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Abstract—Extremely large-scale array (XL-array) is capa-
ble of supporting extremely high system capacity with large
numbers of users. In this work, we analyze the performance
of discrete-aperture XL-array using the electromagnetic (EM)
channel model with near-field spherical wave-front. We derive
the explicit signal-noise-ratio (SNR) expressions and based on
which the impact of discrete aperture and polarization mismatch
is unveiled. We also review the amplitude-aware Fraunhofer
distance based on the EM channel model which provides useful
insights for distinguishing the boundary between the near-field
and far-field.

Index Terms—Extremely-large-scale array, electromagnetic
channel model, near-field.

I. INTRODUCTION

As the evolution of massive MIMO, extremely large-scale
array (XL-array) has attracted great interest in academia [1],
[2]. By mounting more than several thousands of antennas,
XL-array can achieve extremely high spectral efficiency and
satisfy the harsh criterion of the next-generation communica-
tion systems. However, due to the increased aperture of the
XL-array, the spherical electromagnetic (EM) wave can no
longer be approximated as planar EM wave and the near-field
condition should be considered. There are multiple differences
between near-field and far-field communications. The first one
is the nonlinear variation of the phase of received signal across
the whole array. Under the far-field condition, the phase of
array steer vector can be approximated as linear for different
elements which bring tractable property for mathematical anal-
ysis. However, this nature does not hold in the near-field. Sec-
ondly, as the array aperture increases, it is essential to consider
the amplitude/pathloss variation between different antennas.
This is because the distances between the array center and
array edge could have significantly different distances between
them and the user, which results in amplitude variations.
Thirdly, for user located close to XL-array, the signal will
have obviously different incline angles which changes the
effective projected aperture. Therefore, in the study of XL-
array, it is crucial to utilize the practical spherical wave model
and then investigate the new nature brought by the near-field
communications.

Considering the near-field behavior, XL-array has been
studied recently from different perspectives. Focusing on the
nonlinear phases of the array steer vector, some research has
investigated the problem of beam training [3] and channel
estimation [4]. To further accurately model the near-field
spherical wave-front, the variation of the amplitude was con-
sidered in [5]–[9]. Specifically, the authors in [5] modeled
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Fig. 1. Illustration of the considered system.

the near-field channel with amplitude variation and took into
consideration of different signal incline angles. Based on the
EM channel model, the impact of polarization mismatch was
considered in [6], [7], which accurately describes the physical
near-field behaviors. These works proved that due to the
amplitude variation, even though the array aperture tends to
be infinitely large, the received power of the signal is still
limited. However, for tractability, the above work [5]–[9] has
assumed the array to be spatial continuous, i.e., edge-to-edge
deployed antennas with zero antenna spacing or infinitely large
numbers of infinitesimal antennas. This structure increases
the performance but also brings high fabrication complexity
and antenna coupling. Thus, the discrete XL-array with half-
wavelength spacing was studied in [10]–[12]. However, these
works did not adopt the EM channel model and therefore the
impact of polarization mismatch cannot be characterized.

To fill the above research gap, this work investigates the
discrete-aperture XL-array with EM channel model. Based
on the EM channel model, we derive the explicit SNR
expression for discrete-aperture XL-array in the single-user
setup. We theoretically unveil the near-field behavior on the
SNR performance with the impact of discrete aperture and
the polarization mismatch. We also re-examine the amplitude-
aware Fraunhofer distance in the presence of polarization
mismatch.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the uplink transmission
from a single-antenna user to an XL-array. The Cartesian
coordinate system is established in which the origin is the
center of the array. Without loss of generality, the user
is referred as to user k and its coordinate is denoted by
uk = [uk,x, uk,y, uk,z]

T .
The length of the antennas and the antenna spacing are

denoted by
√
A and ∆, respectively, with ∆ ≥

√
A. The XL-

array has M = MxMy antennas and the area of each antenna910ISBN: 978-9-4645-9360-0 EUSIPCO 2023



is A. For brevity, define η = A
∆2 ≤ 1 as the array occupation

ratio. Considering the (mx,my)-th antenna, the coordinate of
its center can be expressed as pmx,my = [mx∆,my∆, 0]

T ,
where mc ∈

{
−Mc−1

2 , . . . ,−1, 0, 1, . . . , Mc−1
2

}
, c ∈

{x, y}. Besides, the area of the (mx,my)-th antenna
is denoted as Smx,my =

[
mx∆−

√
A

2 ,mx∆ +
√
A

2

]
×[

my∆−
√
A

2 ,my∆ +
√
A

2

]
. Then, the distance between the

user k and the center of the (mx,my)-th array element is
given by

∥∥rk,mx,my∥∥, where rk,mx,my = pmx,mx − uk. The
channel from the user k to the (mx,my)-th antenna of the XL-
array is denoted by hk,mx,my =

√
ξk,mx,mye

−j 2π
λ rk,mx,my ,

where ξk,mx,my is the channel power/pathloss. Then, com-
bining hk,mx,my for all mx, my into a vector, the channel
hk ∈ CM×1 from user k to the whole array can be formed.

We apply the Dyadic Green’s function-based channel mod-
eling for pathloss ξk,mx,my [6], [7], [13]. This channel model
is more practical and takes the impact of EM polarization into
consideration. Specifically, consider a point p = [px, py, 0]

T

which located in the area of (mx,my)-th antenna, i.e., p ∈
Smx,my . Based on the Maxwell equations, the electric field of
user k satisfies the following inhomogeneous Helmholtz wave
equation [6](

−∇uk ×∇uk ×+k2
0

)
E(uk) = jk0κJ (uk), (1)

where k0 = 2π
λ is the wavenumber, κ is the intrinsic

impedance, and E(uk) is the electric field excited by a
current density J (uk). The inverse map of (1) is given by
E(p) =

∫
G(p,uk)J (uk)duk. In EM theory, G(p,uk) is

referred as to the Green function which in the radiated near-
field can be approximately expressed as [13]

G(p,uk) ≈ jκej
2π
λ ‖rk‖

2λ‖rk‖
(
I3 − r̂kr̂

H
k

)
, (2)

where rk = p − uk = [px − uk,x, py − uk,y,−uk,z]T and
r̂k = rk

‖rk‖ . For notional simplicity, define rk = ‖rk‖. The
Green function G(p,uk) characterizes the EM response at
the point p due to the current source at point uk. In this
work, the low-cost uni-polarized antenna is considered and
the current is assumed to be exited in the y-axis direction
[6], [7]. Therefore, the current of the source can be written as
J (uk) = J y(uk)êy and the pathloss between user k and the
(mx,my)-th antenna Smx,mx can be modeled as follows

ξk,mx,my =

∫
Smx,mx

λ2

κ2π
‖G(p,uk)J (uk)‖2 rTk êz

‖rk‖
dp (3)

=

∫
Smx,mx

1

4πr2
k

uk,z
rk

(px − uk,x)
2

+ u2
k,z

r2
k

dp (4)

p≈pmx,my
≈ A

4π

uk,z

(
(mx∆− uk,x)

2
+ u2

k,z

)
{

(mx∆− uk,x)
2

+ (my∆− uk,y)
2

+ u2
k,z

} 5
2

,

(5)

where (3) applies a normalized factor λ2

κ2π and a projection
factor rTk êz

‖rk‖ which project the signal to the normal direction to
characterize the performance loss due to the angle of incidence

deviation. In (5), since the size of each antenna is much smaller
than the distance r, all the point p on area Smx,mx is approx-
imated as the center point pmx,my . In (4), it is shown that the
utilized pathloss is comprised of three components, including
the free-space pathloss 1

4πr2k
, the propagation projection uk,z

rk
,

and the polarization mismatch
(px−uk,x)2+u2

k,z

r2k
[7]. Clearly,

if uk,x = uk,y = 0, then uk,z
rk

= 1; if uk,y = py , then
(px−uk,x)2+u2

k,z

r2k
= 1 and (5) degrades to the pathloss model in

[10, (2)]. Thus, compared with [10], the utilized model is more
general and can be used to analyze the impact of polarization
mismatch.

III. SNR ANALYSIS

The signal received at the XL-array is expressed as yk =√
phkxk + n, where p is the transmit power and n ∼
CN (0, σ2IM ). Based on the MRC detector, the SNR is
calculated as

SNRk =
p

σ2
‖hk‖2 =

p

σ2

∑
mx

∑
my

ξk,mx,my , (6)

where ξk,mx,my is given in (5). In the following, we will
present the explicit expression of (6) instead of the form with
double-sum. The proof is presented in [14] and omitted here
due to the limited space.

Theorem 1 If uk,z = 0, we have SNRk = 0. Otherwise, the
SNR is given by

SNRk = pη
6πσ2

{
Fk

(
My∆

2 − uk,y, Mx∆
2 − uk,x

)
+Fk

(
My∆

2 − uk,y, Mx∆
2 + uk,x

)
+Fk

(
My∆

2 + uk,y,
Mx∆

2 − uk,x
)

+Fk

(
My∆

2 + uk,y,
Mx∆

2 + uk,x

)}
,

(7)

where Fk(a, b) = arctan

(
a

uk,z
b√

b2+a2+u2
k,z

)
+

uk,z
2

a
a2+u2

k,z

b√
b2+a2+u2

k,z

.

For large M , we have Mc∆ ≈ Lc, c ∈ {x, y}, and
therefore the SNR in (7) can be further approximated as a
function of surface area Lx, Ly , user location uk, and array
occupation ratio η = A

∆2 ≤ 1. It embodies the impact of
discrete array compared with continuous array from the factor
η. Clearly, the SNR is an increasing function with η since
ηLxLy represents the effective array aperture. Next, we want
to analyze the impact of polarization mismatch on the SNR
when using discrete array. Substituting

(px−uk,x)2+u2
k,z

r2k
= 1

into (4), we can derive the SNR without polarization mismatch,
which has the same form as (7) but with inner function
F
w/o
k (a, b) = 3

2 arctan( ab

uk,z
√
a2+b2+u2

k,z

).

It can be seen that the function Fk(a, b) is more com-
plex than Fw/ok (a, b), which makes theoretical analysis more
challenging. Recall that the current with y-axis polarization
direction is considered. As a result, the polarization mismatch
increases with the difference in y-coordinates between the
user and the antenna. Thus, when Ly → ∞ (in severe near-
field), we can observe that SNR

w/o
k → 3

2SNRk, which clearly911
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Fig. 2. Geometric understanding for the SNR.

demonstrates the performance loss caused by polarization
mismatch. Besides, for large uk,z (i.e., in far-field) and uk,z �
a, we have arctan( a

uk,z
b√

b2+a2+u2
k,z

) ≈ ab

uk,z
√
b2+a2+u2

k,z

and uk,z
2

a
a2+u2

k,z

b√
b2+a2+u2

k,z

≈ ab

2uk,z
√
b2+a2+u2

k,z

, which

results in Fk(a, b) ≈ F
w/o
k (a, b) and accordingly SNRk ≈

SNR
w/o
k ≈ p

σ2
1

4πr2k,o
MA cosψek [10]. This shows that the

polarization mismatch will play more roles in the near-field
than far-field, and its impact is more related to parameter a,
i.e., Ly and uk,y .

In massive MIMO systems with far-field condition and free-
space pathloss [15]–[17], the SNR in the single-user scenario
is SNRfar

k = p
σ2

λ2

(4π)2r2k,o
M , which increases linearly with M

to infinity. However, we know that the received power cannot
exceed the transmitted power based on energy conservation.
In fact, when M → ∞, the near-field channel model should
be applied and the linear scale in SNRfar

k no longer holds.
Based on the EM near-field channel, when M →∞, the SNR
converges to

SNRk →
p

σ2

4η

6π
Fk

(
Ly
2
,
Lx
2

)
→ p

σ2

η

3
. (8)

If the polarization mismatch is neglected, the asymptotic
SNR is

SNR
w/o
k → p

σ2

η

π
F
w/o
k

(
Ly
2
,
Lx
2

)
→ p

σ2

η

2
. (9)

If the array is assumed to be continuous i.e.,
√
A = ∆, we

have

SNRcont
k → p

σ2

1

3
. (10)

The results in (8) - (10) provide the practical performance
limit when the XL-array has an infinitely-large surface area.
It can be seen that our result (8) is smaller compared with
the other two cases. In (9), at most half of the power can
be received by an infinitely large array surface, since it can
only occupy half of the space. With polarization mismatch,
the limit reduces to 1/3. This is because as Ly increases, the
attenuation from the source to the edge of the array caused by
polarization mismatch becomes severer. Intuitively, the array
occupation ratio η also plays a key role in the limit since it
represents the effective surface area.

The reason why the SNR is limited with M →∞ can also
be explained from the perspective of geometric angles. For
ease of understanding, consider a user located perpendicular
to the center of the array, i.e., uk,x = uk,y = 0. In this case,

as illustrated in Fig. 2, we define two angles α and β so that
tanα =

Ly/2
uk,z

and cosβ = Lx/2√
(Lx2 )

2
+
(
Ly
2

)2
+u2

k,z

. Then, the

SNR can be re-written as

SNRp
k =

p

σ2

2η

3π

{
arctan(tanα cosβ) +

1

2
sinα cosα cosβ

}
.

(11)

The SNR in (11) is a function of angles α and β. As the
aperture of the array increases infinitely large, however, the
angles of view from the user to the array, i.e., α and β, are
still limited. Specifically, if Lx → ∞, there is β → 0. When
Ly → ∞, there is α, β → π

2 . If both Lx and Ly tend to
infinity, there are α→ π

2 and β → π
4 . As a result, the SNR is

limited by the angles and cannot increase infinity.
For better understanding the impact of polarization mis-

match, we next consider a simplified case where the XL-UPA
degrades to the XL-ULA, i.e., Mx = 1 or My = 1.

Theorem 2 When My = 1, the SNR for XL-ULA is given by

SNRULA
k = p

σ2
η∆
4π

{
FULA
k

(
Mx∆

2 − uk,x
)

+FULA
k

(
Mx∆

2 + uk,x
)}
,

(12)

where

FULA
k (a) =

a(a2u2
k,y+3u2

k,z(a
2+u2

k,y+u2
k,z))uk,z

3(u2
k,y+u2

k,z)
2
(a2+u2

k,y+u2
k,z)

3
2

. (13)

The result in (12) is consistent with [10] only if uk,y = 0.
This is because when My = 1, the y-coordinate of all antennas
on XL-ULA is 0. When the y-coordinate of the user is also
uk,y = 0, the difference in y-coordinate between the user and
all antennas on the ULA is zero and therefore no polarization
mismatch exists. For Mx → ∞, the asymptotic limit of the
SNR is

SNRULA
k

M→∞→ p

σ2

A

2π∆

uk,z

(
u2
k,y + 3u2

k,z

)
3
(
u2
k,y + u2

k,z

)2 . (14)

It can be seen that (14) is unrelated to uk,x. This is because
as Mx → ∞, the array is infinitely long and therefore the
x-coordinate of the user does not matter. Furthermore, the
asymptotic SNR for XL-ULA without polarization mismatch
is given by

SNRULA
k,w/o

M→∞→ p

σ2

A

2π∆

uk,z

(
3u2

k,y + 3u2
k,z

)
3
(
u2
k,y + u2

k,z

)2 ≥ SNRULA
k ,

(15)

and the gap between (14) and (15) is

DSNRk = SNRULA
k,w/o − SNRULA

k =
p

σ2

A

3π∆

uk,zu
2
k,y(

u2
k,y + u2

k,z

)2 ,

(16)

which first increases and then decreases with respect to
uk,y . Specifically, we have DSNRk → 0 as uk,y → 0 and
DSNRk → 0 as uk,y → ∞. This is rational. When uk,y = 0,
the user possesses the same y-coordinate as the whole ULA,912



and therefore the polarization mismatch vanishes. As uk,y
increases, the difference of the y-coordinate increases leading
to larger polarization mismatch. However, for large enough
uk,y , the user will be located in the far-field and therefore the
gap vanishes.

A. The Field Boundaries

In this section, we aim to revisit the boundary between
the near-field and the far-field based on the discrete array
with polarization mismatch. The classic Fraunhofer distance
[18], i.e., df = 2D2

λ , mainly focuses on the variation of the
phase between different antennas while the pathloss variation
of ξk,mx,my across different antennas is ignored. In [10], an
amplitude-aware Fraunhofer distance is proposed. Inspired by
[10], we further take the impact of polarization mismatch into
consideration, which is more general and more challenging.
Based on the amplitude model of the considered discrete-
aperture XL-MIMO array, we quantify the amplitude variation
across the whole array as follows

v(uk) =
minmx,my ξk,mx,my
maxmx,my ξk,mx,my

. (17)

For uk located in the far-field with planar wave-front, we have
v(uk) = 1. As the user moves closer to the array, the near-field
behavior manifests itself, and the variation of the amplitude
across the array becomes non-negligible. Therefore, we can
define an amplitude variation threshold v̄t ∈ (0, 1], and then
determine the near/far-field boundary by finding the set of
locations ũk, where v(ũk) = v̄t. Clearly, the field boundary
will be a surface comprised of 3D user positions. Based on
(5), we can find that the amplitude ξk,mx,my between user k
and the (mx,my)-th antenna element decreases with their y-
coordinate difference |my∆− uk,y| but it is not monotonic of
their x-coordinate difference |mx∆− uk,x|. This is because
when |my∆− uk,y| increases, both the distance and the po-
larization mismatch increase. By contrast, when |mx∆− uk,x|
increases, the distance increases but the relative polarization
mismatch decreases.

In the following, we aim to obtain the explicit values
of mx and my which respectively maximize and minimize
ξk,mx,my given uk. By defining s = (mx∆− uk,x)

2
+ u2

k,z

and v = (my∆− uk,y)
2, we are able to rewritten ξk,mx,my as

fξ(s) = s

(s+v)
5
2

with f ′ξ(s) = (s+ v)
−7
2 (v − 3

2s). For brevity,

define fint(a) =
⌊
a+ 1

2

⌋
rounding a to the nearest integer.

Define f±x(a) =
uk,x
|uk,x|a. Define f|min |(a, b); if |a| ≤ |b|,

f|min |(a, b) = a; if |a| > |b|, f|min |(a, b) = b. Then, based
on the range of mx and my , we can derive the domain of s ∈
[smin, ..., smax] where smax =

(
f±x

(
Mx−1

2

)
∆ + uk,x

)2
+

u2
k,z and

smin =
( {
f|min |

(
fint

(uk,x
∆

)
, f±x

(
Mx−1

2

))}
∆

−uk,x
)2

+ u2
k,z.

(18)

By analyzing the properties of fξ(s), we can obtain the
following solutions: to maximize fξ(s), there are my =
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Fig. 3. SNR versus M for XL-UPA, uk = [10, 10, 10], Mx = My =
√
M .

f|min |

{
fint

(uk,y
∆

)
, f±y

(
My−1

2

)}
, v∗ = (my∆− uk,y)

2,
and

mx =



fint

(
f|min |

{√
2
3 v

∗−u2
k,z+uk,x

∆ ,
−
√

2
3v

∗−u2
k,z+uk,x

∆

})
, if smin ≤ 2

3v
∗ ≤ smax

f|min |
{
fint
(uk,x

∆

)
, f±x

(
Mx

2

)}
, if 2

3v
∗ < smin

−f±x
(
Mx−1

2

)
, if 2

3v
∗ > smax

(19)

To minimize fξ(s), there are my = −f±y
(
My

2

)
, v∗ =(

my∆− uk,y
)2

, and

mx =



f|min |
{
fint
(uk,x

∆

)
, f±x

(
Mx

2

)}
, if smin ≤ 2

3v
∗ ≤ smax, fξ (smin) ≤ fξ (smax) ;

−f±x
(
Mx−1

2

)
, if smin ≤ 2

3v
∗ ≤ smax, fξ (smin) > fξ (smax) ;

f|min |
{
fint
(uk,x

∆

)
, f±x

(
Mx

2

)}
, if 2

3v
∗ > smax;

−f±x
(
Mx−1

2

)
, if 2

3v
∗ < smin.

(20)

Based on (19) and (20), we can calculate v(uk) given uk.
Then, to find the ũk = [ũk,x, ũk,y, ũk,z] on the field boundary,
we can fix ũk,x and ũk,y and then use the one-dimensional
search to find ũk,z which leads to v(ũk) = v̄t.

IV. SIMULATIONS

In this section, we provide numerical results for validating
our theoretical analysis and draw insights for XL-array-based
communication systems. As [10]–[12], we set ∆ = λ

2 =

0.0628 m, p
σ2 = 90 dB, and A = λ2

4π .
Fig. 3 illustrates the SNR performance as the aperture of

XL-UPA tends to be infinitely large. It can be seen that dif-
ferent from the far-field-based results which increase linearly,
the near-field-based SNR first increases but then saturates to
a limit as M → ∞. It can be observed that the proposed
result, which takes into consideration of discrete aperture and
polarization mismatch, characterizes the actual performance
with additional loss. Besides, it can be seen that the sum results
in (6) are well approximated by the derived explicit results.

In Fig. 4, the asymptotic SNR of XL-ULA is studied. A
similar tendency can be found as in Fig. 3. However, the913
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number of antennas needed for the SNR to slow down its
growth rate is much smaller than that in Fig. 3. With ULA,
the SNR turns to saturation with almost 103 antennas while
the needed number of antennas for UPA is 106. This is
because given M , the ULA has a much larger dimension
than UPA and therefore the variations of the amplitude, the
signal incline angles, and the polarization mismatch across
the whole array are more obvious on the ULA. Recalling
the geometric understanding from Fig. 2, as M increases,
the enlarging of the view of angles is easier to saturate in
ULA than angles in UPA. Besides, it can be observed that the
SNR gap between the proposed model and the model without
polarization mismatch enlarges as the y-coordinate of the user
increases. This phenomenon agrees with our analytical result
(16) since the polarization mismatch is proportional to the
difference of y-coordinate between the user and the received
antennas. As a result, as uk,y increases, the performance loss
caused by polarization mismatch increases.

In Fig. 5, the amplitude-aware Fraunhofer distance is re-
examined after taking into consideration the impact of po-
larization mismatch. The results are shown with uk,y = 0.
We also present the results when neglecting the polarization
mismatch and neglecting both the polarization mismatch and
the angle projection. It can be seen that different from the
classic phase-aware Fraunhofer distance which is a semicircle,
the three amplitude-aware Fraunhofer distances shrink when
the user is located face to the center of the array. This is
because the variation of amplitude from the center to the edge
of the array is milder than that from one edge to the other edge.

With milder amplitude variation, the near-field area is smaller.
Meanwhile, it can be seen that the considered case has a larger
Fraunhofer distance since the polarization mismatch further
aggravates the amplitude variation across the array. Besides,
It can be seen that the Fraunhofer distance increases with M
due to the larger array dimension.

V. CONCLUSION

In this work, we investigated the performance of XL-array
based on the EM channel model with near-field behavior. We
derived the explicit expression of SNR in the single-user setup,
which provides useful insights for understanding the impact of
discrete aperture and polarization mismatch. We also studied
the Fraunhofer distance under the proposed EM channel.
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