantity 0 < pi < 1,
∑N

k=1 pi = 1, and fi : Rd 7→
R is the local user i’s cost function, e.g., the empirical or
population loss of user i with respect to its local data (local
data distribution).

In order to solve (1) in the FL setting, users and the server
perform the FedAvg algorithm with user-dependent number
of local SGD updates and a heterogeneous probabilistic user
activation scheme. We denote by t = 0, 1, ... the outer iteration
(epoch) counter, and by j = 0, 1, ... the inner iteration index
that counts the number of local SGD updates at each user. To
be more precise, we denote by wi

t,j ∈ Rd the user i’s estimate

of the solution to (1) at outer iteration (epoch) t and inner
SGD iteration j, j = 1, ...,Ki. Similarly, denote by wt ∈ Rd

the server’s solution estimate at epoch t, t = 0, 1, ... Further,
denote by git,j user i’s noisy estimate of gradient ∇fi(w

i
t,j)

at point wi
t,j , and let git = 1

Ki

∑Ki−1
j=0 git,j . Next, let Xi

t

be a Bernoulli random variable that encodes the information
whether the server receives the locally updated model wi

t,Ki

from user i at epoch t. We let Xi
t ∼ Bernoulli(qi), with

parameter qi. In other words, qi is the probability that the
server successfully receives the model wi

t,Ki
at the end of the

inner iteration process at epoch t from user i. Quantity Xi
t in

our setting models two effects: user i’s random activation (user
decides to be active or not); and message reception failure if
the model was transmitted but was not received by the server1

[12]. The algorithm works as follows. For all i = 1, ..., N , at
each epoch t, each user i = 1, ..., N performs the following
update:

wi
t,j+1 = wi

t,j − α git,j , (2)

for j = 0, ...,K − 1. Here, α > 0 is the step-size, and
wi

t,0 = wt. Then, the server aggregates model increments

gti =
wi

t,Ki
−wi

t,0

αKi
from all users i for which Xi

t = 1, and
computes

wt+1 = wt − α

N∑
i=1

pi
Xi

t+1

qi
git. (3)

Note that we implicitly assume that the server knows quantities
qi’s, i = 1, ..., N . The division of each user’s contributing
term by qi in (3) enables elimination (on average) of the non-
uniform sampling bias, similarly to how dividing the local ag-
gregate updates by 1

Ki
ensures objective consistency, e.g., [8].

In other words, there holds: E[wt+1 | Ft] = wt−α
∑N

i=1 pig
i
t.

Here, E[·|·] denotes conditional expectation, Ft is the history
of the algorithm, including all the algorithmic steps history
prior to the generation of the instances of the variables Xi

t ,
i = 1, ..., N .

B. Visual crowd counting

VCC corresponds to counting the total number of people
that are present in a given scene. The input data X to the
model is a high-resolution RGB colour space image of a
scene containing people, and the output Y that this model
provides is a density map, which is a single-channel image
that specifies the density of the crowd at each pixel of the
input image (similar to image masks in image segmentation
tasks). The values in this density map can be summed to
get the total count in the form of a single number. The
annotations used for training this model are in the form of
head annotations, where the location of the center of each
person’s head is specified. The model utilizes the SASNet
neural network architecture [13]. In other words, we employ
a model-aware approach, where each FL user pre-assumes the

1More precisely, we can let Xi
t = Zi

tY
i
t , where Zi

t and Y i
t are both

Bernoulli random variables, Zi
t indicating whether agent i was selected to

send its update during communication round t, while Y i
t indicating if the

communication was successful or not.
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specific SASNet architecture that is in prior works proven to
be effective in VCC in a single-user setting [13]. Then, the
weights of SASNet are learned via FL, harnessing data from
all FL users. The FL users here correspond to N = 3 sites in 3
different cities (Valetta, Trento, Novi Sad). In view of (1), the
unknown model w ∈ Rd thus represents the unknown weights
of the SASNet neural network that maps inputs X to outputs
Y , while function fi represents the training loss with respect
to the input-output data acquired at FL user i. We refer to [13]
for further SASNet model and loss function details.

III. CONVERGENCE RATE AND OPTIMAL ACTIVATION

A. Convergence rate

We next present convergence rate results for the FL al-
gorithm (2)–(3) under the heterogeneous setting described in
Section II. For a cleaner presentation, we let pi = 1/N , for all
i (see (1)), while the results generalize to arbitrary pi’s. We
make the following assumptions.

Assumption 1. Each fi is L-smooth and µ-strongly convex,
i.e., the following inequalities are satisfied for all x, y ∈ Rd,
for some constants 0 < µ ≤ L:

∥∥∇fi(x)−∇fi(y)
∥∥ ≤ L∥x−

y∥, and
〈
∇fi(x)−∇fi(y), x− y

〉
≥ µ∥x− y∥2, where ∥ · ∥

denotes the Euclidean norm.

Assumption 2. Each git,j is an unbiased estimate of the true
gradient, and the variance is bounded, i.e.:

E
[
git,j

∣∣wi
t,j−1

]
= ∇fi(w

i
t,j),

E
[∥∥git,j −∇fi(w

i
t,j)

∥∥2∣∣wi
t,j−1

]
≤ σ2

i ,

for all j = 1, . . . ,Ki, for some constant σ2
i > 0, i = 1, ..., N .

Assumption 3. The indicator variables Xi
t are independent

across time and across users.

For future reference, we introduce the following quantities:
the maximal number of local updates K = maxi∈[N ] Ki (here,
[N ] = {1, 2, ..., N}); the local communication probability
parameter qi =

1−qi
qi

; the minimal communication probability
parameter qmin = mini∈[N ] qi. We also denote by w∗ a
solution to (1).

We have the following result. The proof is provided in an
extended version of this paper [14].

Theorem 1. Let assumptions 1-3 hold. For the step-size
satisfying α ≤ min

{
qmin

64L , 1
10LK

}
, we have the following

convergence guarantees:
1) For f general convex (µ = 0), R ≥ 1, there holds:

E
(
f(wR)− f∗

)
= O

(
A1√
RN

+
A2

R2/3
+

A3

R

)
,

where wR = 1
R

∑R−1
r=0 wr, with the problem related constants

being

A1 =

√√√√∆0

N

N∑
i=1

(
σ2
i

qiKi
+ qi∥∇fi(w∗)∥2

)
,

A2 = 3

√√√√L∆2
0

N

N∑
i=1

(Ki − 1)

qi
(σ2

i + ∥∇fi(w∗)∥2),

A3 = ∆0 max

{
64L

qmin
, 10KL

}
.

2) For f µ-strongly convex, R ≥ max
{

64L
qminµ

, 10LK
µ

}
, there

exists a sequence of weights {vr}r≥0, such that there holds:

E
(
f(wR)− f∗

)
= Õ

(
µ∆0 exp (−βR) +

B1

NR
+

B2

R2

)
,

where wR = 1
VR

∑R−1
r=0 vrwr, VR =

∑R−1
r=0 vr, with the

problem related constants being

β = min

{
qminµ

128L
,

µ

20LK

}
,

B1 =
1

µN

N∑
i=1

(
σ2
i

qiKi
+ qi∥∇fi(w

∗)∥2
)
,

B2 =
L

µ2N

N∑
i=1

(Ki − 1)

qi

(
σ2
i + ∥∇fi(w

∗)∥2
)
.

Here, ∆0 =
∥∥w0 − w∗∥2 is the distance of the initial model

from the true minimizer.

Several comments on Theorem 1 are now in order. First, the
Theorem provides convergence rate guarantees for FedAvg for
a more general heterogeneous setting than provided in existing
studies such as [5], [7], [15] that assume equal number of local
updates Ki’s and uniform sampling probabilities qi’s. Next, the
rates achieved for both smooth convex, and smooth strongly
convex cases are order-optimal, i.e., when considering the
slowest-decaying terms with respect to the number of epochs
R, they scale order-optimally, as 1/

√
R and 1/R, respectively.

Furthermore, the established rates exhibit a linear speedup
arising from FL in the number of users N . In more detail,
with smooth convex functions, the leading error term scales
as 1/

√
NR. This rate is N -times faster than a central processing

SGD method that would process at each iteration one of the
functions fi’s sequentially. A similar conclusion also holds
for the strongly convex case. Hence, we generalize the linear
speedup effect established in [7] to heterogeneous settings. In
addition, through constants A1−A3 and B1, B2, we explicitly
quantify the heterogeneity effects on performance, in terms of
the σi’s, Ki’s, qi’s and ∥∇fi(w

⋆)∥.

B. Optimal offline sampling probablities qi

Note that the convergence rate established in Theorem 1
depends on the parameters qi. In particular, the dominant
terms associated with qi are of the form

∑N
i=1

ci
qi
,2 where

ci =
∥∥∇fi(w

∗)
∥∥2+ σ2

i

Ki
. Therefore, we would like to minimize

2Note that the communication probability associated with ∥∇fi(w
∗)∥2

is qi = 1−qi
qi

= 1
qi

− 1. In the context of optimizing the communication
probabilities, only the value 1

qi
is relevant, hence the expression

∑N
i=1

ci
qi

is
correct.

877



quantity
∑N

i=1
ci
qi

with respect to probabilities qi’s. As it is ex-
pected, without constraints on the qi’s, the latter is minimized
for qi = 1, i = 1, ..., N . However, we impose two types of
constraints on the qi’s. First, we have that qi ≤ ki, where
ki ∈ (0, 1] characterizes the capacity (quality) of the channel
from user i to the server. Second, we let

∑N
i=1 qi = S, for

some S < N . This means that, on average, the server receives
model increments from S users. This constraint mimics the
uniform sampling scenario where a limited, small number of
exactly S users are sampled at each epoch, in order to avoid
the communication bottleneck at the server. This leads to the
following optimization problem formulation:

min
q1,...,qN

N∑
i=1

ci
qi

s.t. 0 ≤ qi ≤ ki, i ∈ [N ],

N∑
i=1

qi ≤ S

, (4)

It can be shown (see [14]) that the solution is given by q∗i = ki,

i ∈ M, and q∗i = (S − k(M))
√
ci∑

j /∈M
√
cj
, i /∈ M, where M

is the set of |M| = m indices corresponding to the largest
values of ci, k(M) =

∑
i∈M ki, and m is either the largest

positive integer satisfying S− k(M) ≥
∑

i/∈M
√
ci√

c̃m
, or m = 0.

Here, c̃m represents the m-th largest value of ci’s. We now
comment on the q∗i ’s. We can see that, the larger the ci, the
larger q⋆i should be. Moreover, q⋆i is either greedily equal to
ki, or it is proportional to the value of

√
ci. Consider quantity

ci =
∥∥∇fi(w

∗)
∥∥2+ σ2

i

Ki
. We can see that, therefore, the server

should sample less frequently the users with large Ki’s. This
is intuitive, as the users that make more local work reduce
the local variance more and hence can transmit to the server
less frequently. On the other hand, a user with a larger local
SGD variance should communicate more frequently. This may
appear counter-intuitive, but it is explained as follows: users
with larger variance need to be reflected at the server side with
more updates in order to filter out the local noise they incur.
Finally, users with larger ∥∇fi(w

⋆)∥ should communicate
more frequently with the server. Intuitively, a user with a very
small ∥∇fi(w

⋆)∥ may safely skip its transmission when wt is
close to w⋆, because its contribution would not significantly
change wt.

C. Online adaptive communication protocol

Note that quantities ci’s depend on parameters that may
be difficult to evaluate, such as ∥∇fi(w

⋆)∥ and σ2
i . These

quantities can be estimated beforehand, so that a sub-optimal
offline sampling probability scheme is devised by replacing the
exact quantities with their estimates. For example, σ2

i relates to
the local mini-batch size used by user i, while ∥∇fi(w

⋆)∥ may
be replaced with ∥∇fi(w

′)∥, where w′ is a solution estimate
available at the server. In alternative, an online adaptive user
selection policy may be utilized. Reference [9] devises an
online user sampling strategy assuming reliable communica-
tion links. When adapted to our framework and notation, this
strategy works as follows. At epoch t, user i is selected with

probability qti , where qti is the solution of (4) with quantity ci
replaced with ∥git∥2, and ki set to one for all i. (We recall that
git =

1
Ki

∑Ki−1
j=0 git,j .) We next give a rationale that relates the

optimal offline sampling derived here with the online strategy
in [9]. When wt is close to w⋆, we can approximate git
as follows: gti ≈ 1

Ki

∑Ki−1
j=0 (∇fi(w

⋆) + nt
i,j) = ∇fi(w

⋆)

+ 1
Ki

∑Ki−1
j=0 nt

i,j , where nt
i,i is the user i SGD noise at the

relevant inner and outer iteration. Taking the squared norm
and expectation, while using independence of SGD noises
across inner iterations, we can see that quantity E[∥gti∥2] can
be approximated with ci. In other words, when close to the
solution, our offline sampling strategy is approximately the
same as the adaptive strategy in [9]. The rest of the paper is
devoted to a real-world implementation of the adaptive strategy
in [9] on VCC tasks.

IV. EVALUATION RESULTS

We now present implementation and evaluation studies of
heterogeneous user sampling on real-world deployments for
VCC. The main purpose of the section is two fold. First,
we show that employing FL in VCC can improve model
performance (accuracy) over the VCC models working in
isolation. Second, we show that non-uniform user sampling
can significantly improve FL communication efficiency.

We consider three training schemes; 1) each user (pilot site)
trains the VCC model in isolation on its local data (this scheme
is termed local training); 2) FL algorithm (2)–(3) with full
participation, i.e., all users transmit to the server at all epochs
(this scheme is termed here FedAvg); and 3) FL algorithm
(2)–(3) with the optimal adaptive sampling strategy [9] (this
scheme is termed here NUS – Non-Uniform Sampling). We
implement each of the three training schemes using the Flower
Federated Learning framework3 for the Python programming
language. With all schemes, all users receive the same initial
model from the server which has its weights initialized to
random values.

Each of the three pilot sites, namely, Valetta, Trento and
Novi Sad, posses a local VCC input-output training dataset.
For MT 170 videos and for GRN 660 videos were collected
using static cameras. The corresponding data frames have been
anonymized and subsequently annotated using the CVAT 4

tool. For the Novi Sad site, a dataset was collected within
the staged recording that was carried out at the Petrovaradin
fortress. No anonymisation was necessary as all human par-
ticipants signed consent for the recording; we also note that
in this type of experimental setup, identification of individuals
is generally difficult due to the higher and overhead camera
position. In total, around 800 annotated frames are provided
for training. The model and loss functions adopted are as
described in Section II-B. For the NUS policy, we set S = 1
(expected number of user transmissions per epoch). For both
FedAvg and NUS, the total number of epochs is set to 100.

3https://flower.dev/
4https://cvat.org/
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Table I shows the mean absolute error (MAE) at the three
pilot sites at the end of training, for each of the three schemes.
MAE was chosen for the optimization objective for this task
(loss function). We can see that NUS improves performance
over both local training and FedAvg for Novi Sad and Trento.
On the other hand, the Valetta site incurs performance degrada-
tion. While monitoring the user selection process, we noticed
that NUS rarely selects the Valetta user. Also, the distribution
of the data samples in Trento and Novi Sad are quite similar,
while for Valetta the corresponding distribution is different.
For this reason, the Valetta site becomes “starved” of FL
updates. In practice, the degradation due to FL can be easily
fixed, by comparing the validation accuracy for both the joint
FL model and the locally trained model and selecting the better
performing model.

Figure 2 compares communication costs of FedAvg and
NUS. We see the NUS cost reduction in model parameter
transfers of around 17 gigabytes (17183MB). Therefore, NUS
significantly reduces communication cost while at the same
time improving MAE for the majority of sites. See also Figure
1 for evaluation of various losses versus execution time across
the three sites for FedAvg and NUS.

TABLE I
FINAL VALIDATION MAE FOR LOCAL TRAINING, FEDAVG, AND NUS.

NUS FedAvg Local training

Novi Sad 2.0890 3.1086 2.3622
Trento 27.6216 30.0928 40.3407
Valetta 9.1261 0.6900 0.6269

Novi Sad   Trento   Valetta

train_loss_step

train_loss_step train_mae

train_mae val_mae

val_mae

Fig. 1. Loss versus execution time. Top row: FedAvg; bottom: NUS. We
monitor train loss step (training loss), train mae (Training set MAE value)
and val mae (Validation set MAE value)

V. CONCLUSION

We considered a general framework for FL with various
degrees of users heterogeneity, namely in terms of local
gradient variances, activation probabilities, local number of
updates, and (unreliable) link qualities. For this setting, we
derived convergence rates for the FedAvg method, as well
as optimal user activation probabilities that are pre-computed
offline. We then connected these probabilties with previously

Fig. 2. Data transfers cost for FedAvg and NUS.

derived optimal probabilities for an online setting [9]. A real-
world data FL system for visual crowd counting across three
sites (Valetta, Trento, Novi Sad) was then deployed and eval-
uated, featuring optimized user activation probabilities. The
evaluation shows significant accuracy benefits of federation at
poorly performing local sites, and significant communication
savings due to the optimized, non-uniform sampling employed.
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