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Abstract—We propose a numerical method to obtain an ade-
quate value for the upper bound on the rank for the tensor com-
pletion problem on the variety of third-order tensors of bounded
tensor-train rank. The method is inspired by the parametrization
of the tangent cone derived by Kutschan (2018). A proof of
the adequacy of the upper bound for a related low-rank tensor
approximation problem is given and an estimated rank is defined
to extend the result to the low-rank tensor completion problem.
Some experiments on synthetic data illustrate the approach and
show that the method is very robust, e.g., to noise on the data.

Index Terms—tensor-train, tensor completion, rank estimation,
tangent cone

I. INTRODUCTION

We consider the low-rank tensor completion problem
(LRTCP) formulated as a least squares optimization problem
on the algebraic variety Rn1×n2×n3

≤(k1,k2)
[1, Definition 1.4] of

n1×n2×n3 real third-order tensors of tensor-train (TT) rank
at most (k1, k2):

min
X∈Rn1×n2×n3

≤(k1,k2)

1

2
∥XΩ −AΩ∥2︸ ︷︷ ︸

=:fΩ(X)

, (1)

where A ∈ Rn1×n2×n3 , Ω ⊆ {1, . . . , n1} × {1, . . . , n2} ×
{1, . . . , n3} is called the sampling set,

ZΩ (i1, i2, i3) :=

{
Z (i1, i2, i3) if (i1, i2, i3) ∈ Ω,

0 otherwise,

for all Z ∈ Rn1×n2×n3 , and the norm is induced by the inner
product

⟨Y,X⟩ = ⟨vec(Y ), vec(X)⟩, ∀X,Y ∈ Rn1×n2×n3 . (2)

A tensor-train decomposition (TTD) of a third-order tensor
X ∈ Rn1×n2×n3 is a factorization X = X1 ·X2 ·X3, where
X1 ∈ Rn1×r1 , X2 ∈ Rr1×n2×r2 , and X3 ∈ Rr2×n3 [2]. The
‘·’ indicates the contraction between a matrix and a tensor.
They interact with the left and right unfolding of X2,

XL
2 := [X2]

r1×n2r2 := reshape (X2, r1 × n2r2) ,

XR
2 := [X2]

r1n2×r2 := reshape (X2, r1n2 × r2) ,

in the following way:

X1 ·X2 =
[
X1X

L
2

]n1×n2×r2
, X2 ·X3 =

[
XR

2 X3

]r1×n2×n3
.

The minimal r1 and r2 for which a TTD of X exists, is called
the TT-rank of X . For second-order tensors (matrices), the
TT-rank reduces to the usual matrix rank, and since no other
definition of tensor rank is used in this paper, it is simply
denoted by rankX and can be determined as

rankX =
(
rankXL, rankXR

)
=: (r1, r2). (3)

The minimal rank decomposition can be obtained by comput-
ing successive singular value decompositions (SVDs) of the
unfoldings [2, Algorithm 1].

The low-rank variety can then be defined as

Rn1×n2×n3

≤(k1,k2)
:= {X ∈ Rn1×n2×n3 | rankX ≤ (k1, k2)} (4)

and the fixed-rank smooth manifold [3] as

Rn1×n2×n3

(r1,r2)
:= {X ∈ Rn1×n2×n3 | rankX = (r1, r2)}. (5)

In practical LRTCPs, the rank of A is not known or A has
full rank due to noise. This is notably the case for movie
rating recommendation systems [4], where, e.g., the ratings of
different users over time (or any other variable of interest) form
samples of a large third-order tensor. Evaluating a solution to
(1) in elements outside the set Ω allows us to recommend
movies with a high estimated rating. Note that evaluating one
element of a third-order TTD corresponds to performing a
vector-matrix-vector multiplication and can be done efficiently
in O (r1r2) operations.

When k1 and k2 are set too high however, the complexity of
an algorithm to solve (1) is unnecessarily high and furthermore
overfitting can occur, i.e., X approximates AΩ well but not the
full tensor A. To detect overfitting, usually a test data set Γ
is used [5]. When the error on this test set increases during
optimization while the error of (1) decreases overfitting has
occurred and the algorithm should be stopped or the rank
decreased. On the other hand, when k1 or k2 are set too
low, the search space may not contain a sufficiently good
approximation of A. It is thus important to choose adequate
values for k1 and k2.

Intuitively the smaller |Ω|, the more difficult it is to recover
A from AΩ by solving (1). However, the minimal number of
samples needed is not known [6].

In this work, a method to estimate the rank of A from AΩ is
proposed. When A is not exactly low rank, a good value for a
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low-rank approximation is obtained. This method can then be
used, e.g., in a rank-adaptive optimization algorithm to solve
(1).

The paper is organized as follows. First, in section II, the
preliminaries for section IV and section V are given. This
includes some basic facts concerning orthogonal projections
onto vector spaces and arithmetic rules for TTDs. For a more
extensive overview of properties of the TTD, we refer to the
original paper [2] and the notation introduced in [7], which
is also used in [5], [8]. In section III, the auxiliary low-
rank tensor approximation problem (LRTAP) is defined. In
section IV, the parametrization of the tangent cone to the low-
rank variety is given [1]. New orthogonality conditions are
derived to ensure that in Proposition 2 no matrix inverse is
needed, which improves the stability of the proposed method,
and makes the proofs in the rest of the paper easier. In
section V, the main proposition is derived, and an estimated
rank is defined to extend our result to the LRTCP. Lastly, in
section VI, some experiments illustrate the use and advantages
of the proposed rank estimation method for the LRTCP.

II. PRELIMINARIES

A TTD is not unique. Orthogonality conditions can be
enforced, which can improve the stability of algorithms work-
ing with TTDs. Those used in this paper are introduced in
section IV.

Given n, p ∈ N with n ≥ p, we let St(p, n) := {U ∈
Rn×p | U⊤U = Ip} denote the Stiefel manifold. For every
U ∈ St(p, n), we let PU := UU⊤ and P⊥

U := In − PU

denote the orthogonal projections onto the range of U and
its orthogonal complement, respectively. A tensor is said to
be left-orthogonal if n1 ≤ n2n3 and

(
XL

)⊤ ∈ St(n1, n2n3),
and right-orthogonal if n3 ≤ n1n2 and XR ∈ St(n3, n1n2).

The following properties and arithmetic rules are used
frequently in the rest of the paper.

• For all matrices Y and Z, it holds that Y ·(X1 ·X2 ·X3) ·
Z = Y X1 ·X2 ·X3Z.

• The left and right unfoldings of X = X1 · X2 · X3 can
be rewritten as:

XL = X1 (X2 ·X3)
L
= X1X

L
2 (X3 ⊗ In2

) ,

XR = (X1 ·X2)
R
X3 = (In2

⊗X1)X
R
2 X3,

(6)

where ‘⊗’ denotes the Kronecker product.
• From (3) and (6) it can be deduced that

rank(X1) = rank
(
XL

2 (X3 ⊗ In2
)
)
= r1,

rank(X3) = rank
(
(In2

⊗X1)X
R
2

)
= r2,

(7)

and because the ranks of In2
⊗ X1 and X3 ⊗ In2

are
n2r1 and r2n2, respectively, (7) can be simplified to
rank

(
XL

2

)
= r1 and rank

(
XR

2

)
= r2.

• Orthogonality between TTDs is exploited frequently in
the parametrization of the tangent cone in section IV and
the proofs in section V. If Y = Y1 · Y2 · Y3 and Z =

Z1 · Z2 · Z3, then by using (6), the inner product ⟨Y,Z⟩
is zero if at least one of the following equalities holds:

Y ⊤
1 Z1 = 0, (Y2 · Y3)

L (
(Z2 · Z3)

L )⊤
= 0,

Y3Z
⊤
3 = 0,

(
(Y1 · Y2)

R )⊤
(Z1 · Z2)

R
= 0. (8)

III. LOW-RANK TENSOR APPROXIMATION

The low-rank tensor approximation problem (LRTAP) is
defined as:

min
X∈Rn1×n2×n3

≤(k1,k2)

1

2
∥X −A∥2︸ ︷︷ ︸
=:f(X)

. (9)

This problem is related to the LRTCP (1) because fΩ(X) =
f(X) for Ω = {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3}.
Remark that, as for (1), a global minimizer is, in general,
not unique because Rn1×n2×n3

≤(k1,k2)
is nonconvex and NP-hard to

obtain [9]. This problem is used in section V.

IV. TANGENT CONE

The set of all tangent vectors to Rn1×n2×n3

≤(k1,k2)
at X =

X ′
1 · X ′

2 · X3 ∈ Rn1×n2×n3

(r1,r2)
, where X ′

1 ∈ St(r1, n1),
X ′

2
R ∈ St(r2, r1n2), and k1 ≥ r1, k2 ≥ r2, is a closed cone

called the tangent cone to Rn1×n2×n3

≤(k1,k2)
at X and denoted by

TXRn1×n2×n3

≤(k1,k2)
. By [1, Theorem 2.6], TXRn1×n2×n3

≤(k1,k2)
is the set

of all G ∈ Rn1×n2×n3 that can be decomposed as

G =
[
X ′

1 U1 W1

]
·

X ′
2 U2 W2

0 Z2 V2

0 0 X ′
2

 ·

W3

V3

X3

 ,

where U1 ∈ Rn1×s1 , W1 ∈ Rn1×r1 , U2 ∈ Rr1×n2×s2 ,
W2 ∈ Rr1×n2×r2 , Z2 ∈ Rs1×n2×s2 , V2 ∈ Rs1×n2×r2 ,
W3 ∈ Rr2×n3 , V3 ∈ Rs2×n3 , and si = ki−ri. As for the TTD
itself, this parametrization is not unique. In [1], the following
orthogonality conditions are derived:

U⊤
1 X ′

1 = 0, W⊤
1 X ′

1 = 0,(
UR
2

)⊤
X ′R

2 = 0, (V2 ·X3)
L
(
(X ′

2 ·X3)
L
)⊤

= 0,(
WR

2

)⊤
X ′R

2 = 0, V3X
⊤
3 = 0.

We change these orthogonality conditions slightly to make the
proofs in the rest of this paper easier and the computations in
the experiments more stable. To do so, we notice that

G =
[
X ′

1 U1 Ẇ1

]
·

X ′
2 U2 Ẇ2

0 Z2 V̇2

0 0 X ′′
2

 ·

W3

V3

X ′′
3

 ,

where we have defined Ẇ1 := W1R
−1, Ẇ2 := W2 · C,

V̇2 := V2 · C, X ′′
2 := R · X ′

2 · C, X ′′
3 := C−1X3, and R ∈

Rr1×r1 and C ∈ Rr2×r2 are chosen such that X ′′
2 and X ′′

3 are
left-orthogonal. Thus, we can also define X1 := X ′

1R
−1 and

X2 := X ′
2 ·C, such that X = X1 ·X ′′

2 ·X ′′
3 = X ′

1 ·X2 ·X ′′
3 . Ad-

ditionally, W3 can be decomposed as W3 = W3X
′′⊤
3 X ′′

3 +Ŵ3.
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The two terms involving W3 and Ẇ2 can then be regrouped
as

X ′
1 ·

(
X ′

2 ·W3X
′′⊤
3 + Ẇ2

)
·X ′′

3 +X ′
1 ·X ′

2 · Ŵ3.

Defining W̃2 := X ′
2 ·W3X

′′⊤
3 + Ẇ2, we obtain

G =
[
X ′

1 U1 Ẇ1

]
·

X ′
2 U2 W̃2

0 Z2 V̇2

0 0 X ′′
2

 ·

Ŵ3

V3

X ′′
3

 , (10)

with the modified orthogonality conditions

U⊤
1 X ′

1 = 0, Ẇ⊤
1 X ′

1 = 0,
(
UR
2

)⊤
X ′R

2 = 0,

Ŵ3X
′′⊤
3 = 0, V3X

′′⊤
3 = 0, V̇ L

2

(
X ′′L

2

)⊤
= 0. (11)

Expanding (10), a sum of 6 mutually orthogonal TTDs is
obtained because of (8) and (11).

The projection onto the closed cone TXRn1×n2×n3

≤(k1,k2)
is not

known and, in general, difficult to obtain because it is nonlin-
ear and nonconvex. However, in what follows we show that
any tensor Y ∈ Rn1×n2×n3 is an element of TXRn1×n2×n3

≤(n1,n3)
.

Straightforward computations show that

Y = PX′
1
· Y · PX′′⊤

3
+ P⊥

X′
1
· Y · PX′′⊤

3

+ PX′
1
· Y · P⊥

X′′⊤
3

+ P⊥
X′

1
· Y · P⊥

X′′⊤
3

= PX′
1
· Y · PX′′⊤

3

+

[
P⊥
X′

1

(
Y ·X ′′⊤

3

)L
P
(X′′L

2 )
⊤

]n1×n2×r2

·X ′′
3

+

[
P⊥
X′

1

(
Y ·X ′′⊤

3

)L
P⊥
(X′′L

2 )
⊤

]n1×n2×r2

·X ′′
3

+ X ′
1 ·

[
PX′R

2

(
X ′⊤

1 · Y
)R

P⊥
X′′⊤

3

]r1×n2×n3

+ X ′
1 ·

[
P⊥
X′R

2

(
X ′⊤

1 · Y
)R

P⊥
X′′⊤

3

]r1×n2×n3

+ P⊥
X′

1
· Y · P⊥

X′′⊤
3

.

(12)

Thus, Y = Y1 · Y2 · Y3 ∈ Rn1×n2×n3

≤(n1,n3)
can be parameterized as

in (10), with

U1 = P⊥
X′

1
Y1,

U2 =
[
P⊥
X′R

2

(
X ′⊤

1 · Y1 · Y2

)R ]r1×n2×n3

,

V̇2 =
[ (

Y2 · Y3 ·X ′′⊤
3

)L
P⊥
(X′′L

2 )
⊤

]n1×n2×r2
,

V3 = Y3P
⊥
X′′⊤

3
,

Ẇ1 =
(
P⊥
X′

1
· Y ·X ′′⊤

3

)L (
X ′′L

2

)⊤
,

W̃2 = X ′⊤
1 · Y ·X ′′⊤

3 ,

Ŵ3 =
(
X ′R

2

)⊤ (
X ′⊤

1 · Y · P⊥
X′′⊤

3

)R

,

Z2 = Y2,

(13)

which satisfies (11). Furthermore, U1 and V3 have rank at
most n1 − r1 and n3 − r2, respectively, and thus the matrix
U1V̇

L
2 has rank n1 − r1, and U1 and V̇ L

2 can be reduced to
size n1 × (n1 − r1) and (n1 − r1) × n2r2, respectively, e.g.,

by computing the SVD of U1V̇
L
2 . Similarly, this can be done

for UR
2 V3 to obtain UR

2 and V3 of size r1n2 × (n3 − r2)
and (n3 − r2) × n3, respectively. Then, Z2 can be changed
accordingly to U⊤

1 ·Y2 ·V ⊤
3 , which is the same result as would

be obtained by the TT-rounding algorithm [2, Algorithm 2],
except for the orthogonality conditions. Thus, Y can be written
in the form (10) with s1 = n1 − r1, s2 = n3 − r2 and hence
by definition Y ∈ TXRn1×n2×n3

≤(n1,n3)
.

The Riemannian gradient of (9) at X ∈ Rn1×n2×n3

(r1,r2)
is

defined as the projection of the Euclidean gradient ∇f(X) =
X −A onto the tangent space [3]:

TXRn1×n2×n3

(r1,r2)
:={

X ′
1 ·X ′

2 · Ŵ3 +X ′
1 · W̃2 ·X ′′

3 + Ẇ1 ·X ′′
2 ·X ′′

3

}
.

By replacing Y by X − A in (13), the parameters of
P
TXRn1×n2×n3

(r1,r2)

∇f(X) are:

Ẇ1 = −
(
P⊥
X′

1
·A ·X ′′⊤

3

)L (
X ′′L

2

)⊤
,

W̃2 = X2 −X ′⊤
1 ·A ·X ′′⊤

3 ,

Ŵ3 = −
(
X ′R

2

)⊤ (
X ′⊤

1 ·A · P⊥
X′′⊤

3

)R

.

(14)

A similar projection onto the tangent space was used in [5]
and [10], but with different orthogonality conditions.

V. RANK ESTIMATION

Proposition 2 states the main result for the LRTAP (9).
Afterwards, the estimated rank (16) is defined to extend this
result to the LRTCP (1). To prove Proposition 2, the following
auxiliary lemma is used.

Lemma 1. Let X = X ′
1 · X2 · X ′′

3 = X ′
1 · X ′

2 · X3 =
X1 · X ′′

2 · X ′′
3 ∈ Rn1×n2×n3

(r1,r2)
, with X ′

1 ∈ St(r1, n1),

X ′
2
R ∈ St(r2, r1n2),

(
X ′′

2
L
)⊤

∈ St(r1, n2r2), and X ′′
3
⊤ ∈

St(r2, n3), and let A = A′
1 ·A2 ·A′′

3 ∈ Rn1×n2×n3

(r′1,r
′
2)

, with A′
1 ∈

St(r′1, n1) and A′′
3
⊤ ∈ St(r′2, n3). If P

TXRn1×n2×n3
(r1,r2)

∇f (X) =

0, then

X ′
1 = A′

1B1, X ′′
3 = B3A

′′
3 , X2 = B⊤

1 ·A2 ·B⊤
3 ,

for some B1 ∈ St(r1, r
′
1) and B⊤

3 ∈ St(r2, r
′
2).

Proof. From (14), P
TXRn1×n2×n3

(r1,r2)

∇f (X) = 0 if and only if

Ẇ1 = 0, W̃2 = 0, and Ŵ3 = 0. From the second equation in
(14), it is clear that W̃2 can only be zero if X2 = X ′⊤

1 ·A·X ′′⊤
3 .

The matrices X ′
1 and X ′′

3 are decomposed as

X ′
1 =

[
A′

1 A′⊥
1

] [B1

B2

]
= A′

1B1 +A′⊥
1 B2, (15)

X ′′
3 =

[
B3 B4

] [ A′′
3

A′′⊥
3

]
= B3A

′′
3 +B4A

′′⊥
3 ,

where
[
A′

1 A′⊥
1

]
∈ St(n1, n1),

[
A′′

3

A′′⊥
3

]
∈ St(n3, n3),[

B1

B2

]
∈ St(r1, r1+r′1), and

[
B⊤

3

B⊤
4

]
∈ St(r2, r2+r′2). Substitut-

ing (15) into the equation for X2, we obtain X2 = B⊤
1 ·A2·B⊤

3 .
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Substituting (15) into the equation for Ẇ1 in (14), we get

Ẇ1 = 0 ⇔
((

In1
−A′

1B1B
⊤
1 A′⊤

1 −A′⊥
1 B2B

⊤
1 A′⊤

1 −

A′
1B1B

⊤
2

(
A′⊥

1

)⊤ −A′⊥
1 B2B

⊤
2

(
A′⊥

1

)⊤ )
A′

1 ·A2 ·A′′
3(

A′′⊤
3 B⊤

3 +
(
A′′⊥

3

)⊤
B⊤

4

))L (
X ′′

2
L
)⊤

= 0 ⇔((
A′

1 −A′
1B1B

⊤
1 −A′⊥

1 B2B
⊤
1

)
·A2 ·B⊤

3

)L (
X ′′

2
L)⊤

= 0.

Multiplying both sides by
(
A′⊥

1

)⊤
, we obtain

Ẇ1 = 0 ⇒ B2B
⊤
1 AL

2

(
B⊤

3 ⊗ In2

) (
X ′′

2
L
)⊤

= 0

⇔ B2X2
L
(
X ′′

2
L
)⊤

= 0

⇔ B2R
−1X ′′

2
L
(
X ′′

2
L
)⊤

= 0 ⇔ B2 = 0.

Thus, it holds that X ′
1 = A′

1B1 with B1 ∈ St(r1, r
′
1). From

Ŵ3 = 0 in (14), it can similarly be derived that B4 = 0.
Hence, X ′′

3 = B3A
′′
3 and B⊤

3 ∈ St(r2, r
′
2).

The two equalities in Proposition 2 enable to deduce the
TT-rank of A—and thus a value of (k1, k2) for which the
optimum of LRTAP (9) is zero—from any stationary point of
min

X∈Rn1×n2×n3
(r1,r2)

f(X).

Proposition 2. If the same conditions as in Lemma 1 hold,
then ∇f(X) ∈ TXRn1×n2×n3

≤(r′1,r
′
2)

, and

(
rank

((
∇f(X) ·X ′′⊤

3

)L)
, rank

((
X ′⊤

1 · ∇f(X)
)R))

= (r′1 − r1, r
′
2 − r2) .

Proof. By decomposing ∇f(X) as Y in (12) and by
setting Ẇ1, W̃2, and Ŵ3 in (13) to zero because
P
TXRn1×n2×n3

(r1,r2)

∇f(X) = 0, we obtain

∇f(X) = P⊥
X′

1
· ∇f(X) · P⊥

X′′⊤
3

+ X ′
1 ·

[
P⊥
X′R

2

(
X ′⊤

1 · ∇f(X)
)R ]r1×n2×n3

· P⊥
X′′⊤

3

+ P⊥
X′

1
·
[ (

∇f(X) ·X ′′⊤
3

)L
P⊥
(X′′L

2 )
⊤

]n1×n2×r2
·X ′′

3 .

Multiplying both sides on the right by X ′′⊤
3 , we obtain

∇f(X) ·X ′′⊤
3 =

P⊥
X′

1
·
[ (

∇f(X) ·X ′′⊤
3

)L
P⊥
(X′′L

2 )
⊤

]n1×n2×r2
= U1 · V̇2,

with U1 and V̇2 as in (13) with Y replaced by ∇f(X).
Furthermore, from Lemma 1, we know that X ′

1 = A′
1B1,

X ′′
3 = B3A

′′
3 , and X2 = B⊤

1 · A2 · B⊤
3 , for some B1 ∈

St(r1, r
′
1) and B⊤

3 ∈ St(r2, r
′
2). Therefore,

rank
((

∇f(X) ·X ′′⊤
3

)L)
= rank

((
X ′

1 ·X2 −A′
1 ·A2 ·A′′

3 ·X ′′⊤
3

)L)
= rank

((
A′

1B1 ·B⊤
1 ·A2 ·B⊤

3 −A′
1 ·A2 ·B⊤

3

)L)
= rank

(
A′

1

(
B1B

⊤
1 − Ir′1

) (
A2 ·B⊤

3

)L)
= rank

(
Ir′1 −B1B

⊤
1

)
= r′1 − r1

because
(
A2 ·B⊤

3

)L
has full rank r′1, knowing that XL

2 =

B⊤
1

(
A2 ·B⊤

3

)L
has rank r1 and using the Sylvester rank

inequality. Thus, rank
(
U1V̇

L
2

)
= r′1−r1. A similar derivation

can be made for
(
X ′⊤

1 · ∇f(X)
)R

= UR
2 V3. Hence, ∇f(X)

can be parameterized as in (10) with s1 = r′1 − r1, s2 =
r′2−r2), and thus by definition ∇f(X) ∈ TXRn1×n2×n3

≤(r′1,r
′
2)

.

We propose to exploit the two equalities from Proposition 2
in the context of LRTCP (1) by using the estimated rank of
B ∈ Rn×m which is inspired by [11] and defined as:

r̃s (B) :=

{
0 if B = 0,

argmaxj≤s
σj(B)−σj+1(B)

σj(B) otherwise,
(16)

where σj (B), j = 1 . . . rank(B), denote the singular values of
B in decreasing order, i.e., σi(B) ≥ σj(B) for i ≤ j, and s <
rank (B). The upper bound s prevents the estimated rank from
being too high and should be chosen by the user. Thus, we pro-
pose

(
r̃s
( (

∇fΩ(X) ·X ′′⊤
3

)L )
, r̃s

( (
X ′⊤

1 · ∇fΩ(X)
)R ))

as
an adequate value for (k1, k2) in (1), where X = X ′

1 ·X2 ·X ′′
3

has been obtained by running a Riemannian optimization
algorithm on

min
X∈Rn1×n2×n3

(r1,r2)

1

2
∥XΩ −AΩ∥2. (17)

VI. EXPERIMENTS

In this section, three experiments are generated where we
have optimized (17) for (r1, r2) := (2, 2), n1 := n2 :=
n3 := 100, and (r′1, r

′
2) := (6, 6), using a Riemannian

conjugate gradient (CG) algorithm [5], [12]. The tensor A and
the starting point X0 given to the optimization algorithm are
generated as follows:

A = randn (n1, r
′
1) · randn (r′1, n2, r

′
2) · randn (r′2, n3) ,

X0 = randn (n1, r1) · randn (r1, n2, r2) · randn (r2, n3) ,

where randn is a built-in MATLAB function to generate
pseudo-random numbers. It can be shown that the elements
of A, generated in this way, have standard deviation

√
r′1r

′
2 =

6. To obtain AΩ, 4 · 104 random samples of this tensor
were generated. An illustration of how the estimated rank of(
∇fΩ(X) ·X ′′⊤

3

)L
can be used to estimate a good value for

(k1, k2) in (1) is given in Figure 1. The first 20 singular values
of

(
∇fΩ(X) ·X ′′⊤

3

)L
are shown in the left upper subfigure.

The squared norm of the Riemannian gradient that is obtained
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Figure 1. An illustration of the advantage of r̃20
((

∇fΩ(X) ·X′′⊤
3

)L)
compared to r̃20

(
∇fΩ(X)L

)
, to estimate the rank of A, for

∥P
TXRn1×n2×n3

(r1,r2)

∇fΩ(X)∥2 = 10−8, obtained after 200 iterations.
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Figure 2. The first 20 singular values of
(
∇fΩ(X) ·X′′⊤

3

)L (left) and their
relative gap (right), for ∥P

TXRn1×n2×n3
(r1,r2)

∇fΩ(X)∥2 = 504, obtained after

10 iterations.

at X is approximately 10−8. There were 200 iterations needed
to obtain this accuracy. Based on the upper right subfigure,
where the relative gap between the singular values is shown,
it can be seen that the estimated rank equals r′1 − r1. In the
lower two subfigures, the first 20 singular values of ∇fΩ(X)L

are shown. The estimated rank of ∇fΩ(X)L equals 3, and thus
cannot be used to estimate the rank of A.

In Figure 2, it is shown that in practice the norm of the
Riemannian gradient does not need to be very small for the
estimated rank of

(
∇fΩ(X) ·X ′′⊤

3

)L
to equal r′1 − r1. In

this experiment, only 10 iterations of the Riemannian CG
algorithm where used, such that the squared norm of the
Riemannian gradient was approximately 504. However the
estimated rank still equals r′1 − r1.

In a last experiment, another advantage of the proposed
method is illustrated. For this experiment noise with η = 10
is added to the low-rank tensor as follows:

Aη = A+ η randn (n1, n2, n3) . (18)

This means that the noise has the same magnitude as A but the
estimated rank of

(
∇fΩ(X) ·X ′′⊤

3

)L
still equals r′1 − r1 = 4

after 120 iterations of the CG algorithm, as shown in Figure 3.
The squared norm of the Riemannian gradient equals 0.9.

VII. CONCLUSION

The two equalities given in Proposition 2 enable to compute
the TT-rank of A based on a stationary point of LRTAP on
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Figure 3. The first 20 singular values of
(
∇fΩ(X) ·X′′⊤

3

)L (left) and their
relative gap (right), for ∥P

TXRn1×n2×n3
(r1,r2)

∇fΩ(X)∥2 = 0.9, obtained after

120 iterations, and with noise added to the data as in (18) with η = 10.

the fixed-rank manifold, i.e., min
X∈Rn1×n2×n3

(r1,r2)

1
2∥X − A∥2,

which can be obtained using classic Riemannian optimization.
Moreover, numerical experiments indicate that, for LRTCP (1),
using these equalities with the rank replaced by the estimated
rank (16) provides a plausible estimation of the TT-rank of A
which can be used as an adequate value for (k1, k2).

We are working on a Riemannian rank-adaptive method
using this rank estimation method on the LRTCP and addi-
tionally on an extension of this method to higher dimensions.
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