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Abstract—This paper proposes a multi-channel speech extrac-
tion method for moving sound sources in a long reverberant
environment. Constant Separating Vector (CSV) mixing model
has been devised for batch processing speech extraction to extract
a moving target speech stably. Also, based on this mixture model,
an update algorithm using auxiliary function technology has been
proposed as a fast and stable source extraction. However, source
extraction performance will be limited when the reverberation
time is long. In recent years, joint optimization technique
has been researched to achieve effective dereverberation and
source extraction simultaneously under highly reverberant en-
vironments. However, the extension to the CSV mixing model
is yet to be discovered. To realize moving source extraction
under a highly reverberant environment, we derive the update
algorithm when the dereverberation mechanism is installed in
the conventional method. In our proposed method, we estimate
a dereverberation system focusing only on the extracted target
sound, which achieves effective source extraction with a small
additional computational cost. Our experiment shows that the
proposed algorithm achieves sufficient blind dereverberation and
source extraction.

Index Terms—Blind Source Extraction, Constant Separat-
ing Vector, Auxiliary Function, Blind Dereverberation, Moving
Source Extraction.

I. INTRODUCTION

In the development of speech applications, there is an
increasing need to extract specific sounds from microphone
signals recorded with a mixture of different sounds. Because
we cannot always use spatial information about the sounds to
extract from the microphones, Blind Source Extraction (BSE)
has been researched recently. BSE extracts speech sounds
using only the observed microphone signals without any prior
information.

As a basis for BSE, Independent Component Analysis (ICA)
[1], [2] based blind source separation has been studied to
achieve source separation by maximizing the independence
between separated signals. Recently, several algorithms based
on frequency-domain ICA have been developed [3]–[7], which
provide flexibility in utilizing various models for the time-
frequency representations of source signals and array re-
sponses. For example, Independent Vector Analysis (IVA)
simultaneously solves source separation and frequency-domain
permutation problems by assuming that the magnitudes of the
frequency components originating from the same source tend

to vary coherently over time [3], [4]. IVA has been extended
to auxiliary function-based IVA (AuxIVA) [5], [6] as a fast
approach with rapid convergence and a stable calculation.
Moreover, the above methods are extended to the BSE scenario
to extract N sources using M(> N) microphones assuming
the noise signals derive from the M −N outputs [8]–[10]. In
particular, auxiliary function-based IVE (AuxIVE) [9], [10]
can optimally extract sources much fewer in number than the
number of microphones and skip most of the calculations for
estimating the noise statistics.

In order to perform source separation/extraction in a more
realistic environment, it is necessary to consider the situ-
ation where the sound sources are moving. One approach
for time-varying mixtures is to perform time-varying source
separation/extraction at each time interval by updating the
separation system using forgetting coefficients [7]. Although
this approach is useful, it suffers from the following issues: 1)
the performance of the source extraction degrades with respect
to the movement of the sound source, 2) the sound objects to
be extracted change with time (discontinuity problem), and
3) the forgetting coefficients depend on the situation. For the
above issues, a source extraction method based on the Constant
Separating Vector (CSV) mixing model has been studied in
recent years [11], [12]. The CSV-based methods estimate a
time-invariant separation filter, while the mixing parameters
are time-varying. This model enables us to avoid the dis-
continuity problem and eliminate the need to set forgetting
coefficients. Its extension using the auxiliary function-based
algorithm (CSV-AuxIVE) has been proposed recently, which
holds the advantages of the CSV mixing model and the rapid
and stable convergence [13].

One drawback of the above CSV-AuxIVE is that it needs to
solve the degradation of source extraction due to long reverber-
ation. We can solve the degradation by applying the Weighted
Prediction Error (WPE)-based dereverberation methods [14].
Although there are researches [15], [16] to optimize the
dereverberation filter based on the output of both target source
and noise to realize effective source extraction, its extension
to the CSV mixing model is unclear. To realize moving source
extraction under a highly reverberant environment, we propose
a CSV-AuxIVE-based source extraction algorithm with WPE-
based dereverberation, which we call CSV-WPEIVE. In the
proposed method, we update the dereverberation filter based
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on the output of only the extracted signal. We will show
the extraction performance of our proposed algorithm using
a simulation experiment.

The following structure in this paper is described. First,
the source separation model and cost function used in this
study are described in Section II. Next, the update algorithm
proposed in this paper based on the cost function is described
in Section III. The performance of the proposed algorithm
through evaluation experiment is described in Section IV, and
conclusion is given in Section V.

II. PROBLEM FORMULATION

Let us consider the situation where we extract a source
of interest (SOI) from M microphones. We represent the
observed signals xf,n = [x1,f,n, . . . , xM,f,n]

T ∈ CM , the SOI
sf,n ∈ C, and the background signals zf,n ∈ CM−1 at each
time frame n = 1, . . . , N and frequency bin f = 1, . . . , F in
the STFT domain.

Let the frames be divided into T ≥ 1 time intervals
called blocks, and each block includes Nb frames for sim-
plicity, hence N = TNb. Hereafter, we treat the frame
index {(t− 1)Nb + 1, ..., tNb} as the same block index t for
t = 1, . . . , T . For example, we denote xf,(t−1)Nb+n′ as xf,t,n′

for t = 1, . . . , T and n′ = 1, . . . , Nb.
In the CSV mixing model, the relation between sf,t,n′ ,

zf,t,n′ , and xf,t,n′ can be written in a semi-time-varying
model:

xf,t,n′ = Af,t

[
sf,t,n′

zf,t,n′

]
, (1)

where Af,t is a mixing matrix parameterized as

Af,t = [af,t Qf,t] =

[
γf,t hH

f

gf,t
1

γf,t
(gf,th

H
f − IM−1)

]
. (2)

Similarly, the separation model can be written as follows:[
sf,t,n′

zf,t,n′

]
= W H

f,txf,t,n′ , (3)

where W f,t = A−1
f,t is a separation matrix parameterized as

W f,t = [wf Bf,t] =

[
βf gH

f,t

hf −γ∗f,tIM−1

]
. (4)

The time-invariant separation filter wf in (4) enables us to
extract one source stably. Recently, source extraction algorithm
using the CSV mixing model and the auxiliary function
update has been proposed as fast and stable convergence [13].
However, in a highly reverberant condition where the length
of the room impulse responses is longer than the STFT frame
length, the ability of source extraction will be limited. In this
paper, we extend the separation model in (3) by introducing a
dereverberation filter Df ∈ CML×M :

yf,t,n′ = xf,t,n′ −DH
fxf,t,n′ , (5)[

sf,t,n′

zf,t,n′

]
= W H

f,tyf,t,n′ , (6)

where xf,t,n′ ∈ CML is a vector containing a past observation
sequence for L frames. Hereafter, we omit the index n′ to
reduce redundancy.

Next, we assume the same probabilistic model proposed
by the previous research [8], [12], [13]. Let p(st) denote the
joint pdf of the SOI vector component st = [s1,t, . . . , sF,t] ∈
CF and p(zf,t) denote the pdf of zf,t, respectively. Here, we
assume st and zf,t are mutually independent over all times
and frequencies:

p({st, zf,t}f,t) =
∏
t

p(st)
∏
f,t

p(zf,t). (7)

We set p(st) as the following pdf to reflect the block-
dependent variance:

p(st) = g

({
sf,t
σ̂f,t

}
f

) F∏
f=1

σ̂f,t

−2

, (8)

where σ̂f,t =
√

wH
fCf,twf is a frame-based variance of sf,t

and Cf,t = E
[
yf,ty

H
f,t

]
is a frame-based covariance matrix of

yf,t. g(·) is a pdf corresponding to a normalized non-Gaussian
random variable:

g

({
sf,t
σ̂f,t

}
f

)
= C exp(−GR(rt)), (9)

where C is a coefficient and GR is a continuous and differen-
tiable function of a real variable r satisfying that ψ(r) = G′

R(r)
r

is continuous and monotonically decreasing in r ≥ 0. The pdf
of the background is assumed to be circular Gaussian with
zero mean and covariance matrix Czf,t

= E[zf,tz
H
f,t]:

p(zf,t) = N (0M−1,Czf,t
), (10)

where 0M ∈ RM is a zero vector.
From the above assumptions, we can obtain the negative

log-likelihood of the given signal X = {xm,f,t}m,f,t:

L(X ) c
=

1

T

T∑
t

{
E [GR (rt)] +

∑
f

(
log σ̂2

f,t

+E
[
zH
f,tC

−1
zf,tb

zf,t

]
− log |γf,t|2(M−2)

)}
, (11)

where c
= denotes equality up to the constant terms. By

applying auxiliary function techniques [6], we can obtain the
following auxiliary function to be minimized:

Laux(X )
c
=

1

T

T∑
t=1

F∑
f=1

{
1

2

wH
fV f,twf

σ̂2
f,t

+ log σ̂2
f,t

+ E
[
zH
f,tC

−1
zf,tb

zf,t

]
− (M − 2) log |γf,t|2

}
, (12)

where

V f,t = E
[
ψ(rt)yf,ty

H
f,t

]
. (13)
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III. OPTIMIZATION PROCESS

We use a coordinate descent method to reduce the cost
function in (12) by repeatedly updating each W = {wf}f ,
D = {Df}f , and R = {rt}t one by one. The following
describes each update step.

A. Update of W

We first use orthogonal constraint [8] that the SOI sf,t
has zero sample correlation with the noise signal zf,t, i.e.,
wH

fCf,tBf,t = 01×(M−1). Under the distortionless constraint
and the orthogonal constraint, we can estimate the t-th mixing
vector af,t:

af,t =
Cf,twf

wH
fCf,twf

. (14)

Next, we find an update rule of the separation filter wf . By
putting the derivatives from (12), we obtain

∂

∂wH
f

Laux =
1

T

T∑
t=1

{
V f,t

σ̂2
f,t

wf −
wH

fV f,twf

σ̂2
f,t

af,t

}
, (15)

where we used the same technique as the previous re-
searches [8], [13] to replace the derivative from the second to
fourth terms in (12) as 0M . Using conventional technique [13],
we take the linearized solution of wf by fixing wH

fV f,twf

and σ̂2
f,t as constant terms:

wf ←

(
T∑

t=1

V f,t

σ̂2
f,t

)−1 T∑
t=1

wH
fV f,twf

σ̂2
f,t

af,t. (16)

B. Update of D

When updating the dereverberation filter Df , we need to
treat the noise signal zf,t that depends on Df . In previous
research, we can consider a minimum solution of updating
Df using Kronecker product [17]–[19]. However, we need
to decompose W f to M separation filters, which results
in a huge computation. In another approach, source-wise
factorization [19] decomposes the dereverberation filter Df

into Df,SOI and Df,Noise and optimize each filter. However, it
conflicts with the orthogonal constraint, and we cannot apply
the same discussion in Section III-A. Also, we cannot use a
technique [16, Algorithm 2] to update Df because we use
block-variant filter Bf,t. We can consider each block-variant
dereverberation filter Df,1, ...,Df,T . But we did not conduct
the decomposition because the source extraction performance
degraded in our preliminary experiments. In this paper, to
realize a simple and effective update, we update the derever-
beration filter Df based on only the first term in (12).

By ignoring the third term in (12) and dropping the constant
terms with respect to D, we obtain

L(D) c
=

F∑
f=1

∥∥∥(Df −R−1
f P f

)
wf

∥∥∥2
Rf

, (17)

where ∥x∥R = xHRx. Spatio-temporal covariance matrices
Rf and P f are calculated as

Rf =
1

T

T∑
t=1

E

[
ψ(rt)

xf,tx
H
f,t

σ̂2
f,t

]
, (18)

P f =
1

T

T∑
t=1

E

[
ψ(rt)

xf,tx
H
f,t

σ̂2
f,t

]
. (19)

Because Rf is positive definitive, we can minimize the cost
function in (17) by solving:

Df ← R−1
f P f . (20)

C. Update of R
After updating yf,t and sf,t using (5) and (6), we update the

variance rt by calculating the square root sum of the weighted
signals:

rt ←

√√√√ F∑
f=1

∣∣∣∣ sf,tσ̂f,t

∣∣∣∣2. (21)

This paper uses the coarse-fine source variance model
proposed in the joint optimization of WPE and IVA [15].
While avoiding the frequency-domain permutation problem
by using the frequency-invariant variance rt for updating the
separation filter wf , we replace the variance rt in (18) and (19)
as a frequency-variant one rf,t:

rt ← rf,t =

∣∣∣∣ sf,tσ̂f,t

∣∣∣∣ . (22)

Finally, we summarized our algorithm, CSV-WPEIVE in
Algorithm 1.

IV. EXPERIMENT

We conducted an experiment to evaluate the source extrac-
tion performance of the proposed CSV-WPEIVE.

A. Experimental condition

We considered a situation where we had M(= 6) micro-
phones, one target source, and M − 1(= 5) point noises were
mixed and observed in the microphones. We generated ten
mixtures for the experiment. We obtained one point-source
speech signal from the test set of the TIMIT corpus [21] and
concatenated them so that the length of each signal becomes
20 seconds. We obtained point-source noise signals recorded
in a cafe (CAF) from the third ‘CHiME’ Speech Separation
and Recognition Challenge [22]. We obtained room impulse
response (RIR) data using the image method [23]. We used the
signal generator1 to simulate RIRs. Figure 1 illustrates
the mixing condition. We let SOI move at a uniform angular
velocity of 9 [degree/s] in 67.5◦ ≤ θ ≤ 112.5◦. We let other
interfering noises be fixed. Before mixing SOI and noise,
we adjusted the SNR to inputSNR = 10 log λ1

λ2+...,+λM
as

specified value, where λ1 corresponds to the sample variance

1https://www.audiolabs-erlangen.de/fau/professor/habets/software
/signalgenerator
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Algorithm 1: Processing flow of CSV-WPEIVE
Input : observed signal xf,t for ∀f, t
Output: source signals sf,t for ∀f, t

1 wf ← e1
2 Df ← 0ML×M

3 yf,t ← xf,t −DH
fxf,t for ∀f, t

4 sf,t ← wH
f yf,t for ∀f, t

5 Cf,t ← E[yf,ty
H
f,t] for ∀f, t

6 σ̂2
f,t ← wH

fCf,twf for ∀f, t
7 for Iter = 1 to NIter do
8 af,t ← (wH

fCf,tw)−1Cf,twf for ∀f, t
9 V f,t ← E

[
ψ(rt)yf,ty

H
f,t

]
for ∀f, t

10 Compute wf according to (16) for ∀f
11 wf ← wf/

√∑T
t=1 w

H
fV f,twf for ∀f

12 Rf ←
∑T

t=1 E
[
ψ(rf,t)xf,tx

H
f,t/σ̂

2
f,t

]
/T for ∀f

13 P f ←
∑T

t=1 E
[
ψ(rf,t)xf,tx

H
f,t/σ̂

2
f,t

]
/T for ∀f

14 Df ← R−1
f P f for ∀f

15 yf,t ← xf,t −DH
fxf,t for ∀f, t

16 sf,t ← wH
f yf,t for ∀f, t

17 Cf,t ← E[yf,ty
H
f,t] for ∀f, t

18 σ̂2
f,t ← wH

fCf,twf for ∀f, t
19 rf,t ← |sf,t/σ̂f,t| for ∀f, t
20 rt ←

√∑
f r

2
f,t for ∀t

21 end
22 Projection Back [20] to solve the scale ambiguity of

sf,t.

of SOI and {λ2..., λM} correspond to that of noises. We set
the sampling frequency to 16 kHz and the reverberation time
RT60 = 600 ms.

We set the STFT frame length and shift as 512 and 256
samples, respectively. We set Nb = 100 frames and the dere-
verberation filter length L = 16. For computational efficiency,
we updated dereverberation filters D once every five updates
in W . In total, we updated W 100 times and D 20 times.

We used the average of the source-to-distortion ra-
tios (SDR), the source-to-interference ratios (SIR), and the
sources-to-artifact ratios (SAR) as the source separation ac-
curacy [24]. We used the MUSEVAL V4 toolkit [25] with
its bss eval images configuration and set the length of the
bss eval filter at 1 tap. We set the clean utterance sequence
that convolved with the initial 32 ms part of the RIRs used
for generating the corresponding mixtures as the reference.
To evaluate the accuracy of both source extraction and dere-
verberation, we set the source images of the noise signals
as interference reference of bss eval. So SIR corresponds to
how much we suppressed the images of the noise signal,
and SAR corresponds to how much we suppressed the other
components, e.g., reverberation.

Height: 2.5 m

4.0 m

7.0 m

x [cm]0 10.5

θ

: SOI
: noise
: microphone

Fig. 1: Experimental sound source and microphone layout

TABLE I: SDR improvement (SDRi), SIR improvement
(SIRi), and SAR [dB]. The bold font shows the top scores
in each inputSNR.

method (inputSNR = 10 dB) SDRi SIRi SAR
CSV-AuxIVE [13] 2.18 7.10 -1.16
WPE → CSV-AuxIVE 2.58 8.71 -2.48
CSV-WPEIVE (proposed) 3.51 9.84 -0.23
CSV-WPEIVE (w/ coarse fine) (proposed) 3.76 10.44 0.42
method (inputSNR = 5 dB) SDRi SIRi SAR
CSV-AuxIVE [13] 2.83 6.29 -1.77
WPE → CSV-AuxIVE 3.27 7.64 -3.94
CSV-WPEIVE (proposed) 4.18 9.06 -1.68
CSV-WPEIVE (w/ coarse fine) (proposed) 4.36 10.21 -0.95

B. Result

We show the source extraction performance in Table I. In
the cascade configuration of WPE and CSV-AuxIVE (WPE
→ CSV-AuxIVE), the processing becomes unstable when we
set long dereverberation filter length L. So we show the result
with shorter L = 4 only for the cascade configuration. As the
results show, WPE → CSV-AuxIVE could improve the SDR
by about 0.4 dB than the conventional method, CSV-AuxIVE.
Furthermore, the proposed joint optimization, CSV-WPEIVE,
further improved the SDR by about 1.0 dB. In addition, we
achieved an SDR improvement of 4.36 dB using the coarse-
fine source variance model when inputSNR = 5 dB. Also,
we confirmed that the proposed CSV-WPEIVE realized more
accurate noise suppression and dereverberation in terms of SIR
and SAR. The results show that the proposed CSV-WPEIVE
achieves more precisely accurate source extraction.

We next calculated the computational time of each method
in Table II. Compared to CSV-AuxIVE, CSV-WPEIVE im-
proved the SDR from 2.83 dB to 4.36 dB at L = 16. However,
it needs about 64 seconds of calculation for 20-second inputs.
When we set a relatively short dereverberation length (for
example, L = 4 frames), the CSV-WPEIVE improved by 1.16
dB by adding a 9.47 seconds calculation compared to CSV-
AuxIVE.
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TABLE II: SDR improvement (SDRi) [dB] and computational
time [second]. We set inputSNR = 5 dB.

method SDRi computational time
CSV-AuxIVE [13] 2.83 6.51
CSV-WPEIVE (coarse fine) L = 4 3.99 3.44
CSV-WPEIVE (coarse fine) L = 16 4.36 63.91

V. CONCLUSION

In this paper, we proposed an extension of CSV-AuxIVE,
CSV-WPEIVE, capable of simultaneously solving source ex-
traction and dereverberation problems. Although CSV-AuxIVE
has been proposed as a fast and stable source extraction for
a moving target source, it does not consider the effect of
reverberation. Although joint optimization of WPE and IVE
has been researched, the extension to the CSV mixing model
has yet to be discovered. In this paper, we proposed a joint
optimization algorithm that updates WPE, focusing only on
the extracted target sound. The experimental results showed
that the proposed joint optimization algorithm of WPE and
CSV-AuxIVE improved the source extraction performance in
a noisy and highly reverberant environment.
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