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Abstract—Traditional point-to-point line-of-sight channels
have rank 1, irrespective of the number of antennas and array
geometries, due to far-field propagation conditions. By contrast,
recent papers in the holographic multiple-input multiple-output
(MIMO) literature characterize the maximum channel rank that
can be achieved between two continuous array apertures, which
is much larger than 1 under near-field propagation conditions.
In this paper, we maximize the channel capacity between two
dual-polarized uniform rectangular arrays (URAs) with discrete
antenna elements for a given propagation distance. In particular,
we derive the antenna spacings that lead to an ideal MIMO
channel where all singular values are as similar as possible. We
utilize this analytic result to find the two array geometries that
respectively minimize the aperture area and the aperture length.

Index Terms—Near-field, MIMO system, channel capacity.

I. INTRODUCTION

The capacity requirements on wireless communication links
continue to grow, and we cannot cater to them by indefinitely
increasing the spectral bandwidth, which is a limited re-
source. Alternatively, multiple-input multiple-output (MIMO)
technology can be used to improve capacity. MIMO enables
spatial multiplexing in rich multi-path propagation scenarios
[1], where the capacity grows proportionally to the minimum
of the number of transmit and receive antennas (i.e., the
rank of the MIMO channel matrix). However, sixth-generation
(6G) mobile systems operating at mmWave and sub-terahertz
frequencies will feature line-of-sight (LOS) dominant channel
conditions [2]. Free-space point-to-point LOS MIMO channels
were traditionally viewed to have rank 1 [3, Sec. 7.2.3]
since only a single planar wave can be transferred from the
transmitter to the receiver. However, a higher rank can also be
achieved in LOS MIMO by exploiting spherical wavefronts
when operating in the radiative near-field region [4], which
can have an extensive range in 6G bands since it is inversely
proportional to the wavelength [5].

The maximum rank that a continuous holographic array can
achieve was characterized in [6], [7], but the maximum is
not achieved by LOS MIMO links. Moreover, it is not only
the rank that determines the channel capacity but also the
condition number of the channel matrix, which should ideally
be one. It was shown in [8], [9] how the antenna spacing in two
uniform linear arrays (ULAs) can be optimized to achieve such
an ideal LOS MIMO channel. The case of uniform rectangular
arrays (URAs) was considered in [10], [11]. However, these

prior works are limited to single-polarized arrays, although
practical systems generally utilize dual polarization.

In this paper, we consider a LOS MIMO channel between
two dual-polarized URAs, with imperfect isolation [12]–[14].
We analytically derive the horizontal and vertical antenna
spacing that maximizes the MIMO channel capacity in the
spatial multiplexing regime where the signal-to-noise ratio
(SNR) is large. We provide a closed-form expression for the
maximum attainable capacity. The results are qualitatively and
quantitatively different than in the prior work due to imperfect
polarization isolation [10], [11]. We utilize the new analytic
results to optimize the array geometries further to minimize
either the area of the URA or the maximum aperture length.
The analytical results are corroborated numerically.

II. SYSTEM MODEL

We consider a point-to-point free-space LOS channel be-
tween two URAs. The arrays have aligned broadside directions
and are separated by a distance d, as illustrated in Fig. 1.
The URAs are identically arranged with Mv vertically stacked
rows and Mh antennas per horizontal row, which makes the
total number of antenna locations M = MvMh. The vertical
and horizontal antenna spacings are denoted by ∆v and ∆h,
respectively. Each antenna is dual-polarized, thus, it consists
of two co-located elements with orthogonal polarization di-
mensions (e.g., slanted ±45◦) [14]. Hence, the total number
of antenna elements per array is 2M .

The antenna locations in each array are numbered row by
row from 1 to M , but when computing the propagation dis-
tances, it is convenient to extract an antenna’s horizontal and
vertical indices. For a given antenna index m ∈ {1, . . . ,M},
the horizontal index can be calculated as [14, Sec. 7.3]

i(m) = m−Mh

⌊
m− 1

Mh

⌋
∈ {1, . . . ,Mh}, (1)

where b·c truncates the arguments to the closest smaller
integer. The vertical index is similarly computed as

j(m) = 1 +

⌊
m− 1

Mh

⌋
∈ {1, . . . ,Mv}. (2)

Using this notation, the distance between transmit antenna
location m and receive antenna location k is obtained as

dm,k =

√
d2 +

(
i(m)− i(k)

)2
∆2

h +
(
j(m)− j(k)

)2
∆2

v.
(3)

The value depends on the horizontal/vertical antenna spacings.
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Fig. 1. A LOS channel between two dual-polarized arrays separated by a dis-
tance d. In this example, Mh = 4 and Mv = 3, while the horizontal/vertical
indices are shown at the receiver side.

A. Channel matrix model for dual-polarized URAs

In a LOS scenario with single-polarized antennas, the
MIMO channel matrix Hu ∈ CM×M can be expressed as

Hu =


√
β1,1e

−j2π d1,1−d
λ · · ·

√
β1,Me

−j2π
d1,M−d

λ

...
. . .

...√
βM,1e

−j2π
dM,1−d

λ · · ·
√
βM,Me

−j2π
dM,M−d

λ

 ,
(4)

where d is the reference distance for the phase shifts, λ de-
notes the wavelength, and the channel gain between isotropic
antennas at transmitter location m and receiver location k is

βm,k =

(
λ

4πdm,k

)2

. (5)

However, we consider two dual-polarized antenna arrays. In
the ideal case when the orthogonal polarizations are perfectly
isolated, the corresponding channel matrix Hd ∈ C2M×2M

can be expressed as

Hd =

[
Hu 0
0 Hu

]
= I2 ⊗Hu, (6)

where I2 is the 2 × 2 identity matrix and ⊗ denotes the
Kronecker product. We achieve this matrix formulation by
letting rows/columns 1, . . . ,M consider all elements having
the first polarization and rows/columns M+1, . . . , 2M having
the second polarization. The M ×M matrices with zeros in
(6) represent perfect isolation between the polarizations.

Although the polarizations of signals are maintained in
free-space propagation, cross-talk generally appears in the
transceiver hardware [12]–[14]. This is referred to as imperfect
cross-polar discrimination (XPD). We assume that each trans-
mit antenna element radiates a fraction (1 − γ) of its power
into the intended polarization and the remaining fraction γ into
the opposite polarization. The parameter γ ∈ [0, 1] specifies
the impurity of the antenna, where γ = 0 in the ideal case.

Motivated by hardware symmetry, we further consider that
each receive antenna element captures a fraction (1 − γ)
of the incident power of the signal having the intended
polarization and a fraction γ of the power from the opposite

polarization. Consequently, when considering a pair of dual-
polarized transmit and receive antennas, a fraction

(1− γ)2 + γ2 = 1− 2(1− γ)γ (7)

of the signal power reaches the receiver with the correct
polarization. Moreover, a fraction

(1− γ)γ + γ(1− γ) = 2(1− γ)γ (8)

leaks into the opposite polarization, either at the transmitter
or the receiver. Note that the sum of (7) and (8) is 1, thus, the
total signal power is maintained irrespective of the value of γ.

By introducing the notation κ = 2(1 − γ)γ, we generalize
the dual-polarized channel matrix in (6) as

Hd =

[√
1− κHu

√
κHu√

κHu

√
1− κHu

]
=

[√
1− κ

√
κ√

κ
√

1− κ

]
︸ ︷︷ ︸

=K

⊗Hu. (9)

This is the dual-polarized channel model that we will consider
in the remainder of this paper. Since the Frobenius norm of a
Kronecker product is the product of the Frobenius norms, it
follows that the channel matrix has the norm

‖Hd‖2F = ‖K‖2F‖Hu‖2F = 2

M∑
m=1

M∑
k=1

βm,k. (10)

This value is independent of the XPD in K and the phase
shifts of the individual elements in Hu. Nevertheless, the
MIMO channel capacity depends on these parameters because
they determine how the value of ‖Hd‖2F is divided between
the eigenvalues of HH

dHd. The objective of the paper is to
identify the planar array geometry (e.g., the antenna spacing)
that maximizes the channel capacity in high-SNR scenarios.

III. OPTIMAL ANTENNA SPACING AT HIGH SNR
The MIMO channel capacity depends on the eigenvalues of

HH

dHd [1] and the sum of the eigenvalues is ‖Hd‖2F. The high-
SNR capacity is maximized when the eigenvalues are as equal
as possible. To analytically derive the antenna spacing that
maximizes capacity, we need to simplify the channel matrix
expression in (9). The diagonal in each array has the length

D =
√

(Mh − 1)2∆2
h + (Mv − 1)2∆2

v. (11)

In typical propagation scenarios for which d ≥ 2D [5], the
channel gain is nearly the same between all antenna locations:

βm,k ≈ β =

(
λ

4πd

)2

. (12)

Furthermore, the Taylor approximation
√

1 + x2/d2 ≈ 1+ x2

2d2

is tight for x ≤ D when d ≥ 2D. Consequently, the following
approximation is also tight:

dm,k = d

√
1 +

(
i(m)− i(k)

)2
∆2

h +
(
j(m)− j(k)

)2
∆2

v

d2

≈ d+
δm,k
2d

, (13)
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where δm,k = (i(m) − i(k))2∆2
h + (j(m) − j(k))2∆2

v. By
utilizing (12) and (13), we can tightly approximate Hu in (4)
as

Hu ≈ H̃u =
√
β


e−jπ

δ1,1
dλ · · · e−jπ

δ1,M
dλ

...
. . .

...

e−jπ
δM,1
dλ · · · e−jπ

δM,M
dλ

 . (14)

Based on this expression, it follows that ‖H̃u‖2F = βM2 is
the sum of the eigenvalues of H̃H

uH̃u.

A. Preliminaries for ULAs

The optimal antenna spacing with horizontal single-
polarized ULA (i.e., Mv = 1) was characterized in [8], [9].
We will briefly summarize this result because it will later
be reused. If we can find an antenna spacing ∆h so that
H̃H

uH̃u = βIM , then all eigenvalues are equal and the capacity
is maximized. By utilizing (14) but dropping the horizontal
subscript so that δm,k = (m − k)2∆2, we obtain that the
(l, k)th entry is

[H̃H

uH̃u]l,k = β

M∑
m=1

ej
π
dλ (δm,l−δm,k), (15)

which is βM if l = k. The magnitude of an off-diagonal entry
can be simplified using the geometric series formula as

β

∣∣∣∣∣
M∑
m=1

ej
π
dλ (δm,l−δm,k)

∣∣∣∣∣ = β

∣∣∣∣∣
M∑
m=1

ej
2π(l−k)∆2

dλ

∣∣∣∣∣
= β

∣∣∣∣∣1− ejπ
2M(l−k)∆2

λd

1− ejπ
2(l−k)∆2

λd

∣∣∣∣∣ , (16)

which is zero if M∆2

λd = 1 and M > 1. By solving for ∆, we
obtain the optimal antenna spacing as

∆ =

√
λd

M
. (17)

B. Optimal spacing for dual-polarized URAs

We will now derive the optimal horizontal and vertical
antenna spacings for the dual-polarized MIMO channel. Based
on the tight approximation in (14), we can express the dual-
polarized channel matrix in (9) as H̃d = K⊗H̃u. By utilizing
properties of the Kronecker product, we obtain

H̃H

dH̃d = (K⊗ H̃u)H(K⊗ H̃u) = (KHK)⊗ (H̃H

uH̃u). (18)

The eigenvalues of this matrix are obtained as the pairwise
products of the eigenvalues of KHK and H̃H

uH̃u. The first of
these has the eigenvalue decomposition

KHK =

[
1 2

√
κ
√

1− κ
2
√
κ
√

1− κ 1

]
=

1

2

[
1 −1
1 1

] [
µ1 0
0 µ2

] [
1 1
−1 1

]
, (19)

where the eigenvalues are

µ1 = 1 + 2
√

(1− κ)κ, (20)

µ2 = 1− 2
√

(1− κ)κ. (21)

These eigenvalues depend on the XPD parameter κ, but not
on the antenna spacing so we cannot optimize them. Hence,
we must focus on making all the eigenvalues of H̃H

uH̃u being
equal, which happens when it is a scaled identity matrix. The
(l, k)th entry of the matrix is

[H̃H

uH̃u]l,k = β

M∑
m=1

e
jπ
dλ (δm,l−δm,k)

= Al,k

M∑
m=1

e
j2π
dλ i(m)[i(k)−i(l)]∆2

he
j2π
dλ j(m)[j(k)−j(l)]∆2

v

= Al,k

Mh∑
mh=1

e
j2π
dλmh[i(k)−i(l)]∆2

h

Mv∑
mv=1

e
j2π
dλmv[j(k)−j(l)]∆2

v ,

(22)

where the following scalar is independent of m:

Al,k = βe
jπ
dλ [(i(l)2−i(k)2)∆2

h+(j(l)2−j(k)2)∆2
v]. (23)

The last expression in (22) is obtained by summing over the
horizontal and vertical dimensions separately. The diagonal
entries equals βM , while the off-diagonal entries (i.e., l 6= k)
have the magnitude

β

∣∣∣∣∣
Mh∑
mh=1

e
j2π
dλmh[i(k)−i(l)]∆2

h

∣∣∣∣∣
∣∣∣∣∣
Mv∑
mv=1

e
j2π
dλmv[j(k)−j(l)]∆2

v

∣∣∣∣∣
= β

∣∣∣∣∣∣1− e
jπ

2Mh(i(l)−i(k))∆2
h

λd

1− ejπ
2(i(l)−i(k))∆2

h
λd

∣∣∣∣∣∣
∣∣∣∣∣∣1− e

jπ
2Mv(j(l)−j(k))∆2

v
λd

1− ejπ
2(j(l)−j(k))∆2

v
λd

∣∣∣∣∣∣ , (24)

where the equality follows from using the classical geometric
series formula. Each of these terms has the same structure as
in (16), but only depends on either the horizontal or vertical
spacing. Hence, the optimal antenna spacings must satisfy
Mh∆2

h

λd = 1 and Mv∆2
v

λd = 1. By solving for ∆h and ∆v, we
obtain the solutions

∆h =

√
λd

Mh
, ∆v =

√
λd

Mv
,

where the optimal spacing in one dimension only depends on
the number of antennas in that dimension (and the propagation
distance d and wavelength λ). In the special case of Mh = Mv,
we consequently get ∆h = ∆v. Hence, if there is the same
number of antennas per dimension, a uniform square array
(USA) with ∆h = ∆v =

√
λd
Mh

is optimal.
Interestingly, the optimal spacing is the same with our dual-

polarized array as for the single-polarized arrays considered
in [10], [11], irrespective of the XPD. However, the resulting
eigenvalues of the channel matrix are different and depend on
κ. Since H̃H

uH̃u = βMIM with the optimal spacing, it follows
that H̃H

dH̃d = KHK⊗ βMIM has M eigenvalues that equal
µ1βM and M eigenvalues that equal µ2βM .
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C. Capacity with optimized dual-polarized planar arrays

For a given maximum transmit power P and noise variance
σ2, the channel capacity with the optimal antenna spacing is

Cdual =

2∑
i=1

M∑
m=1

log2

(
1 +

qm,iµiβM

σ2

)
, (25)

where the power allocation q1,i, . . . , qM,i for i = 1, 2 is
selected using the water-filling algorithm [1]. Since there are
two eigenvalues with multiplicity M , the power allocation is

qm,1 =

{
P
M , P ≤ σ2

µ2β
− σ2

µ1β
,

P
2M + σ2

2µ2βM
− σ2

2µ1βM
otherwise,

(26)

qm,2 =

{
0, P ≤ σ2

µ2β
− σ2

µ1β
,

P
2M + σ2

2µ1βM
− σ2

2µ2βM
otherwise.

(27)

In the high-SNR regime where all power values are non-zero,
the capacity expression in (25) becomes

Cdual = M log2

(
1 +

Pµ1β

2σ2
+
µ1 − µ2

2µ2

)
+M log2

(
1 +

Pµ2β

2σ2
+
µ2 − µ1

2µ1

)
. (28)

This capacity is exactly proportional to the number of dual-
polarized antennas, M . This happens despite the fact that the
total transmit power P is divided over 2M eigendirections,
because the receive beamforming gain also increases.

In the special case of perfect XPD (i.e., κ = 0), we have
µ1 = µ2 = 1 and the capacity expression in (28) simplifies
to 2M log2(1 + Pβ

2σ2 ). The multiplexing gain is then 2M
and the transmit power is divided equally between the two
polarizations. The channel matrix with the optimal spacing
satisfies H̃H

dH̃d = βMI2M , which implies that the capacity
is achieved by transmitting an independent signal from each
antenna and from each polarization dimension.

The situation is different in the practical case of κ > 0.
When κ increases towards 1/2, the capacity is monotoni-
cally reduced because the imbalance between the eigenvalues
in (20)–(21) increases. The Kronecker structure H̃H

dH̃d =
KHK ⊗ βMIM along with the eigenvalue decomposition in
(19) imply that independent signals should be transmitted from
each of the M antenna locations. However, the co-located
dual-polarized elements are not transmitting independent sig-
nals. The strongest eigenvalue is achieved by transmitting
the same signal from both polarizations, while the weaker
eigenvalue is achieved by transmitting the same signal but
with opposite signs using the two polarizations. At low SNR,
where all the transmit power is assigned to the eigenvalues
µ1βM , it is instead preferable to have a larger value of κ.

D. Minimization of the array area or aperture length

The capacity expressions in (25) and (28) depend on the
total number of antennas M = MhMv, but not on how these
are divided between rows and columns in the URA. Hence, we
can further optimize Mh and Mv while retaining the capacity.

The horizontal length Lh and vertical length Lv of the URA
are calculated as

Lh = ∆h(Mh − 1) +W =

√
λd

Mh
(Mh − 1) +W, (29)

Lv = ∆v(Mv − 1) +W =

√
λd

Mv
(Mv − 1) +W, (30)

which is the distance between the outermost antenna locations
plus the width W > 0 of an individual antenna element.

Suppose we want to minimize the array area LhLv:

minimize
Mv,Mh∈{1,...,M}

LhLv

subject to M = MhMv.
(31)

We can obtain an area expression that only depends on Mh

by substituting Mv = M/Mh into (30). The first derivative of
LhLv with respect to Mh then becomes

W
√
λdMh

(
1 +Mh −

√
M − Mh√

M

)
+ 2λdM

(
M −M2

h

)
2M2

h

.

(32)
The derivative equals zero when Mh =

√
M , which corre-

sponds to having a square-shaped array. However, this is a
local maximum, while the area is minimized at either Mh = 1
or Mh = M ; that is, a ULA has the smallest possible area.

Suppose we alternatively want to minimize the total aperture
length, namely the diagonal

√
L2

h + L2
v of the URA. The

corresponding optimization problem can be stated as

minimize
Mv,Mh∈{1,...,M}

L2
h + L2

v

subject to M = MhMv.
(33)

The minimum is then obtained when Mh =
√
M , as can be

shown by substituting Mv = M/Mh into the cost function
and equating its first derivative with respect to Mh to zero.

In summary, when deploying M dual-polarized antennas
to maximize the MIMO capacity, a one-dimensional ULA
minimizes the aperture area while a square-shaped URA with
Mh = Mv =

√
M minimizes the aperture length.

IV. NUMERICAL RESULTS

In this section, we provide simulation results that highlight
the main results. We consider a setup where the distance
between the broadside transmitter and receiver antenna arrays
is d = 100 meters, with W = λ/2 meters. The carrier
frequency is 30 GHz (λ ≈ 0.01). We begin by considering
the physical dimensions of the URA when using the optimal
antenna spacings. Fig. 2 shows the aperture area when varying
Mh and Mv, with either M = MhMv = 64 or M = 256. The
maximum area is obtained when Mh = Mv (i.e., in the case of
a USA), while the area decreases when the number of antenna
elements increases in either the horizontal or vertical direction
while decreasing in the other dimension. The smallest aperture
area is obtained in the case of a horizontal/vertical ULA. The
aperture length is shown in Fig. 3 for the same setup. We
observe an inverse relation compared to the aperture area, so
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Fig. 2. The aperture area for varying Mh and Mv in the URA.

Fig. 3. The aperture length for varying Mh and Mv in the URA.

a USA obtains the minimum length with Mh = Mv. Both
these results agree with the analysis in Sec. III-D.

We will now demonstrate the relation between the antenna
spacing and channel capacity in a MIMO setup with two USAs
with M = 64 dual-polarized antenna elements. We consider
an SNR of Pβ/σ2 = 25 dB in Fig. 4. Increasing the antenna
spacing first monotonically improves the capacity of the sys-
tem, until we reach the maximum capacity at ∆h = ∆v =
0.3535 m. At this point, the capacity crosses the threshold
of 900 bit/symbol, which is achieved using 128 orthogonal
spatial dimensions that each carries 7 bit/symbol. When the
antenna spacing is further increased, the capacity fluctuates
and generally decreases. This highlights the importance of
using the optimal spacing, while the price to pay is that each
array is 2.5×2.5 meters at the optimal point in this setup. The
XPD leads to a minor capacity reduction, as can be seen by
comparing the curves with κ = 0 with κ = 0.1. Most results in
this figure are obtained using the exact channel matrix model
in (6), but the solid line is obtained using the approximation
in (14) that was used to obtain analytical results. The tightness
of the approximation is clearly visible, and the approximate
curve coincides with the actual curve. Finally, we notice that
the capacity is nearly doubled when using dual polarization
compared to using a single polarization.

V. CONCLUSION

In this paper, the MIMO channel capacity was maximized
for a given propagation distance between two dual-polarized
URAs. The optimal spacing between the antenna elements
was identified analytically. The trade-off between the aperture
length and the area enclosed by the array was manifested
analytically and illustrated via simulations. A ULA requires
the smallest area for a given number of antennas, while
the USA gives the smallest aperture length. The cross-polar

Fig. 4. The channel capacity as a function of the horizontal/vertical antenna
spacing for a USA with Mh = Mv = 8 antennas.

discrimination determines how to transmit optimally using
dual polarization, but even when it is imperfect, the capacity
is nearly doubled compared to using a single-polarized array.
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