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Abstract—Beamforming with large-scale antenna arrays has
been widely considered in wireless communications research
in recent years, playing a significant role in fifth generation
(5G) networks, as also expected to happen in their upcoming
sixth generation (6G). To improve its performance, various
techniques have been leveraged, e.g., optimization schemes and
deep learning. Although the late deployment of deep learning
approaches has been proven quite attractive in certain scenarios,
it has been showcased that when the environment or the dataset
changes, the performance of supervised learning gets severely
degraded. Therefore, the design of effective neural networks for
beamforming, exhibiting strong robustness, is an open research
area for intelligent wireless communication systems. In this
paper, we propose a robust self-supervised deep neural network
for beamforming, which is tested with two different datasets
emulating various wireless deployment scenarios. Our simulation
results demonstrate that the proposed self-supervised network
with hybrid learning performs sufficiently well in both the
DeepMIMO and the new WAIR-D datasets, exhibiting strong
robustness under various environments.

Index Terms—Beamforming, deep neural networks, hybrid
learning, self-supervised learning, robustness.

I. INTRODUCTION

Recently, beamforming for millimeter wave (mmWave) has
gained much attention for its very wide bandwidth and the
capacity of forming the narrow beam, which can greatly im-
prove the throughput of communication systems. Narrow beam
makes the directivity of beamforming better so that the energy
would be concentrated and the signal to noise rate would
be higher. Beamforming technologies had been thoroughly
studied in the past decades [1]. Specifically, exhaustive search
and adaptive hierarchical search were first proposed to solve
the problem, but at the price of the large training overhead
and delay. Majorization Minimization algorithm is an efficient
way to get the sub-optimization solution [2], however it usually
does use accurate channel information, which will results in
the heavy training overhead.

Machine learning (ML) is good at exploiting historical expe-
rience to solve the new similar problems, and previous works
had shown that ML-based technology can be used to predict
mmWave beams [3]. Moreover, a recent work has presented an
universal framework to Multiple Input Single Output (MISO)
beamforming [4], but all of these works lack the ability to
migrate to different scenes or even open environment. This is
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Figure 1. An example environment with buildings and BS(blue)/UE(red)
positions in top view (left), the same buildings in bird-eye view (right)

also the defect of the most ML-based beamforming methods.
Therefore, implementing a robust beamforming framework is
a very meaningful and important topic [5], especially when
it can work well with different kinds of datasets. First, we
will introduce these two kinds of different datasets. It is well
known that DeepMIMO is the most widely used open-source
dataset in wireless communications, which is constructed by
the 3D ray-tracing and virtual scene generation technologies
[6]. Due to its integrity, it can simulate the most classical
scenes. However, the shortcoming is also very obvious: it is
based on the virtual generated scene, which might not provide
accurate simulations for the real communications. Moreover,
this dataset just provides one setting for each kind of scene,
and the trained model cannot adapt to various building settings.

Recently, another an open-source dataset named as WAIR-
D was proposed to boost the related research [7]. The biggest
difference from DeepMIMO is that it is based on the real-
scenario maps. In addition, the dataset generating and saving
ways are different as well. The main features of WAIR-D can
be summarized as follows:

• Real Scenes: 10000 scenes are randomly selected from
real-scenario maps of more than 40 big cities around the
globe, and an example can be seen from Fig. 1, where
the layout information of buildings is directly extracted
from the actual map.

• Flexible Parameters: 3D ray-tracing parameters are pro-
vided so that the user can define them freely to generate
required data for wireless AI tasks.

• Friendly to Users: Data genaration, preprocessing, sam-
ple, and training codes are all provided for users to get
the start quickly.

• Friendly to Low-memory computers: The number of
threads for data generation can be adjusted so that less
memory is taken to reduce the time overhead of reading
and training.

In this work, we will present a robust beamforming self-
supervised scheme based on these two kinds of different
datasets, where no label is needed and the proposed beamform-
ing network can be trained to learn how to optimize the spec-
tral efficiency intelligently. Finally, we verify the robustness
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performance of our proposed scheme with various scenarios.
The main contributions can be summarized as follows:

• Robustness inside Dataset: We design a self-supervised
beamforming neutral network to produce analog phase
shifters instead of digital ones, which is more consistent
with mmWave. With different test cases, it can still output
the optimized beamformer, which implies the neutral
network that has robustness inside a specific dataset.

• Robustness across Dataset: Hybrid pre-training is pro-
posed to gain a more robust beamforming network to
adapt to a different environments. Moreover, we give the
principle to explain the rationality of this hybrid learning,
which is instructive to apply with more kinds of datasets.

• Multiple Data Sources Performance Evaluation: We ver-
ify our proposed scheme in two kinds of different datasets
with various scenarios. Simulation results show that the
proposed self-supervised network with hybrid learning
performs well in both classic DeepMIMO and new
WAIR-D dataset with the strong robustness under the
various environments.

II. SYSTEM MODEL

In this section, we first introduce the system model for
the considered mmWave communication scenario, and then
present a rate-maximization optimization problem. We con-
sider the downlink MIMO-based mmWave communication
system [8], where there is a base station (BS) equipped with
an array of Nt antenna elements, and NRF radio frequency
chains. In the receiver, there are Nr single-antenna mobile
users. Due to the heavy attenuation of mmWave, we only
consider the line of sight (LOS) dominant paths between BS
and users. We denote the transmitted symbol as x ∈ CNRF ×1,
with average energy being E

{
|xxH |

}
= I . We adopt a

narrowband block-fading channel model in which the k-th
user observes the received signal as

y = hH
k vkx+ n, (1)

where h is the Nt × 1 vector that represents the mmWave
channel between the BS and user, and v ∈ CNt×NRF is the
beamforming matrix. n is the additive noise satisfying the
circularly symmetric complex Gaussian distribution with zero
mean and covariance σ2.

As for the channel model, we now have generated two
datasets: DeepMIMO and WAIR-D. The time-domain channel
matrix of DeepMIMO, hd consists of L channel paths, and
each path has a time delay τl ∈ R, and the azimuth/elevation
angles of arrival (AoA) θl, φl. Let ρ denote the path-loss be-
tween the user and the BS, and p(τ) represents a pulse shaping
function for TS-spaced signaling evaluated at τ seconds. Thus,
the channel vector can be formulated as

hd =

√
M

ρ

L∑
l=1

αlp(dTS − τl)a(θl, φl), (2)

where a(θl, φl) is the array response vector of the BS at the
AoA θl, φl. By contrast, WAIR-D has the same channel model
but is constructed based on real map in large scale, which

Figure 2. Top view of the scenario ’O1’ of the DeepMIMO dataset.

makes it more accurate to simulate the real scenes. The k-th
user can obtain the spectral efficiency as follows [9],

Rk(vk) = log

(
1 +

∥hH
k vk∥2

σ2 +
∑

j ̸=k ∥hH
k vj∥2

)
. (3)

where the beamforming vector satisfies power constraint∑
k ∥vH

k vk∥ ≤ P . And signal-noise ratio (SNR) can be
defined as 10 lg(P/σ2). Since this task can be formulated as
a mapping vk = V(hk, P ), the optimization problem can be
written as

max
vk

Eh,P [
∑
k

Rk(V(hk, P ))] (4)

s.t.
∑
k

∥V(hk, P )HV(hk, P )∥ ≤ P, (5)

where Eh,P [·] represents average over channel samples and the
sum power constraints. The main idea of this paper is to focus
on how the spectral efficiency changes with SNR, and channel
state information (CSI) is what we will utilize to predict
the best beamforming vector, although the estimation of it is
imperfect. Accuracy of channel estimation can be measured
by pilot-to-noise power ratio (PNR), moreover, [9] had shown
that deep neural network can approximate theoretical upper
bound in high PNR. To verify the network robustness across
different datasets while reducing impact of estimation bias,
we set the appropriate PNR as the 20dB. The scenario that
we choose in DeepMIMO is O1 60. In terms of WAIR-D
dataset, scenario-1 of WAIR-D has 30 users and 4 stations,
where the user number is not enough, therefore, we choose
scenario-2 in WAIR-D for our experiment, and details of the
training maps are illustrated in Fig. 2 and Fig. 3 respectively.

Related research [10] has pointed out that multi-link in-
terference in such beamforming task is limited, and taking
interference into consideration would require a more complex
network architecture and much higher computation complex-
ity. Moreover, the impact of multi-link interference on the
performance of prediction is expected to be small due to
mmWave beamforming itself [11]. So our simulation would
not consider interference between users, although our model
is a general one applying to multi users.

III. PROPOSED SELF-SUPERVISED BEAMFORMER

In this section, we present an unsupervised machine ML
architecture, and discuss how to combine datasets to improve
hybrid training efficiency in the proposed network architecture,
which is shown in Fig. 4, and it is mainly composed of three
parts: input block, feature extracting block and output block.
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Figure 3. Top view of the scenario 2 case 1 of the WAIR-D.(a) shows 100
UEs among the totally 10,000 UEs, (b) shows all 10,000 UEs

Figure 4. The architecture of beamforming deep neural network.

Such design can capture the relationships among layers and
effectively alleviate overfitting, making no special assumptions
about the input data. Afterwards, a hybrid training theory is
presented to deduce the robustness, making our model work
around different environments. The details are presented in
following subsections.

A. The Network Architecture

CSI of WAIR-D usually can be provided as an image form
to save the storage space, the x-axis and y-axis of which
represent number of carriers and antennas separately, and the
deepth of color represents channel frequency response (CFR).
CSI of DeepMIMO is provided as a complex matrix, and we
can split the real part and negative part and concatenate them
to form an image. Thus, we can use image as the form of
input. After flatten layer, input data becomes one-dimension
and is ready to be processed by the next layer. The second
block mainly consists of three smaller blocks, in which fully
connected layer is mainly used to extract features, and it is
followed by relu layer, batch normalization layer and dropout
layer. Batch normalization layer can normalize the biased
distribution to standard distribution. In this way, the gradient
becomes larger; the learning convergence speed is accelerated,
and the problem of gradient disappearance is alleviated. And
related research had shown that batch normalization layer
should be put between relu layer and dropout layer [12], so we
design this sequence to maximize robustness. The reason why
we choose three smaller blocks is that through experiment we
have found that this is the best balance between complexity
and performance. The detailed parameters in our simulation
can be found in table I.

The last dropout layer outputs 2NtNrNRF real scalars, cor-
responding to Nr complex vectors, and u = [u1,u2 · · · ,uNr

]
is the combination. Constrained by

∑
k ∥vH

k vk∥ ≤ P , λ

Table I
DETAILS OF THE NEURAL NETWORK

Layer Name Output Size Parameters

Input Layer 2× 64 0
Dense Layer 1 320× 1 41280

BN Layer 1 320× 1 640
Dense Layer 2 320× 1 102720

BN Layer 2 320× 1 640
Dense Layer 3 128× 1 41088

BN Layer 3 128× 1 256
Lambda Layer 64× 1 0

layer utilizes generated complex vector u to output the final
beamforming vector v = [v1,v2 · · · ,vNr ] as

vk =

√√√√ P∑
1≤j≤Nr

∥uj∥2
uk. (6)

As the feature of self-supervised learning, we do not need
labels before our training process, where we only need CSI
and power P . The training loss is the opposite number
of the average transmission rate, as we directly output the
beamforming vector and transmission rate. Stochastic gradient
descent method (SGD) is utilized to approach the max rate and
the loss function takes the form

Loss = − 1

NrM

M∑
i=1

Nr∑
k=1

Rk,i(vk). (7)

M is the size of training batch while Rk,i refers to the spectral
efficiency of the k-th user in the i-th sample, and each sample
contains channel data of Nr users.

B. Hybrid Training Theory
In this section, we propose a hybrid training method for

beamforming and present a theory to explain it. We assume
that the training data is combined of K kinds of datasets with
n samples in total, and the proportion of each dataset is qk
and pk is the according CSI of an original specific dataset.
It is clear that

∑K
k=1 qk = 1 and amount of channel vectors

of dataset k is nqk. Thus, this mixed dataset can be defined
as p =

∑K
k=1 qkpk, and q = (q1, q2 · · · , qK). We assume

that the parameter of neural work is Θ; input CSI is h, and
the output spectral efficiency is R. ℓ(Θ;h, R) is the train
sample loss, which is used to assess the gap between the
predicted value and the actual maximum value, although the
actual optimal value is not required in self-supervised learning
and cannot be accessed directly. Therefore, the search of the
optimal parameter can be expressed as

Θ(n,q)optimal = argmin
Θ

En,q[ℓ(Θ;h, R)]. (8)

Since we are only interested in how n and q impact the
training loss, we can formulate a function to assess the extra
averaged training loss,

L(n,q) = En,q[ℓ(Θ;h, R)]− {En,q[ℓ(Θ;h, R)]}min . (9)

Earlier research had shown that there is a log-linear relation-
ship between L(n,q) and log(n), if q is fixed [13], so the
extra loss can be represented by

log(L(n,q)) ≈ α(q) log(n) + C(q). (10)
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Further, α(q) was found to be a constant in a specific task
regardless of data composition [14], and this decouples n and
q, helping us concentrate on the proportion parameter q. When
n is fixed, α(q) log(n) turns into a constant, then the extra
averaged training loss can just be described by C(q). At the
same time a rational function was proposed [15] to fit C(q)
written as

Cλ(q) =

d∑
i=1

(
K∑

k=1

λikqk

)−1

, (11)

in which λik is a parameter determined by this model and d is
the number of elements in channel vector h. The formulation
has been proved effectively by the empirical and theorical
way so that we can focus on the impact of q on the training
loss independently. But the process of getting the parameter
λik is not so straightforward, we first make an assumption
that the loss ℓ is twice differentiable (true if the network can
backpropagate), and n is fixed and large enough, thus, we can
define the two variables as below∑

k
= Epk

[∇ (ℓ(Θ;h, R))]. (12)∑∗
= Ep∗ [∇ (ℓ(Θ;h, R))]. (13)

here ∇ (ℓ(Θ;h, R)) referes to Hessian-Matrix of ℓ(Θ;h, R)
with elements of h being variables. And p∗ refers to CSI of
test dataset mixed in a certain proportion. So C(q) can be
approximated [15] as

C(q) ≈ Tr

∑∗
(∑

k

(
qk
∑

k

))−1
 , (14)

wherein Tr represents trace of matrix. It implies that C(q)
is not only associated with the training dataset but also is
associated with the validation dataset. If

∑∗ can be diago-
nalized P−1

∑∗
P = D∗ and

∑
k can also be approximately

diagonalized P−1
∑

k P = Dk+Ok with the same orthogonal
matrix P and small enough Ok, by substituting (12) and (13)
into (14), we can find the parameter λik by the following
formula:

C(q) ≈
d∑

i=1

1∑K
k=1 qk

Dk,ii

D∗
ii

+ o

(
∥

K∑
k=1

qkOk∥F

)
. (15)

Dk,ii refers to the i-th element in the diagonal of Dk. Now
we get λik in (11) which equals Dk,ii

D∗
ii

, and this can be
implemented through computing Hessian-Matrix and matrix
diagonalization shown above. If the neural network has been
trained with a mixed dataset of proportion q, (15) can be
derived using steps illustrated, therefore we can compare the
actual performance of the model with C(q). It is to be noted
that if the diagonalization requirement is not met, C(q) is still
accessible through computing Hessian-Matrix to get (14).

IV. PERFORMANCE EVALUATION RESULTS

In this section, we present computer simulation results for
the performance evaluation of the proposed self-supervised
hybrid deep learning method. As mentioned in II, we focus on
the case with single user, and parameters of the two datasets
in our simulation are the same as in table II. We assume that

Figure 5. Only trained in DeepMIMO 1.

Table II
SYSTEM PARAMETERS

Parameters DeepMIMO WAIR-D

AP BS3 BS0
Users 1000

Carriar Frequency 60GHz
Radio Chains 1

Antenna Number 64
Antenna Spacing λ/2

Bandwidth 50 MHz
Path Number 5
Signal Power 1dbm

PNR 20dB

WAIR-D n refers to scenario-2 and case n of WAIR-D, and
DeepMIMO n refers to the n-th 1000 users between row 1000
and row 1300 in O1 60 of DeepMIMO. Thus, the training
dataset would be mixture of WAIR-D 1 and DeepMIMO 1,
adding up to 1000 users in each training. And the test dataset
is chosen from WAIR-D 2 to WAIR-D 5 and DeepMIMO 2
to DeepMIMO 5. The model is trained through 10000 epochs
using TensorFlow 2.8 in Ubuntu 20.04 equipped with an EPYC
75F3 CPU and a RTX 3090 GPU with learning rate being
initialized at 0.001 and the batch size being 256. First, we
will show the robustness of our proposed scheme among two
different datasets, then we will evaluate the influence of the
proportion and compare it with the theoretical analysis.

Figs. 5 and 6 show that the performance of the beamforming
scheme is trained with only one kind of dataset, but are tested
in two different datasets respectively. It shows that two systems
with different training datasets have a similar system capacity
under the same scenario setting. However, results also show
that the beamforming model only works well when we train
and test it in the same kind of dataset, which implies the
beamforming does not have the robustness to adapt the change
of environment.

In Fig. 7, we evaluate the performance of the proposed
hybrid training technique, in which the two datasets are mixed
equally while keeping overall number of users unchanged. It
is surprising that the test result in two different datasets do
not show significant performance loss as shown in Fig. 5 and
Fig. 6, i.e., all test cases achieving similar maximum rate.
Therefore, it is concluded that our proposed self-supervised
hybrid deep learning scheme has the strong robustness for
different datasets. Moreover, this scheme can be extended to
more general scenario, i.e., there are many kinds of datasets,
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Figure 6. Only trained in WAIR-D 1.

Figure 7. Trained half mixed.

then, we can just need to get the training data from these
datasets in a certain proportion to feed to the neural network.

In Fig. 8, the impact of proportion q on the performance of
the proposed hybrid training is evaluated, and compared with
the theoretical calculation log(C(q)). Specifically, when we
constrain the training samples number to 1000 from these two
datasets, but increase the proportion of WAIR-D 1 from 0 to
1 with stepping 0.1. It is found that when the proportion of
WAIR-D reaches 70%, the model outputs the highest average
rate, which means that the proposed scheme can work at the
best efficiency in both scenarios if we get 70% data from
WAIR-D and 30% data from DeepMIMO. Similarly, we plot
the curve of log(C(q)) through the theoretical (14) and (15)
function. It can be seen that it is a U-shaped curve and
reaches the minimal value at 70% for the proportion of WAIR-
D, which reversely matches the average rate performance
very well. In addition, Fig. 8 also shows that too small or
too large data proportion will only make the performance
unbalanced and biased. This means that we only need to
minimize C(q) to obtain the best proportion from different
training datasets, which makes sure that the trained model has
the best robustness performance all datasets.

V. CONCLUSION

In this paper, we presented a robust beamforming method
for mmWave communication systems which was based on
self-supervised hybrid deep learning. We have performed ex-
tensive simulation experiments showcasing that the proposed
scheme is robust inside a given dataset, and can perform
sufficiently well in different datasets. A theoretical analysis
characterizing the effectiveness of the designed self-supervised

Figure 8. Impact of proportion of WAIR-D when evaluated with half mixed
dataset and log(C(q)).

learning scheme was presented, which was verified via experi-
mental results. The presented ML-based beamforming scheme
will be tested over more datasets to further study its robustness,
considering also different network architectures and different
functions for each layer.
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