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Abstract—Morphing attacks keep threatening biometric sys-
tems, especially face recognition systems. Over time they have
become simpler to perform and more realistic, as such, the usage
of deep learning systems to detect these attacks has grown. At the
same time, there is a constant concern regarding the lack of inter-
pretability of deep learning models. Balancing performance and
interpretability has been a difficult task for scientists. However, by
leveraging domain information and proving some constraints, we
have been able to develop IDistill, an interpretable method with
state-of-the-art performance that provides information on both
the identity separation on morph samples and their contribution
to the final prediction. The domain information is learnt by an
autoencoder and distilled to a classifier system in order to teach
it to separate identity information. When compared to other
methods in the literature it outperforms them in three out of
five databases and is competitive in the remaining.

Index Terms—auto-encoder, biometrics, explainability, face
recognition, knowledge, distillation, morphing attack detection,
synthetic data.

I. INTRODUCTION

FACE recognition (FR) systems have had large-scale adop-
tion in the most diverse scenarios [1]–[3]. Deep learning

(DL) techniques have taken this and other biometric recogni-
tion systems towards above-human performance. While it also
benefited biometric systems adoption, DL methods led to two
problems. First, the approaches that improve the recognition
power of these systems are the same to be used to design
novel and dangerous attacks [4]. Some attacks can take the
form of adversarial noise addition or be developed with FR
systems in mind. The latter comprises both morphing [5] and
presentation attacks [6]. Besides the attacks, deep learning
methods are notorious for their black-box behaviour, which
compromises the understanding of both the inner workings of
the model and the reasoning behind a decision. Furthermore,
FR and face attack detection systems are consistently designed
using problem-agnostic tools, which do not leverage domain
knowledge. For a wider adoption and to be able to deploy these
systems on critical scenarios, it is necessary to guarantee that
their reasoning process is, at least to some extent, explained.
One can explain a decision using a post-hoc approach [7], or
directly interfering with the training behaviour of the model
as stated by Neto et al. [8].
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Face morphing attacks, which merge two images from
different identities into a single image capable of misdirecting
the recognition system, have progressed significantly. In other
words, this attack aims to increase the number of false
positives of the FR system, granting access to two distinct
users. When left undetected, the fusion of two images might
allow two different people to pass border control with the
same passport, for example. Due to this threat, researchers
focused their attention on the development of robust morph-
ing attack detection (MAD) systems [4], [9], [10]. Usually,
they are designed to detect if the input image is an attack
or a bonafide sample and do not include any information
regarding the fused identities in their training. OrthoMAD [11]
aims to learn this information in an unsupervised manner
by separating identity information into two orthogonal latent
vectors. However, it lacks guarantees regarding the relation
between the disentangled information and identity information.
The recent blossoming of synthetic data generation methods,
such as generative adversarial networks (GAN) and diffusion
models, led to the creation of synthetic datasets with a diverse
number of identities represented [12], [13]. Although these
identities are usually represented only once, it suffices to
increase identity diversity.

The work presented in this document builds on top of Or-
thoMAD premises that it is possible to disentangle information
regarding different identities. The first addition is an auto-
encoder model trained on the bonafide samples to minimize the
reconstruction error. The latent vector produced by the encoder
is considered to be the prior of the identity information that
should be present in the disentangled vectors. We further relax
the orthogonality constraint to ensure that the angle between
the two identity vectors, in the case of an attack, approximates
the angle of the priors of their identities. To achieve this, we
leverage the latent vectors of the auto-encoder for both images
(before being morphed) and a knowledge distillation strategy.
Finally, to further approximate the latent space of both identity
vectors we replace the concatenation and classification process
with a shared linear layer to be used on both vectors separately.
The two predicted scores are fused afterwards.

The main contributions of this work are the following:
1) an unexplored knowledge distillation approach based on
the angle of two vectors that represent identity priors; 2)
the improvement on the usage of the diverse identity set to
regularize the latent spaces and the identity disentanglement;
3) a novel method designed specifically for this domain and
with increased transparency regarding its inner workings; 4)
an empirical validation and comparison with similar (state-of-
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This document is divided into five main sections. Besides
this introductory section, the following sections include a de-
scription of the methodology, an introduction to the databases
used for training and evaluation, the experimental setup de-
signed for the experiments, the discussion of the results,
and finally the conclusion. The code related to this paper is
publicly available in a GitHub repository1.

II. METHODOLOGY

Morphing attacks occur when two distinct identities are
fused together, resulting in an image that can trick a face
recognition system by containing enough information about
both identities. To analyse whether information from two
distinct identities is present in an image, we designed a
regularisation term based in knowledge distillation (KD). As
such, we call IDistill to our proposed method. The overall
scheme and architecture of our proposed model is represented
on Figure 1.

We start by training an autoencoder to reconstruct bonafide
images. This autoencoder is responsible for creating a mini-
malist representation of a face I . Alternatively to the usage
of the autoencoder, we could have leveraged a pretrained
face recognition system. The decision to follow with the
autoencoder yields three reasons: 1) Fang et al. [14] has shown
a difference in the reconstruction performance from abnormal
and normal face images; 2) Besides being large (512-d), the
latent vector face recognition systems might not contain all
the information necessary for the reconstruction. 3) Encoder-
Decoder have been explored for face de-morphing [15]. The
proposed autoencoder is based on the U-Net architecture [16]
and the size of the latent representation of the image was cho-
sen as 128. As in other reconstruction tasks the autoencoder
receives the image I , creates a latent representation u of that
image using the encoder, and reconstruct it as Ĩ using the
decoder network. This approach uses a mean squared error
(MSE) loss function (see Eq. 1).

Lauto =
∑
i,j

(Iij − Ĩij)
2 (1)

The architecture of the morphing classifier is based on a
ResNet-18 [17] where the last fully-connected layer is replaced
with two fully-connected layers that output two vectors v of
size 128 each. Afterwards, a fully-connected layer is used to
infer if the vectors contain information of an identity or not,
with each vector producing a score (id). The same layer is
used for both vectors individually.

id =
1

1 + e−WT v
: (2)

Considering that the produced score holds information re-
garding the presence of encoded identity information on a
vector v, the final prediction for an image I is designed as
follows. Given I , the backbone architecture produces v1 and
v2, which will result in the identity probabilities id1 and id2,
respectively. The probability of I containing information of

1https://github.com/NetoPedro/IDistill

two distinct identities is given by id1 ∗ id2. Consequently, the
bonafide presentation score, ỹ is given by:

ỹ = 1− id1 ∗ id2 (3)

For the classification task, we have introduced the Binary
Cross-Entropy, LBCE (Equation 4) at the level of the final
fused prediction ỹ.

LBCE = −(y log(ỹ) + (1− y) log(1− ỹ)) (4)

To ensure that the latent vectors v1 and v2 extract identity
information and are aligned with the information learnt by the
autoencoder, we introduce a knowledge distillation term. For
attacks, this term aims to extract vectors from the morphed
image that have an angle between them equal to the angle
produced by the latent vectors u1 and u2 extracted with the
encoder from the two images that originated the morphed
image (Eq. 7). We are then promoting a proximity between
the autoencoder latent space and the morphing classifier latent
space while handling attacks. Furthermore, we only consider
the angle formed by these vectors, since their identity intensity
might be diminished in the morphing process. For bonafide,
we expect one vector to hold identity information, while the
other does not. As such, we designed a term that first selects
the vector v with the highest cosine similarity (Scos) to u.
With this choice, the proposed term is able to maximize
the similarity between u and the selected vector v, while
approximating the id of this vector to 1, and the other id
to 0 (Eq. 6).

V erterm = Scos(v1, u) > Scos(v2, u) (5)

LKD1
=

{
(1− id1)

2 + (id2)
2 − Scos(v1, u) if V erterm

(1− id2)
2 + (id1)

2 − Scos(v2, u) otherwise
(6)

LKD2
= [Scos(u1, u2)− Scos(v1, v2)]

2 (7)

LKD = yLKD1
+ (1− y)LKD2

(8)

Both losses are incorporated in a single equation as follows:

Loss = LBCE + LKD (9)

III. DATABASES

This work builds on top of a proposal by Neto et al. [11],
hence, we use the same datasets to train and test our method-
ology:

1) FRLL: The Face Research London Lab dataset [18]
was used to produce the FRLL-Morphs dataset [19],
which is frequently used to test morphing attack de-
tection methods. Five different morphing techniques
are used in the dataset, including Style-GAN2 [20],
[21], WebMorph [22], AMSL [23], FaceMorpher [24],
and OpenCV [25]. Each of the five methods uses 204
genuine samples and more than one thousand morphed956



Fig. 1. Overall scheme of the architecture. Part A represents the training of the autoencoder, whereas part B represents the training of the classification
system. The orange line represents the backpropagation, the green one represents the calculation of the angle between vectors and the yellow represents the
fusion of the two scores. Best viewed in color.

faces made from high-resolution frontal faces. We used
this database only for evaluation purposes because it
lacks distinct train, validation or test sets.

2) SMDD: The Synthetic Morphing Attack Detection De-
velopment (SMDD) [12], is a novel dataset that uses
synthetic images to create a dataset of morph and
bonafide samples. It initially generated 500k images of
faces using a random Gaussian noise vector sampled
from a normal distribution using the official open-source
version of StyleGan2-ADA [20]. Leveraging the quality
estimation method known as CR-FIQA [26], 50k of
these photos were chosen for analysis because of their
high quality, and 25k of them were determined to be
the bonafide samples. The attack photos were paired
with five other attack images at random, and 5k of them
were chosen as key morphing images. Next, using the
OpenCV [25] method, they were morphed, yielding 15k
attack samples. The original 25k images that were used
to generate the morphs are also publicly available. This
dataset was divided in test and validation sets, on a
proportion of 85-15%.

IV. EXPERIMENTAL SETUP

The autoencoder was trained for 300 epochs, with a learning
rate of 1× 10−4, a batch size of 32, and Adam [27] was used
as the optimisation algorithm to minimize the MSE loss. It
trained exclusively on bonafide samples.

The classifier was trained with the joint loss (Eq. 9) utilizing
a learning rate of 1× 10−4, a batch size of 16 and was opti-
mised with Adam. Furthermore, to align with the autoencoder,
both v1 and v2 are 128-d. The training utilized the synthetic
dataset SMDD, which allowed for this regularization term
to utilise the original samples that originated the morphing
samples.

To evaluate the performance of the morphing detection, we
evaluated our algorithm using different metrics, commonly
used in the literature: the Attack Presentation Classification
Error Rate (APCER) (i.e., morphing attacks classified as
bonafide); and the Bonafide Presentation Classification Error
Rate (BPCER) (i.e., the bonafide samples that are classified as
morphing attacks). We evaluated these metrics at two different
fixed APCER values (1.0% and 20.0%). The equal error rate
(EER), which is the BPCER and APCER at the decision
thresholds where they are the same, was also evaluated.

V. RESULTS AND DISCUSSION

The literature on face morphing attack detection is large,
however, is also disperse. In other words, the datasets used
for benchmarking and training are not always the same, and
as such, direct comparisons are not trivial. The combination
of FRLL and SMDD has been found in at least two different
documents in the literature. The first [12] introduces the
SMDD datasets and evaluate three different methods from the
literature: Inception [28], PW-MAD [9] and MixFacenet [29].
Their results vary and there is not one that beats the others
cosistently across the different FRLL morphing methods.
Afterwards, OrthoMAD was also evaluated using the exact
same protocol [11] and achived state-of-the-art results on three
out of the five morphing approaches.

Since we follow the protocol introduced by Damer et
al. [12], the comparison between our method and the ones
in the literature focuses on the above mentioned approaches.
The results of our method, IDistill, are displayed in Table I.
As seen, IDistill has been able to surpass MixFacenet and
Inception in all the test databases, and PW-MAD in four out of
five databases. OrthoMAD has better results on two databases.
A careful analysis of the results highlights an important notion957



TABLE I
RESULTS COMPARISON WITH FOUR MODELS PUBLISHED IN THE LITERATURE. ALL THE MODELS WERE TRAINED ON THE SMDD DATASET, AND

EVALUATED ON THE DATASET SPECIFIED ON THE LEFT COLUMN OF THE TABLE. ALL THE RESULTS ARE IN PERCENTAGE (%) AND THE BEST ARE IN
BOLD.

BPCER @ APCER =
Test Model EER 1% 20%

FRLL-Style-GAN2

Inception
PW-MAD

MixFacenet
OrthoMAD

IDistill (Ours)

11.37
16.64
8.99
6.54
1.96

72.06
80.39
42.16
13.74
8.51

6.86
13.24
4.41
3.76
0.08

FRLL-WebMorph

Inception
PW-MAD

MixFacenet
OrthoMAD

IDistill (Ours)

9.86
16.65
12.35
15.23
4.01

53.92
80.39
80.39
70.92
14.41

2.94
13.24
7.84
9.50
0.33

FRLL-OpenCV

Inception
PW-MAD

MixFacenet
OrthoMAD

IDistill (Ours)

5.38
2.42
4.39
0.73
2.46

38.73
22.06
26.47
0.73
6.14

0.98
0.49
1.47
0.32
0.16

FRLL-AMSL

Inception
PW-MAD

MixFacenet
OrthoMAD

IDistill (Ours)

10.79
15.18
15.18
14.80
4.00

72.06
96.57
49.51
65.05
21.10

4.90
5.88
11.76
10.89
2.85

FRLL-FaceMorpher

Inception
PW-MAD

MixFacenet
OrthoMAD

IDistill (Ours)

3.17
2.20
3.87
0.98
2.05

30.39
26.47
23.53
2.37
4.26

0.49
0.00
0.49
0.08
0.16

that IDistill is fairly more consistent, as such, the improve-
ments on the databases where it surpasses the literature are
much wider than the loss in the performance on the two other
databases. Looking at the most extreme examples, in FRLL-
OpenCV the EER of our architecture is only 1.73 percentual
points larger than the value obtained by OrthoMAD, while
IDistill decreases the EER in 11.22 percentual points when
tested in the FRLL-WebMorph dataset, which constitutes a
much more relevant difference in performance. While looking
beyond EER it is also possible to see a wide improvement
on the BPCER@APCER at both 1% and 20%. Moreover, on
FRLL-OpenCV the higher EER of IDistill is mitigated by a
lower BPCER@APCER = 20%.

When compared to OrthoMAD, our method presents an
architecture with the same computation cost on inference, but
significantly more interpretable, since OrthoMAD does not
guarantee that the information yield by both vectors is related
to identity. We are capable of identifying not only attacks,
but justify utilising the information of which vectors contain
the identity, and which do not. Due to the approximation
between the autoencoder latent space and the IDistill latent
space, it might also be possible to reconstruct parts of the
identity utilising the decoder. While not used in this study, the
information regarding the intensity of the vectors extracted by
the morphing classifier, v1 and v2 might also allow to infer
the morphing percentage associated with each fused identity,
which might be useful in future works.

VI. CONCLUSION

In this document we have presented a novel method for
face morphing attack detection that is interpretable, compact
and performs at the state-of-the-art level. The proposed IDistill
method was trained utilising a two step scheme based on the
training of an autoencoder to reconstruct bonafide images,
and a distillation step integrated on the standard training of
a morphing classifier, utilizing the encoder as teacher and the
first part of the classifier as student.

While we relaxed the orthogonality constraint from previous
methods, we devised a more consistent and reliable solution to
ensure that the identity information is, in fact, separated in two
individual vectors. Moreover, we dismiss any concatenation of
these vectors, ensuring an interpretable analysis of the scores
produced by each and their contribution to the final prediction.
As future work on the interpretability capabilities of this
study, it would be interesting to explore the reconstruction
capabilities utilising the identity vectors and the decoder model
from the autoencoder architecture. Another possible direction
is to verify whether the intensities of the vectors extracted
by the morphing classifier allow to quantify the morphing
percentage of the identities that were fused to generate each
attack sample.

Overall, IDistill surpasses the performance of the previous
methods published in the literature, while ensuring the ad-
vantages previously mentioned. In some scenarios the perfor-
mance is drastically better. There is much work to be done on958



the topic of face morphing attack detection, nonetheless, IDis-
till is a step forward towards the integration of interpretable
approaches that are competitive with fully black-box systems.
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