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Abstract—In this study, we present a machine-learning-based
acoustic traffic monitoring aiming to realize a relatively low-
cost system compared with existing traffic sensors. Since vehicles
are moving fast and the sound from different vehicles may
overlap, the relationship between acoustic signals and traffic
conditions, such as the number of vehicles passing or speed, is
complicated. Then, the machine-learning approach is attractive.
For this purpose, collecting a sufficient amount of data to train,
for example, deep neural networks (DNNs), is crucial. In this
study, we built a 48-hours dataset using stereo microphones and
sensors already installed on highways to label traffic conditions
automatically. We used ConvMixer, one of the recently well-used
convolutional neural network (CNN) architectures, to estimate
four traffic conditions, i.e., the total number of vehicles passing,
the number of large vehicles passing, speed, and time occupancy.
In experiments, we compare the acoustic features used as input
to the DNN, compare our method with conventional methods,
and apply our method to traffic flow discrimination.

Index Terms—traffic monitoring, vehicle detection, convolu-
tional neural network, acoustic sensing, microphone array

I. INTRODUCTION

Measuring road traffic information, such as traffic volume,
speed, and time occupancy, is essential to understanding traffic
conditions in real time and providing information to road traf-
fic control and users. For this reason, expressway companies
use traffic detectors to measure traffic information [1], [2].

The most common traffic detector on Japanese intercity
highways is a loop-coil-based one, which electro-magnetically
detects the passage of vehicles through loop coils embedded
in the road pavement [3]. Although they have high observa-
tion accuracy, their installation and operation costs are high.
Therefore, the installation of loop coils is limited, only at one
point per interchange in rural areas with low traffic volume, for
example. The realization of a low-cost traffic detector would
be desired for highly dense traffic monitoring. Aiming to this,
we investigate acoustic traffic monitoring systems in this study
since it is much easier to install microphones on the roadside.

Several methods, such as rule-based vehicle detection [4]–
[8] and machine learning [9]–[12], have been proposed for
traffic monitoring using acoustic information. However, rule-
based methods have yet to adequately model the complex
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relationships between acoustic features and traffic conditions
on real roads. In addition, machine learning methods should
consider how to collect sufficient amounts of labeled training
data and input features.

In this study, running-vehicle sound signals were recorded
near traffic detectors installed on an actual highway to con-
struct an automatically labeled traffic condition dataset. Using
this dataset, we used a deep neural network (DNN) to esti-
mate four traffic conditions, including the number of vehicles
passing and their speeds. To evaluate the performance of our
method, in this study, we investigated how the processing
of running-vehicle sound signals can be helpful for analysis
by conducting experiments in which we compared acoustic
features as input to the DNN, compared our method with
conventional methods, and applied our method to traffic flow
discrimination. The best performance was obtained when the
power spectrogram and phase difference were input to the
DNN as acoustic features. Our proposed method showed
higher traffic condition estimation accuracy than conventional
methods. In addition, good accuracy was confirmed in dis-
crimination of congested and free flow.

II. RELATED WORK

Conventional traffic monitoring methods using acoustic in-
formation are classified into rule-based and machine-learning-
based methods. These methods are briefly summarized below.

A. Rule-based Methods

Sobreira-Seoane et al. proposed a rule-based method for
vehicle detection [4]. This method is based on the short-
time power variation of sound detected by a single-channel
microphone. Such a method using single-channel signals is
advantageous in terms of microphone installation cost, but it
cannot utilize the spatial information of sound.

There are various methods using multichannel signals: vehi-
cle detection by analyzing the intensity of the sound recorded
by a microphone array [5]; speed estimation [6]; and the
estimation of the number of vehicles using the energy ratio
of the peaks between channels [7]. The method using the time
difference of arrival (TDOA) between channels has also been
studied by Ishida et al. [8] This method counts the number
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Fig. 1. Recording scenery. Traffic detector is embedded in road pavement in
direction of travel, and is not shown in picture.

of vehicles, considering the fact that TDOA monotonically
increases (decreases) as vehicles approach and forms an S-
shaped curve. However, the vehicles cannot be accurately
counted by this method when TDOA complexly changes, such
as in the case when multiple vehicles are traveling or when
the sounds of vehicles in opposite lanes are recorded, making
it challenging to apply this method to roads with high traffic
volume or numerous lanes.

B. Machine-Learning-Based Methods

Machine-learning-based traffic monitoring with acoustic
information has been widely studied. For example, the k-
nearest neighbor method and neural networks are applied to
acoustic signals to detect vehicles and classify vehicle types,
respectively [9], [10]. Tyagi et al. proposed a method of
classifying traffic density states (i.e., congested, medium, and
free flow) using support vector machines [11]. In addition, a
method involving vehicle detection and speed estimation using
a four-layer fully connected DNN has also been proposed [12].
This method uses the power and TDOA of running-vehicle
sound signals on highways as input features.

For machine learning methods, collecting datasets for train-
ing a model is challenging. For example, Shinohara et al. [12]
manually annotated the time and average speed of vehicles
passing on the basis of road images captured by two video
cameras next to microphones for recording vehicle sounds.
As a result, the total size of the constructed dataset was
small (7 h), and there were also annotation errors due to the
calculation of the average speed from the videos.

Considering these existing related studies, this study used
the machine learning approach. To collect sufficient training
data, we constructed a dataset with automated traffic condition
labeling instead of manual annotation by recording traffic
sounds near traffic detectors installed on actual highways.
In addition, as described below, a recently proposed network
structure, called ConvMixer [13], was introduced to machine
learning for traffic monitoring.

III. DATASET CONSTRUCTION

To train a DNN for traffic monitoring based on sound, a
new dataset consisting of 48 h of acoustic signals recorded on

a highway and traffic conditions measured by traffic detectors
installed near the recording points was constructed.

The acoustic signals were recorded near the 6.7-km post on
Yokohama Shindo in Yokohama City, Kanagawa Prefecture,
Japan, for 4 h from 6:00 am to 10:00 am on 12 weekdays from
October 11 to 26, 2021. The road at the measurement point
consisted of two inbound lanes: a travel lane and an overtaking
lane1. The acoustic signals were recorded by installing a Pana-
sonic RR-XS470 IC recorder at a distance of approximately
170m from the traffic detector2 (see Fig. 1). The IC recorder
was installed such that the two microphones mounted on it
were parallel to the direction of the road. Since it was not
known whether the high-pass filter of the IC recorder could
remove the effect of wind noise, two units were prepared, one
with the high-pass filter turned on and the other with the filter
turned off, and the acoustic signals were recorded using these
two units. The sampling frequency Fs was set to 44.1 kHz.

Traffic conditions were measured by traffic detectors in-
stalled at approximately 170m from the IC recorder. Traffic
conditions for each lanes were obtained every one minute from
the traffic detectors: the total number of vehicles passing, the
number of large vehicles passing, the speed of vehicles, and
the time occupancy (OCC)3 in the travel and overtaking lanes,
with the standard time information. The [1st, 3rd] quartiles
for each traffic condition for all measured data are [43, 55]
(unit), [1, 4] (unit), [42.6, 73.4] (km/h), and [9, 18] (%),
respectively. We synchronized the time of the traffic detector
and the recorded sounds by playing a special sound at a
specific time such as 5:59 am.

IV. NETWORK ARCHITECTURE AND FEATURES

For traffic monitoring using acoustic information, in this
study, we used a convolutional neural network (CNN), called
ConvMixer. Specifically, the acoustic features of running-
vehicle sound were input to the network to estimate four
traffic conditions (total number of vehicles passing, number
of large vehicles passing, speed, and OCC). In training, the
traffic conditions observed by the traffic detectors were used
as a teacher to calculate the loss from the CNN estimates. In
the following sections, we refer to this method as the proposed
method and describe its main components.

A. Input Features

The proposed method uses stereo running-vehicle sound as
the input acoustic signal, as in previous studies [8], [12],
because it is considered that spatial sound information is
effective in traffic monitoring using acoustic information.

1Totally, there are four lanes but we did not focused on the two outbound
lanes. The traffic detector measures conditions on the two inbound lanes
separately.

2The IC recorder should have been placed directly above the traffic detector.
However, there was no shoulder to install; thus, the recording was conducted
this way. The time difference between the traffic detector and the stereo IC
recorder is 9.24 s when the vehicle speed is 66.2 km/h. This time difference
is not considered in this study since it is much smaller than one minute.

3Ratio of the time a vehicle steps on the loop coil of the traffic detector to
the observed time
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Fig. 2. 2-channel power spectrograms and cosine and sine of phase difference

Here, the input acoustic signal is divided into 1-min segments
since the traffic detector observations used by a teacher are ob-
tained every minute. From the comparison of several different
acoustic features as input in Section V-A, in this section, we
describe the case where the best-performing input features are
the 2-channel power spectrograms P1 and P2 and the cosine
and sine of the phase differences Ycos and Ysin (see Fig. 2)
calculated using the following equations:

Xi = STFT(xi), (1)

Pi(k, l) = |Xi(k, l)|2, (2)
∆ϕ(k, l) = arg(X1(k, l)/X2(k, l)), (3)
Ycos(k, l) = cos(∆ϕ(k, l)), (4)
Ysin(k, l) = sin(∆ϕ(k, l)). (5)

Here, xi is the input acoustic signal of the ith channel
(i = 1, 2), and STFT : CN → CF×T in (1) represents the
short-time Fourier transform that transforms an N sample time
signal into a spectrogram with a frequency bin number F×
time frame number T . k and l are indices in the frequency and
time directions, respectively, and Xi(k, l) denotes the (k, l)
element of Xi (the same notation applies to other matrices).
As for the phase difference in (3), the effect of its periodicity
on the input features is ignored by computing cos and sin as
in (4) and (5). The arrays (P⊤

1 ,P
⊤
2 ,Y

⊤
cos,Y

⊤
sin)

⊤, which are
concatenated in the frequency index direction, are input to the
CNN.

B. Network Architecture

In traffic monitoring, in addition to mixing features for
each time frame, it is helpful to mix features before and
after the time frame of interest; therefore, we use ConvMixer
as the CNN architecture in this study [13], [14]. ConvMixer
has a repeating network structure consisting of a Pointwise
Convolution, which mixes the features for each time frame
using a Fully Connected layer, and a Depthwise Convolution,
which mixes the features by convolving in the direction of
the time frame (see Fig. 3). Patch embedding is applied to
input features by handling short time frames in the input as
patches. The number of embeddings is set to T . The dimension
of feature vectors in the ConvMixer Layer is 529, and the
kernel size of the Depthwise Convolution is 5. The number of
iterations of the ConvMixer Layer is set to 5. These parameters
are determined experimentally. The output of the ConvMixer
Layer is finally aggregated in the time-frame direction by
the Average Pooling layer and then transformed into a four-
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Fig. 3. Network architecture used in our experiments

dimensional vector representing the traffic conditions by the
Fully Connected layer.

C. Output Variables

The output variables of the CNN are the four traffic condi-
tions that can be measured by the traffic detectors used in the
dataset described in Section III: the total number of vehicles
passing, the number of large vehicles passing, speed, and OCC.
These traffic conditions were indivisually measured for each
lane, and they were aggregated. The same traffic conditions
as those for the traffic detectors are obtained by sound traffic
monitoring, and multi-task learning, which estimates multiple
traffic conditions, is used to improve accuracy. Since the range
of values is different for each traffic condition, normalization
was applied during training so that the mean is 0 and the
variance is 1 for each traffic condition.

V. EXPERIMENTS

To evaluate the proposed method, we investigated the
change in estimation performance depending on the acous-
tic features an input to the DNN. Experiments were also
conducted to compare the estimation performance of the
proposed method with that of conventional methods and to
apply the proposed method to traffic flow discrimination using
the estimator of the proposed method.

A. Comparison of Input Features

1) Experimental Conditions: In this experiment, data from
two days, October 12 and 21, of the dataset described in
Section III were used for evaluation. Four traffic conditions
(total number of vehicles passing, number of large vehicles
passing, speed, and OCC) were estimated every minute on
these two days. Their accuracy was evaluated in terms of root
mean squared error (RMSE) with the observed values from
traffic detectors.

For training the CNN, we used seven days of data for
training and two days for validation out of nine days of data,
excluding the two days of data used for evaluation. The loss
function for training was set to the mean absolute error, and
Adam [15] was used as the optimization function with an
initial learning rate of 0.0005 for 100 epochs.

To investigate suitable feature extraction methods for traffic
monitoring, we trained the CNN described in Section IV by
combining several feature extraction methods and compared
the input features in terms of the RMSE of the estimated
values. The following three amplitude-related features were
considered:
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TABLE I
COMPARISON OF INPUT FEATURES

(MEAN RMSE SCORE ± STD. FOR 5 TRIALS)

Total number of Number of large Speed OCC
vehicles (unit) vehicles (unit) (km/h) (%)

Pow 6.39±0.32 1.88±0.05 6.66±0.41 2.83±0.05
TF-Pow 5.04±0.25 1.63±0.03 6.15±0.34 2.6±0.05
LogTF-Pow 5.8±0.42 1.64±0.03 6.25±0.42 2.77±0.09
Pow+TDOA 5.93±0.64 1.93±0.06 6.28±0.59 2.58±0.11
TF-Pow+TDOA 5.24±0.27 1.63±0.05 5.9±0.4 2.65±0.19
TF-Pow+WhTDOA 5.2±0.14 1.62±0.03 6.24±0.63 2.65±0.2
TF-Pow+PhaseDiff 4.67±0.18 1.52±0.03 5.48±0.3 2.54±0.07
Time domain 6.73±0.08 1.79±0.05 7.13±0.2 2.99±0.08

Pow: fpow ∈ R1×T whose lth element is the power averaged
in frequency and channel direction as

fpow(l) =
1

2

2∑
i=1

F/2∑
k=0

Pi(k, l) (6)

TF-Pow: Ftfp = Pi ∈ RF×T , where the (k, l) element is
Pi(k, l) shown in (2)

LogTF-Pow: Fltfp ∈ RF×T , which is the common logarithm
of Pi

In addition, the three phase-related features below were con-
sidered.
TDOA: ftdoa ∈ R1×T whose lth element is the time dif-

ference of arrival of sound obtained by cross-correlation
from two-channel signals as

ftdoa(l) = argmax
n

ψl[n], (7)

ψl = IDFT(Ψ(·, l)), (8)
Ψ(k, l) = X∗

1 (k, l) X2(k, l) (9)

WhTDOA: fwtdoa ∈ R1×T whose lth element is TDOA of
sound obtained by cross-correlation phase transformation
from two-channel signals as

fwtdoa(l) = argmax
n

ψ′
l[n], (10)

ψ′
l = IDFT(Ψ′(·, l)), (11)

Ψ′(k, l) =
X∗

1 (k, l) X2(k, l)

|X∗
1 (k, l) X2(k, l)|

(12)

PhaseDiff: Fpd = (Y⊤
cos,Y

⊤
sin)

⊤ ∈ R2F×T

STFT was performed in half overlap with a frame length N of
4096 points (approximately 93ms) for a 1-min signal. When
signal length L = 60 s, F = ⌊N/2⌋ + 1 = 2049 and T =
⌈L ·Fs/(N/2)⌉ = 1292. After finding the n ∈ [0, 2N − 2) of
the discrete that maximizes ψ, the TDOA per subsample was
calculated by quadratic interpolation [16]. Ψ(·, l) is the l-th
column vector of Ψ (the same notation applies to Ψ′).

2) Experimental Results: Table I shows the results of
RMSE evaluation of the estimation performance of each fea-
ture extraction method when applied to each traffic condition.
A comparison of amplitude feature extraction methods con-
firms that TF-Pow performs better than the other two feature
extraction methods. The results suggest that it is adequate to
input power spectrograms without averaging or logarithmizing

TABLE II
COMPARISON WITH CONVENTIONAL METHODS
(MEAN RMSE SCORE ± STD. FOR 5 TRIALS)

Total number of Number of large Speed OCC
vehicles (unit) vehicles (unit) (km/h) (%)

Ishida et al. [8] 21.6±0 — — —
Shinohara et al. [12] 7.04±0.32 — 6.88±0.07 —
Proposed 4.67±0.18 1.52±0.03 5.48±0.3 2.54±0.07

the values for each channel and time–frequency domain. When
TF-Pow was combined with a feature extraction method for
phase, there was no significant difference in estimation per-
formance when TDOA and WhTDOA were input compared
with the case when only TF-Pow was input. On the other hand,
when TF-Pow was combined with PhaseDiff, the estimation
performance was improved. The results indicate that phase
information is adequate for traffic conditions estimation, and
it is desirable to input the phase information of each time–
frequency domain while retaining it. The estimation perfor-
mance was poorest when the time domain waveforms were
input as they were, confirming that conversion to the time–
frequency domain is an effective means of feature extraction.

B. Comparison to Related Work

1) Experimental Conditions: In this experiment, as in the
experimental conditions in Section V-A, data from two days,
October 12 and 21, were used for evaluation. The results
of the minute-by-minute estimation of traffic conditions were
evaluated in terms of RMSE with the observed values from
traffic detectors. As input features of the proposed method,
we used a combination of TF-Pow and PhaseDiff, which was
confirmed to be the most effective in the experiments described
in Section V-A, and the training conditions of the CNN were
also the same as those in Section V-A.

In the comparison studies, we used the rule-based method
of Ishida et al. [8] and the DNN-based method of Shinohara
et al. [12] Ishida et al.’s method requires the parameters for
the three subcurves detection of the TDOA curve. In this
experiment, we experimentally determined them to obtain the
highest estimation accuracy for the evaluation data.

Shinohara et al. [12] used a dataset labeled every 5 s.
They used power and TDOA every 5 s as input features to
estimate the total number and speed of vehicles passing. On
the other hand, in the dataset used in this experiment, labels are
assigned every minute. Therefore, in learning and evaluating
Shinohara et al.’s method [12], we calculated the 1-min output
using the 5-s estimates and compared it to the correct label.
Specifically, the 1-min output number of vehicles passing was
calculated by adding up the 5-s estimates, and the speed was
the arithmetic mean of the 5-s estimates. Shinohara et al. used
the information on oncoming traffic. Still, the dataset used
in their experiment did not include information on oncoming
lane labels; therefore, we did not use this information. Other
training conditions are the same as those in the proposed
method.

2) Experimental Results: Table II shows the results of
the RMSE evaluation of the estimation performance of each
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method for each traffic condition. From Table II, it can be
seen that the proposed method can estimate the total number
and speed of vehicles passing with a higher accuracy than the
other methods. In addition, as can be seen from Fig. 4, there
is a significant difference in estimation performance between
the rule-based and machine learning methods.

C. Discrimination of Traffic Flow

1) Experimental Conditions: We applied the best-
performing estimator trained under the conditions specified
in Section V-B to discriminate traffic flow. We considered
two classes: congested flow and free flow. Using a 1-min
input signal, the DNN estimated the vehicle speed, and the
5-min average speed was calculated based on the DNN’s
minute-by-minute estimation. If the average speed was less
than a threshold of 40 km/h, we classified it as congested
flow; otherwise, we classified it as free flow. The average
speeds were obtained by calculating the harmonic mean of
the DNN estimations. In this experiment, we followed the
practices used on intercity highways in Japan for traffic flow
discrimination thresholds and time intervals for the average
speed calculation. For the evaluation, we used the two-day
data obtained on October 12 and 21 as in Section V-B.

2) Experimental Results: Fig. 5 shows the confusion matrix
of traffic flow discrimination between congested and free
flows. Also, Table III shows scores of typical objective metrics,
i.e., the accuracy, precision, recall, and F1-score. In particular,
precision represents the proportion of actually congested flow
data among the estimated congested flow, while recall repre-
sents the proportion of estimated congested flow data among
the actual congested flow. From Fig. 5 and Table III, it can
be seen that the estimator trained by the proposed method
can discriminate congested flows from free flows with high
accuracy.

VI. CONCLUSION

In this paper, a CNN was trained to estimate the total
number of vehicles passing, the number of large vehicles
passing, speed, and OCC from the running-vehicle sound

TABLE III
TRAFFIC FLOW DISCRIMINATION PERFORMANCE

Accuracy Precision Recall F1-score
95.8% 88.0% 95.7% 91.7%

using the traffic condition data acquired by traffic detectors
installed on expressways, and the results were evaluated.
A comparison of the input features showed that the best
performance was achieved when the power spectrogram and
phase difference were combined. The results of comparing the
proposed method with conventional methods and evaluation
experiments confirmed that our proposed method can estimate
the total number of vehicles passing and their speeds with
high accuracy. In addition, the proposed method showed high
discrimination accuracy in an experiment in which we applied
our proposed method to traffic flow discrimination conducted
to evaluate its performance, and its practicality was confirmed.

Future work includes data augmentation and domain adap-
tation to improve the robustness to differences in the envi-
ronment in which running-vehicle sounds are recorded during
training and inference.
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