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Abstract—Deep subspace clustering is an effective method for
clustering high-dimensional data, and it provides state-of-the-
art results in clustering hyperspectral images (HSI). However,
these methods typically suffer from the size of the so-called
self-expression matrix that increases quadratically in size with
the image to be clustered. This can result in significant de-
mands on computing power and storage capacity, making it
challenging to apply these methods to large-scale data. Recently
emerging Efficient Deep Embedded Subspace Clustering focuses
on learning the basis of different subspaces which need much
fewer parameters. Here, we extend and generalize this approach
to account for local and non-local spatial context. We propose
a structured model-aware deep subspace clustering network
for hyperspectral images where the contextual information is
captured in the appropriately defined loss functions. A self-
supervised loss captures the local spatial structure, and the
non-local structure is incorporated through a contrastive loss
that encourages pixels with small feature distances to have the
same prediction, while pixels with large feature distances have
a distinct prediction. The experiments on real-world hyperspec-
tral datasets demonstrate clear advantages over state-of-the-art
methods for subspace clustering.

Index Terms—subspace clustering, deep learning, hyperspec-
tral images, structure information

I. INTRODUCTION

Hyperspectral images (HSI) are typically captured using
sensors that measure the reflectance of objects across hundreds
of narrow and contiguous spectral bands. Therefore for every
pixel an entire electromagnetic spectrum is recorded, which
gives precise information about the materials present in the
scene. This makes HSI widely used in remote sensing appli-
cations such as environmental monitoring [1], and agricultural
planning [2]. The classification of HSI pixels into distinct
categories is a crucial aspect in these domains. However,
the labeling process for HSI data can be time-intensive and
laborious, leading to the widespread use of clustering for
these tasks. In the early stages of research, traditional clus-
tering methods such as K-means [3] and Fuzzy C-Means
(FCM) [4] were widely adopted for HSI data clustering due
to their efficiency and simplicity. These methods measure
the similarity between data points based on the distances
between them. In HSI, the pixels are often high-dimensional
and sparsely distributed in the ambient space. This sparsity
and high dimensionality of the data can cause distance-based
methods to encounter difficulties, as the distances between
different pixels can become nearly equal.

Subspace clustering is a method of clustering data points
that lie in different low-dimensional subspaces within high-
dimensional data. It has been applied successful in HSI cluster-
ing applications [5]–[13]. The traditional subspace clustering
calculate the self-expression matrix based on original data [5]–
[9], [14], and usually solve the model by Alternating Direc-
tion Method of Multipliers (ADMM) [15]. As deep learning
continues to advance, it has also been applied to subspace
clustering tasks [10]. Unlike some other approaches that apply
deep neural networks to conduct fully data-driven clustering,
deep subspace clustering starts from a formulation of a relevant
optimization problem. This type of approaches are commonly
referred to as model-aware deep learning [16], [17]. Model-
aware deep learning is most often associated with inverse
imaging problems, like image restoration or compressed sens-
ing. In the case of model-aware deep subspace clustering, deep
neural networks are utilised to extract features of original data
and calculate the self-expression matrix or subspace basis by
gradient back propagation [10]–[12], [18].

Due to the complexity of the problem, the current deep
subspace clustering approaches typically treat each data point
separately, neglecting thus the spatial context. Several methods
that integrate with local spatial constraints [9] and non-local
structure [11], [12], demonstrated significant improvements
in clustering results. However, these models are combined
with self-expression optimization and spectral clustering, and
cannot be trained end-to-end. Therefore, existing methods only
apply structural information to the self-expression optimization
stage, meaning that the resulting structural information can
only train a portion of the clustering process. Compared to
traditional subspace clustering methods, deep subspace clus-
tering methods are better suited to handle nonlinear structures,
making them a popular choice for HSI clustering. However,
in self-expression-based model-aware deep subspace learning,
the size of the similarity matrix increases quadratically by the
size of the data set which limits its real-world application.
Recently, the approach of [13] attempted to enhance cluster-
ing efficiency by reducing the size of the similarity matrix
through the use of superpixels which group image pixels
with similar characteristics into larger, more meaningful units.
However, this approach resulted in a decrease in accuracy
at the superpixel level. Differently, Efficient Deep Embedded
Subspace Clustering (EDESC) [18] focuses on learning the

885ISBN: 978-9-4645-9360-0 EUSIPCO 2023



basis of subspace that span the subspace, but not a similarity
matrix, which reduces a lot the number of parameters to
learn. However, EDESC [18] neglects the spatial structure and
feature structure of data, which are critical for HSI clustering
tasks.

To obtain accurate HSI clustering results for large-scale HSI
data, motivated by the approach in [18], we propose an end-
to-end, model-aware deep subspace clustering method for HSI
that integrates both local and non-local image data structures.
Our contributions are summarized as follows:

• we introduce an enhanced self-supervised loss function
with spatial constraints which considers the spatial corre-
lation between pixels and their neighbors. This approach
ensures that the clustering result preserves the local
structure of the image, which is important for accurate
clustering performance.

• we introduce a contrastive loss to take into account
the non-local structure of the original data. This loss
encourages the model to learn representations that reflect
the underlying structure of the data in feature space,
which helps to improve the accuracy of the clustering
result.

• we propose an end-to-end trainable network for HSI clus-
tering that is scalable to big data. We conduct experiments
on 3 datasets which shows the superiority of our method.

The rest of this article is organized as follows: Section II
introduces related work on subspace clustering and HSI clus-
tering. Section III presents the proposed network. Section IV
describes the results of our method. Finally, Section V con-
cludes the paper.

II. RELATED WORK

A. Traditional subspace clustering

The traditional subspace clustering typically involves com-
puting the self-expression matrix, which captures the represen-
tation relationships between data points, based on the raw data.
The assumption is that each data point can be expressed as a
linear combination of other data points in the same subspace.
The problem is formulated as follows in subspace clustering:

min
Z

λ

2
||X − XZ||2F + ||Z||p s.t. diag(Z) = 0, (1)

where X ∈ RD×N is the image data, N and D are respectively
the number of image pixels and the dimension of every pixel.
Z represents the self-expression matrix which captures the
relationships between different data points, diag(Z) = 0
prevents data expressed by itself and λ is used to balance
the different terms. The choice of p leads to different types of
subspace clustering methods1. By reducing the value of p from
infinity to zero, the sparsity of Z will increase. In subspace
clustering, the p is usually set to 1 or 2. Recently some work
were proposed [9], [14], [19] that reduces the redundancy of
the self-expression matrix, which improves the efficiency of

1The lp-norm is defined as ||Z||p ≜ (
∑

i,j |Zij |p)
1
p .

this model. However, this model may still not be effective in
handling linear non-separable data.

B. Deep subspace clustering

These methods map raw data into a deep feature space
and usually obtain a self-expression matrix through iterative
updates of linear fully connected layers [10]. Typically, a
CNN-based autoencoder is used to extract the deep feature
of the raw data with a reconstruction loss to ensure that the
feature contains sufficient information, as shown below:

Lae =
1

2N
||Xq − X̂q||2F , (2)

where Xq ∈ RN×u×v×c is the input data, u and v are the width
and height of the patch-size, c is the channel of image patch.
X̂q is the reconstruction of Xq . To obtain a high-quality self-
expression matrix, similar to traditional subspace clustering,
the self-expression loss is formulated as follows:

Lse = λ1||H − HC||2F + λ2||C||p, s.t. diag(C) = 0. (3)

Here, H is the deep representation of Xq , and C is the self-
expression parameter from the linear fully connected layers. λ1

and λ2 are parameters to balance different terms. Some works
incorporate additional supervised learning modules [20], and
structure preservation losses [11], [12] to improve perfor-
mance, but these methods have high memory consumption
and are not scalable to large datasets. Recently, the approach
of [13] combined superpixel and contrastive learning to make
it more efficient in processing large-scale images, but its
accuracy is at the superpixel level rather than the pixel level.
Differently, a recent method EDESC [18] focuses on learning
a high-quality basis for each subspace, which reduces the
number of training parameters. It comprises two main steps.
The first step involves initializing the model, in which a CNN-
based autoencoder feature extraction network is trained to
obtain a deep representation of the network. K-means++ [21]
and Singular Value Decomposition (SVD) are then applied to
get the initial basis of each subspace. In the second step, the
entire network is trained, and the prediction of the class label
is obtained based on the projection value of the data point into
each subspace, which is formulated as follows:

sij =
||hT

i B(j)||2F + ηd∑
j(||hT

i B(j)||2F + ηd)
. (4)

Here, hi is the deep representation of the ith data point, B(j)

is the basis of the jth subspace, η controls the smoothness, d
is the dimension of subspace, and sij is the probability that the
ith data point belongs to the jth subspace. To achieve network
convergence, a self-supervising loss is applied as follows:

s̃ij =
s2ij/

∑
i sij∑

j(s
2
ij/
∑

i sij)
. (5)

The refinement in (5) rescales the entries sij to give more
importance to the high-probability assignments. The self-
supervised loss is defined as follows:

Lsp = KL(S̃||S), (6)
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where S is the prediction matrix, s̃ij represents the element of
the ith row and jth column of S, and S̃ is the refined S obtained
using (5). KL is the Kullback–Leibler divergence defined as

KL(S̃||S) =
∑
i

∑
j

S̃ij log
S̃ij

Sij
.

Additionally, to obtain a good quality subspace allocation and
data projection, the following constraints are used:

Bcons = ϵ(
1

2
||BT B ⊙ I − I||2F +

1

2
||BT B ⊙ O||2F ). (7)

Here, ⊙ represents the Hadamard product, I is the identity
matrix of size kd by kd, and O is a matrix in which all
diagonal block elements of size d are 0 while the others
are 1. The first constraint requires normalizing each basis to
have a length of 1 to maintain the quality of the projection.
The second constraint mandates that each subspace must have
distinct bases to ensure optimal subspace allocation, and the
value of ϵ is 10−3. Inspired by EDESC [18], this article
introduces a Structured Efficient Subspace Clustering Network
for Hyperspectral Images. Our proposed approach leverages
both local and non-local structures of the hyperspectral image
to supervise the entire clustering process and improve the
clustering results in large-scale HSI images.

III. PROPOSED METHOD

We build on the model EDESC [18], in the sense that
we use a CNN-Based autoencoder to learn the deep feature
of original data with the loss defined in (2) and the basis
constraint of (7) to maintain the quality of basis. Instead of
using a refined prediction to supervise the training of the basis
learning module, we propose an enhanced self-supervised loss
that considers the spatial correlation of image data based on
both refined prediction and smoothed refined prediction. In
order to maintain the non-local structure of data, we introduce
a contrastive loss, which encourages data that have similar
spectral features to have the same prediction. In Figure 1, it
can be observed that two sets of image patches were generated
from the original HSI block. The image patches with a smaller
patch size were used for feature extraction and clustering,
while the image patches with a larger patch size were used
to capture the non-local structure of the data. The network
is composed of a CNN-based autoencoder and a basis layer.
The autoencoder is utilized to study the features that contain
sufficient information from the original data. On the other
hand, the basis layer is utilized to learn a good basis for
subspace clustering.

A. The local structure preserving module

Based on the analysis of the image properties, each pixel
is likely to have the same class label as its neighboring
pixels. However, most previous subspace clustering methods,
including EDESC [18], cluster data solely based on their
own characteristics without taking into account the prediction
of neighboring data points. Based on this observation, a
filter-based post-processing technique is applied. During this

Fig. 1. The architecture of our clustering network. The deep representations
H learned from the image patches Xq are projected through the subspace basis
B to produce the prediction S. During optimization, the KL divergence loss
is minimized between S and its refined predictions S̃ as well as the smooth
prediction Ssmooth to preserve the local structure. The non-local structures
captured from Xl are preserved by minimizing the contrastive loss.

post-processing, the refined result will be assigned to the
corresponding location of the original image. Meanwhile, a
mask will assign 1 to the same location. We will mean-filter the
refined prediction and then divide it by the mean-filtered mask
to remove the effect of the irrelevant area. This processing
results in a smoothed refined prediction Ssmooth. We extend
the self-supervised loss from (6) to incorporate this smoothed
prediction. In particular, we define a local structure preserving
loss function Lsp as follows:

Lsp = λsp KL(S̃||S) + (1− λsp)KL(Ssmooth||S), (8)

where λsp is the parameter used to control the smoothness of
the refined prediction.

B. The non-local structure preserving module

We propose an original way to incorporate the non-local
structure in the clustering process in an end-to-end manner,
inspired by the successful application of contrastive learning
in subspace clustering tasks [13], [22], [23]. Differently, we
apply this loss directly in the clustering result, allowing for
joint optimization of the feature extraction network and basis
learning layers. Firstly, positive and negative samples are
selected by K-Nearest Neighbors (KNN) based on the feature
distance of the original data. The ei and ni are the positive
sample sets and negative sample sets of ith data points. After
obtaining the samples, the loss is minimized as follows to
optimize the entire network:

Lcon =
1

N

N∑
i=1

− log

( ∑
j∈ei

exp (gij/τ)∑
t∈(ei∪ni)

exp (git/τ)

)
, (9)

where τ is the temperature parameter, gij is the similarity
of the prediction between ith and jth data points defines as
follows:

gij = ŝi · ŝj , (10)

ŝi is the normalized prediction of ith data point. By min-
imizing this loss, the pixels with small feature distances
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are encouraged to have the same cluster prediction which
maintains the non-local structure of data.

C. Objective function and training strategy

Our model’s training process consists of three steps, which
can be summarized in pseudo-code in Algorithm 1.

Algorithm 1 Training Strategy
Step 1: Pre-train the feature extraction network and initialize
the basis; Loss = Lae;
Step 2: Train the whole network with the local structure
constraint with weight β; Loss = Lae +Bcons + β Lsp;
Step 3: Train the whole network with the local and non-
local structure constraint with weight β and λcon respectively;
Loss = Lae +Bcons + β Lsp + λcon Lcon;

IV. EXPERIMENTAL EVALUATION

A. Datasets and experiment settings

We conduct our experiment on three hyperspectral image
datasets: Trento, Houston, and PaviaU. Trento had 63 spectral
bands and 6 classes, with an image size of 600 × 166 and
30,214 samples. Houston had 144 bands, 7 classes, and a size
of 130 × 130 with 6,104 samples. PaviaU had 115 bands, 9
classes, and a size of 610× 340 with 42,776 samples.

We implement our model based on a CNN-based autoen-
coder. We provide our code and test scripts in an online
repository2. Our model requires different hyperparameters for
each image since each image has a unique local and non-
local structure and feature, which can significantly impact the
performance of the model if not optimized properly. According
to the approach proposed in [18], the value of β ranges from
0 to 1. The λsp parameter also ranges from 0 to 1, where
a value of 0 implies that the model does not consider local
structure, while a value of 1 indicates that the model takes full
smoothness into account. Similarly, λcon ranges from 0 to 1
and its specific value may vary depending on the dataset. In
our experiments, we set β to 1 for the Trento and Houston
datasets, and to 0.2 for the PaviaU dataset. The λsp was set to
0 for Trento and Houston, and to 0.5 for PaviaU, while λcon

was set to 1 for Trento and Houston, and to 0.7 for PaviaU.

B. Comparison with state-of-art methods

In Table I, we present clustering results for different repre-
sentative methods applied to the Houston, Trento, and PaviaU
datasets, respectively. We also showed the clustering map of
Trento dataset in Figure 2. Based on our findings, distance-
based methods like Kmeans++ [21], and FCM [4] are scalable
for large datasets but have lower accuracy compared to pixel-
level deep subspace clustering approaches such as HyperAE.
While the superpixel-based method can improve the efficiency
of self-expression-based methods, it may decrease accuracy.
The hierarchical-based clustering techniques like [24] can
achieve an efficient and relatively good result. DEC [25] can
achieve good performance for the Houston dataset but may not

2https://github.com/lxlscut/SEDESC

for others and also requires relatively high memory resources.
Compared to these methods, our approach is scalable for
large-scale data and can achieve superior accuracy than many
existing methods.

C. Ablation study
In this section, we investigate the influence of the proposed

loss function on clustering performance. We conduct experi-
ments with three models, each using a different combination
of loss functions, and compare their results to the base
model built on EDESC. The results of our ablation study are
presented in Table II, which indicates that incorporating both
the local and non-local structure modules leads to improved
clustering performance.

V. CONCLUSION

In this paper we presented an efficient deep subspace
clustering model for HSI clustering tasks. Specifically, we
proposed an enhanced supervised loss function that considers
the local structure information of the original data. Addition-
ally, in order to maintain the non-local structure of the HSI,
we proposed a contrastive loss that encourages pixels with
small feature distances to have the same prediction value.
The ablation experiment result shows that both local and non-
local modules can effectively improve the clustering accuracy.
Extensive experiments on three real-world datasets show that
our method outperforms the state-of-the-art methods.
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