Rank Estimation for Third-Order Tensor Completion in the Tensor-Train Format

Charlotte Vermeylen
Dept. of Computer Science
KU Leuven
Heverlee, Belgium
Guillaume Olikier
ICTEAM Institute
UCLouvain
Louvain-la-Neuve, Belgium
charlotte.vermeylen@kuleuven.be guillaume.olikier@uclouvain.be

P.-A. Absil
ICTEAM Institute
UCLouvain
Louvain-la-Neuve, Belgium
pa.absil@uclouvain.be

Marc Van Barel
Dept. of Computer Science
KU Leuven

Heverlee, Belgium
marc.vanbarel@kuleuven.be

Abstract

We propose a numerical method to obtain an adequate value for the upper bound on the rank for the tensor completion problem on the variety of third-order tensors of bounded tensor-train rank. The method is inspired by the parametrization of the tangent cone derived by Kutschan (2018). A proof of the adequacy of the upper bound for a related low-rank tensor approximation problem is given and an estimated rank is defined to extend the result to the low-rank tensor completion problem. Some experiments on synthetic data illustrate the approach and show that the method is very robust, e.g., to noise on the data. Index Terms-tensor-train, tensor completion, rank estimation, tangent cone

I. Introduction

We consider the low-rank tensor completion problem (LRTCP) formulated as a least squares optimization problem on the algebraic variety $\mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$ [1, Definition 1.4] of $n_{1} \times n_{2} \times n_{3}$ real third-order tensors of tensor-train (TT) rank at $\operatorname{most}\left(k_{1}, k_{2}\right)$:

$$
\begin{equation*}
\min _{X \in \mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \underbrace{\frac{1}{2}\left\|X_{\Omega}-A_{\Omega}\right\|^{2}}_{=: f_{\Omega}(X)}, \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}, \Omega \subseteq\left\{1, \ldots, n_{1}\right\} \times\left\{1, \ldots, n_{2}\right\} \times$ $\left\{1, \ldots, n_{3}\right\}$ is called the sampling set,

$$
Z_{\Omega}\left(i_{1}, i_{2}, i_{3}\right):= \begin{cases}Z\left(i_{1}, i_{2}, i_{3}\right) & \text { if }\left(i_{1}, i_{2}, i_{3}\right) \in \Omega \\ 0 & \text { otherwise }\end{cases}
$$

for all $Z \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$, and the norm is induced by the inner product

$$
\begin{equation*}
\langle Y, X\rangle=\langle\operatorname{vec}(Y), \operatorname{vec}(X)\rangle, \quad \forall X, Y \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}} \tag{2}
\end{equation*}
$$

A tensor-train decomposition (TTD) of a third-order tensor $X \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ is a factorization $X=X_{1} \cdot X_{2} \cdot X_{3}$, where $X_{1} \in \mathbb{R}^{n_{1} \times r_{1}}, X_{2} \in \mathbb{R}^{r_{1} \times n_{2} \times r_{2}}$, and $X_{3} \in \mathbb{R}^{r_{2} \times n_{3}}$ [2]. The ' $'$ indicates the contraction between a matrix and a tensor. They interact with the left and right unfolding of X_{2},

$$
\begin{aligned}
& X_{2}^{\mathrm{L}}:=\left[X_{2}\right]^{r_{1} \times n_{2} r_{2}}:=\text { reshape }\left(X_{2}, r_{1} \times n_{2} r_{2}\right) \\
& X_{2}^{\mathrm{R}}:=\left[X_{2}\right]^{r_{1} n_{2} \times r_{2}}:=\text { reshape }\left(X_{2}, r_{1} n_{2} \times r_{2}\right)
\end{aligned}
$$

in the following way:

$$
X_{1} \cdot X_{2}=\left[X_{1} X_{2}^{\mathrm{L}}\right]^{n_{1} \times n_{2} \times r_{2}}, X_{2} \cdot X_{3}=\left[X_{2}^{\mathrm{R}} X_{3}\right]^{r_{1} \times n_{2} \times n_{3}}
$$

The minimal r_{1} and r_{2} for which a TTD of X exists, is called the TT-rank of X. For second-order tensors (matrices), the TT-rank reduces to the usual matrix rank, and since no other definition of tensor rank is used in this paper, it is simply denoted by $\operatorname{rank} X$ and can be determined as

$$
\begin{equation*}
\operatorname{rank} X=\left(\operatorname{rank} X^{\mathrm{L}}, \operatorname{rank} X^{\mathrm{R}}\right)=:\left(r_{1}, r_{2}\right) \tag{3}
\end{equation*}
$$

The minimal rank decomposition can be obtained by computing successive singular value decompositions (SVDs) of the unfoldings [2, Algorithm 1].

The low-rank variety can then be defined as

$$
\begin{equation*}
\mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}:=\left\{X \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}} \mid \operatorname{rank} X \leq\left(k_{1}, k_{2}\right)\right\} \tag{4}
\end{equation*}
$$

and the fixed-rank smooth manifold [3] as

$$
\begin{equation*}
\mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}:=\left\{X \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}} \mid \operatorname{rank} X=\left(r_{1}, r_{2}\right)\right\} \tag{5}
\end{equation*}
$$

In practical LRTCPs, the rank of A is not known or A has full rank due to noise. This is notably the case for movie rating recommendation systems [4], where, e.g., the ratings of different users over time (or any other variable of interest) form samples of a large third-order tensor. Evaluating a solution to (1) in elements outside the set Ω allows us to recommend movies with a high estimated rating. Note that evaluating one element of a third-order TTD corresponds to performing a vector-matrix-vector multiplication and can be done efficiently in $\mathcal{O}\left(r_{1} r_{2}\right)$ operations.

When k_{1} and k_{2} are set too high however, the complexity of an algorithm to solve (1) is unnecessarily high and furthermore overfitting can occur, i.e., X approximates A_{Ω} well but not the full tensor A. To detect overfitting, usually a test data set Γ is used [5]. When the error on this test set increases during optimization while the error of (1) decreases overfitting has occurred and the algorithm should be stopped or the rank decreased. On the other hand, when k_{1} or k_{2} are set too low, the search space may not contain a sufficiently good approximation of A. It is thus important to choose adequate values for k_{1} and k_{2}.

Intuitively the smaller $|\Omega|$, the more difficult it is to recover A from A_{Ω} by solving (1). However, the minimal number of samples needed is not known [6].

In this work, a method to estimate the rank of A from A_{Ω} is proposed. When A is not exactly low rank, a good value for a
low-rank approximation is obtained. This method can then be used, e.g., in a rank-adaptive optimization algorithm to solve (1).

The paper is organized as follows. First, in section II, the preliminaries for section IV and section V are given. This includes some basic facts concerning orthogonal projections onto vector spaces and arithmetic rules for TTDs. For a more extensive overview of properties of the TTD, we refer to the original paper [2] and the notation introduced in [7], which is also used in [5], [8]. In section III, the auxiliary lowrank tensor approximation problem (LRTAP) is defined. In section IV, the parametrization of the tangent cone to the lowrank variety is given [1]. New orthogonality conditions are derived to ensure that in Proposition 2 no matrix inverse is needed, which improves the stability of the proposed method, and makes the proofs in the rest of the paper easier. In section V, the main proposition is derived, and an estimated rank is defined to extend our result to the LRTCP. Lastly, in section VI, some experiments illustrate the use and advantages of the proposed rank estimation method for the LRTCP.

II. Preliminaries

A TTD is not unique. Orthogonality conditions can be enforced, which can improve the stability of algorithms working with TTDs. Those used in this paper are introduced in section IV.

Given $n, p \in \mathbb{N}$ with $n \geq p$, we let $\operatorname{St}(p, n):=\{U \in$ $\left.\mathbb{R}^{n \times p} \mid U^{\top} U=I_{p}\right\}$ denote the Stiefel manifold. For every $U \in \operatorname{St}(p, n)$, we let $P_{U}:=U U^{\top}$ and $P_{U}^{\perp}:=I_{n}-P_{U}$ denote the orthogonal projections onto the range of U and its orthogonal complement, respectively. A tensor is said to be left-orthogonal if $n_{1} \leq n_{2} n_{3}$ and $\left(X^{\mathrm{L}}\right)^{\top} \in \operatorname{St}\left(n_{1}, n_{2} n_{3}\right)$, and right-orthogonal if $n_{3} \leq n_{1} n_{2}$ and $X^{\mathrm{R}} \in \operatorname{St}\left(n_{3}, n_{1} n_{2}\right)$.

The following properties and arithmetic rules are used frequently in the rest of the paper.

- For all matrices Y and Z, it holds that $Y \cdot\left(X_{1} \cdot X_{2} \cdot X_{3}\right)$. $Z=Y X_{1} \cdot X_{2} \cdot X_{3} Z$.
- The left and right unfoldings of $X=X_{1} \cdot X_{2} \cdot X_{3}$ can be rewritten as:

$$
\begin{align*}
& X^{\mathrm{L}}=X_{1}\left(X_{2} \cdot X_{3}\right)^{\mathrm{L}}=X_{1} X_{2}^{\mathrm{L}}\left(X_{3} \otimes I_{n_{2}}\right) \\
& X^{\mathrm{R}}=\left(X_{1} \cdot X_{2}\right)^{\mathrm{R}} X_{3}=\left(I_{n_{2}} \otimes X_{1}\right) X_{2}^{\mathrm{R}} X_{3} \tag{6}
\end{align*}
$$

where ' \otimes ' denotes the Kronecker product.

- From (3) and (6) it can be deduced that

$$
\begin{align*}
& \operatorname{rank}\left(X_{1}\right)=\operatorname{rank}\left(X_{2}^{\mathrm{L}}\left(X_{3} \otimes I_{n_{2}}\right)\right)=r_{1} \tag{7}\\
& \operatorname{rank}\left(X_{3}\right)=\operatorname{rank}\left(\left(I_{n_{2}} \otimes X_{1}\right) X_{2}^{\mathrm{R}}\right)=r_{2}
\end{align*}
$$

and because the ranks of $I_{n_{2}} \otimes X_{1}$ and $X_{3} \otimes I_{n_{2}}$ are $n_{2} r_{1}$ and $r_{2} n_{2}$, respectively, (7) can be simplified to $\operatorname{rank}\left(X_{2}^{\mathrm{L}}\right)=r_{1}$ and $\operatorname{rank}\left(X_{2}^{\mathrm{R}}\right)=r_{2}$.

- Orthogonality between TTDs is exploited frequently in the parametrization of the tangent cone in section IV and the proofs in section V . If $Y=Y_{1} \cdot Y_{2} \cdot Y_{3}$ and $Z=$
$Z_{1} \cdot Z_{2} \cdot Z_{3}$, then by using (6), the inner product $\langle Y, Z\rangle$ is zero if at least one of the following equalities holds:

$$
\begin{array}{ll}
Y_{1}^{\top} Z_{1}=0, & \left(Y_{2} \cdot Y_{3}\right)^{\mathrm{L}}\left(\left(Z_{2} \cdot Z_{3}\right)^{\mathrm{L}}\right)^{\top}=0 \\
Y_{3} Z_{3}^{\top}=0, & \left(\left(Y_{1} \cdot Y_{2}\right)^{\mathrm{R}}\right)^{\top}\left(Z_{1} \cdot Z_{2}\right)^{\mathrm{R}}=0 \tag{8}
\end{array}
$$

III. Low-Rank Tensor Approximation

The low-rank tensor approximation problem (LRTAP) is defined as:

$$
\begin{equation*}
\min _{X \in \mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \underbrace{\frac{1}{2}\|X-A\|^{2}}_{=: f(X)} \tag{9}
\end{equation*}
$$

This problem is related to the LRTCP (1) because $f_{\Omega}(X)=$ $f(X)$ for $\Omega=\left\{1, \ldots, n_{1}\right\} \times\left\{1, \ldots, n_{2}\right\} \times\left\{1, \ldots, n_{3}\right\}$. Remark that, as for (1), a global minimizer is, in general, not unique because $\mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$ is nonconvex and NP-hard to obtain [9]. This problem is used in section V.

IV. Tangent Cone

The set of all tangent vectors to $\mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$ at $X=$ $X_{1}^{\prime} \cdot X_{2}^{\prime} \cdot X_{3} \in \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{3}}$, where $X_{1}^{\prime} \in \operatorname{St}\left(r_{1}, n_{1}\right)$, $X_{2}^{\prime \mathrm{R}} \in \operatorname{St}\left(r_{2}, r_{1} n_{2}\right)$, and $k_{1} \geq r_{1}, k_{2} \geq r_{2}$, is a closed cone called the tangent cone to $\mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$ at X and denoted by $T_{X} \mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$. By [1, Theorem 2.6], $T_{X} \mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$ is the set of all $G \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ that can be decomposed as

$$
G=\left[\begin{array}{lll}
X_{1}^{\prime} & U_{1} & W_{1}
\end{array}\right] \cdot\left[\begin{array}{ccc}
X_{2}^{\prime} & U_{2} & W_{2} \\
0 & Z_{2} & V_{2} \\
0 & 0 & X_{2}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{c}
W_{3} \\
V_{3} \\
X_{3}
\end{array}\right]
$$

where $U_{1} \in \mathbb{R}^{n_{1} \times s_{1}}, W_{1} \in \mathbb{R}^{n_{1} \times r_{1}}, U_{2} \in \mathbb{R}^{r_{1} \times n_{2} \times s_{2}}$, $W_{2} \in \mathbb{R}^{r_{1} \times n_{2} \times r_{2}}, Z_{2} \in \mathbb{R}^{s_{1} \times n_{2} \times s_{2}}, V_{2} \in \mathbb{R}^{s_{1} \times n_{2} \times r_{2}}$, $W_{3} \in \mathbb{R}^{r_{2} \times n_{3}}, V_{3} \in \mathbb{R}^{s_{2} \times n_{3}}$, and $s_{i}=k_{i}-r_{i}$. As for the TTD itself, this parametrization is not unique. In [1], the following orthogonality conditions are derived:

$$
\begin{array}{rlrl}
U_{1}^{\top} X_{1}^{\prime} & =0, & W_{1}^{\top} X_{1}^{\prime} & =0 \\
\left(U_{2}^{\mathrm{R}}\right)^{\top} X_{2}^{\prime \mathrm{R}} & =0, & \left(V_{2} \cdot X_{3}\right)^{\mathrm{L}}\left(\left(X_{2}^{\prime} \cdot X_{3}\right)^{\mathrm{L}}\right)^{\top}=0 \\
\left(W_{2}^{\mathrm{R}}\right)^{\top} X_{2}^{\prime \mathrm{R}} & =0, & V_{3} X_{3}^{\top}=0
\end{array}
$$

We change these orthogonality conditions slightly to make the proofs in the rest of this paper easier and the computations in the experiments more stable. To do so, we notice that

$$
G=\left[\begin{array}{lll}
X_{1}^{\prime} & U_{1} & \dot{W}_{1}
\end{array}\right] \cdot\left[\begin{array}{ccc}
X_{2}^{\prime} & U_{2} & \dot{W}_{2} \\
0 & Z_{2} & \dot{V}_{2} \\
0 & 0 & X_{2}^{\prime \prime}
\end{array}\right] \cdot\left[\begin{array}{c}
W_{3} \\
V_{3} \\
X_{3}^{\prime \prime}
\end{array}\right]
$$

where we have defined $\dot{W}_{1}:=W_{1} R^{-1}, \dot{W}_{2}:=W_{2} \cdot C$, $\dot{V}_{2}:=V_{2} \cdot C, X_{2}^{\prime \prime}:=R \cdot X_{2}^{\prime} \cdot C, X_{3}^{\prime \prime}:=C^{-1} X_{3}$, and $R \in$ $\mathbb{R}^{r_{1} \times r_{1}}$ and $C \in \mathbb{R}^{r_{2} \times r_{2}}$ are chosen such that $X_{2}^{\prime \prime}$ and $X_{3}^{\prime \prime}$ are left-orthogonal. Thus, we can also define $X_{1}:=X_{1}^{\prime} R^{-1}$ and $X_{2}:=X_{2}^{\prime} \cdot C$, such that $X=X_{1} \cdot X_{2}^{\prime \prime} \cdot X_{3}^{\prime \prime}=X_{1}^{\prime} \cdot X_{2} \cdot X_{3}^{\prime \prime}$. Additionally, W_{3} can be decomposed as $W_{3}=W_{3} X_{3}^{\prime \prime \top} X_{3}^{\prime \prime}+\hat{W}_{3}$.

The two terms involving W_{3} and \dot{W}_{2} can then be regrouped as

$$
X_{1}^{\prime} \cdot\left(X_{2}^{\prime} \cdot W_{3} X_{3}^{\prime \prime \top}+\dot{W}_{2}\right) \cdot X_{3}^{\prime \prime}+X_{1}^{\prime} \cdot X_{2}^{\prime} \cdot \hat{W}_{3}
$$

Defining $\tilde{W}_{2}:=X_{2}^{\prime} \cdot W_{3} X_{3}^{\prime \prime \top}+\dot{W}_{2}$, we obtain

$$
G=\left[\begin{array}{lll}
X_{1}^{\prime} & U_{1} & \dot{W}_{1}
\end{array}\right] \cdot\left[\begin{array}{ccc}
X_{2}^{\prime} & U_{2} & \tilde{W}_{2} \tag{10}\\
0 & Z_{2} & \dot{V}_{2} \\
0 & 0 & X_{2}^{\prime \prime}
\end{array}\right] \cdot\left[\begin{array}{c}
\hat{W}_{3} \\
V_{3} \\
X_{3}^{\prime \prime}
\end{array}\right]
$$

with the modified orthogonality conditions

$$
\begin{align*}
U_{1}^{\top} X_{1}^{\prime}=0, & \dot{W}_{1}^{\top} X_{1}^{\prime}=0,
\end{align*} \quad\left(U_{2}^{\mathrm{R}}\right)^{\top} X_{2}^{\prime \mathrm{R}}=0, ~ 子, ~ \dot{V}_{2}^{\mathrm{L}}\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}=0 .
$$

Expanding (10), a sum of 6 mutually orthogonal TTDs is obtained because of (8) and (11).

The projection onto the closed cone $T_{X} \mathbb{R}_{\leq\left(k_{1}, k_{2}\right)}^{n_{1} \times n_{3} \times n_{3}}$ is not known and, in general, difficult to obtain because it is nonlinear and nonconvex. However, in what follows we show that any tensor $Y \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ is an element of $T_{X} \mathbb{R}_{\leq\left(n_{1}, n_{3}\right)}^{n_{1} \times n_{2} \times n_{3}}$. Straightforward computations show that

$$
\begin{align*}
Y & =P_{X_{1}^{\prime}} \cdot Y \cdot P_{X_{3}^{\prime \prime \top}}+P_{X_{1}^{\prime}}^{\perp} \cdot Y \cdot P_{X_{3}^{\prime \prime \top}} \\
& +P_{X_{1}^{\prime}} \cdot Y \cdot P_{X_{3}^{\prime \prime \top}}^{\perp}+P_{X_{1}^{\prime}}^{\perp} \cdot Y \cdot P_{X_{3}^{\prime \prime \top}}^{\perp} \\
& =P_{X_{1}^{\prime}} \cdot Y \cdot P_{X_{3}^{\prime \prime \top}} \\
& +\left[P_{X_{1}^{\prime}}^{\perp}\left(Y \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}} P_{\left.\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}\right]^{n_{1} \times n_{2} \times r_{2}} \cdot X_{3}^{\prime \prime}}\right. \\
& +\left[P_{X_{1}^{\prime}}^{\perp}\left(Y \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}} P_{\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}}^{\perp}\right]^{n_{1} \times n_{2} \times r_{2}} \cdot X_{3}^{\prime \prime} \tag{12}\\
& +X_{1}^{\prime} \cdot\left[P_{X_{2}^{\prime \mathrm{R}}}\left(X_{1}^{\prime \top} \cdot Y\right)^{\mathrm{R}} P_{X_{3}^{\prime \prime \top}}^{\perp}\right]^{r_{1} \times n_{2} \times n_{3}} \\
& +X_{1}^{\prime} \cdot\left[P_{X_{2}^{\prime \mathrm{R}}}^{\perp}\left(X_{1}^{\prime \top} \cdot Y\right)^{\mathrm{R}} P_{X_{3}^{\prime \prime \top}}^{\perp}\right]^{r_{1} \times n_{2} \times n_{3}} \\
& +P_{X_{1}^{\prime}}^{\perp} \cdot Y \cdot P_{X_{3}^{\prime \prime \top} \cdot}^{\perp} .
\end{align*}
$$

Thus, $Y=Y_{1} \cdot Y_{2} \cdot Y_{3} \in \mathbb{R}_{\leq\left(n_{1}, n_{3}\right)}^{n_{1} \times n_{2} \times n_{3}}$ can be parameterized as in (10), with

$$
\begin{align*}
U_{1} & =P_{X_{1}^{\prime}}^{\perp} Y_{1}, \\
U_{2} & =\left[P_{X_{2}^{\prime \mathrm{R}}}^{\perp}\left(X_{1}^{\prime \top} \cdot Y_{1} \cdot Y_{2}\right)^{\mathrm{R}}\right]^{r_{1} \times n_{2} \times n_{3}}, \\
\dot{V}_{2} & =\left[\left(Y_{2} \cdot Y_{3} \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}} P_{\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}}^{\perp}\right]^{n_{1} \times n_{2} \times r_{2}}, \\
V_{3} & =Y_{3} P_{X_{3}^{\prime \prime \top}}^{\perp}, \tag{13}\\
\dot{W}_{1} & =\left(P_{X_{1}^{\prime}}^{\perp} \cdot Y \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}, \\
\tilde{W}_{2} & =X_{1}^{\prime \top} \cdot Y \cdot X_{3}^{\prime \prime \top}, \\
\hat{W}_{3} & =\left(X_{2}^{\prime \mathrm{R}}\right)^{\top}\left(X_{1}^{\prime \top} \cdot Y \cdot P_{X_{3}^{\prime \prime \top}}^{\perp}\right)^{\mathrm{R}}, \\
Z_{2} & =Y_{2},
\end{align*}
$$

which satisfies (11). Furthermore, U_{1} and V_{3} have rank at most $n_{1}-r_{1}$ and $n_{3}-r_{2}$, respectively, and thus the matrix $U_{1} \dot{V}_{2}^{\mathrm{L}}$ has rank $n_{1}-r_{1}$, and U_{1} and \dot{V}_{2}^{L} can be reduced to size $n_{1} \times\left(n_{1}-r_{1}\right)$ and $\left(n_{1}-r_{1}\right) \times n_{2} r_{2}$, respectively, e.g.,
by computing the SVD of $U_{1} \dot{V}_{2}^{\mathrm{L}}$. Similarly, this can be done for $U_{2}^{\mathrm{R}} V_{3}$ to obtain U_{2}^{R} and V_{3} of size $r_{1} n_{2} \times\left(n_{3}-r_{2}\right)$ and $\left(n_{3}-r_{2}\right) \times n_{3}$, respectively. Then, Z_{2} can be changed accordingly to $U_{1}^{\top} \cdot Y_{2} \cdot V_{3}^{\top}$, which is the same result as would be obtained by the TT-rounding algorithm [2, Algorithm 2], except for the orthogonality conditions. Thus, Y can be written in the form (10) with $s_{1}=n_{1}-r_{1}, s_{2}=n_{3}-r_{2}$ and hence by definition $Y \in T_{X} \mathbb{R}_{\leq\left(n_{1}, n_{3}\right)}^{n_{1} \times n_{2} \times n_{3}}$.

The Riemannian gradient of (9) at $X \in \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$ is defined as the projection of the Euclidean gradient $\nabla f(X)=$ $X-A$ onto the tangent space [3]:

$$
\begin{aligned}
& T_{X} \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}:= \\
& \left\{X_{1}^{\prime} \cdot X_{2}^{\prime} \cdot \hat{W}_{3}+X_{1}^{\prime} \cdot \tilde{W}_{2} \cdot X_{3}^{\prime \prime}+\dot{W}_{1} \cdot X_{2}^{\prime \prime} \cdot X_{3}^{\prime \prime}\right\}
\end{aligned}
$$

By replacing Y by $X-A$ in (13), the parameters of $\mathcal{P}_{T_{X} \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \nabla f(X)$ are:

$$
\begin{align*}
& \dot{W}_{1}=-\left(P_{X_{1}^{\prime}}^{\perp} \cdot A \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top} \\
& \tilde{W}_{2}=X_{2}-X_{1}^{\prime \top} \cdot A \cdot X_{3}^{\prime \prime \top} \tag{14}\\
& \hat{W}_{3}=-\left(X_{2}^{\prime \mathrm{R}}\right)^{\top}\left(X_{1}^{\prime \top} \cdot A \cdot P_{X_{3}^{\prime \prime \top}}^{\perp}\right)^{\mathrm{R}}
\end{align*}
$$

A similar projection onto the tangent space was used in [5] and [10], but with different orthogonality conditions.

V. Rank Estimation

Proposition 2 states the main result for the LRTAP (9). Afterwards, the estimated rank (16) is defined to extend this result to the LRTCP (1). To prove Proposition 2, the following auxiliary lemma is used.
Lemma 1. Let $X=X_{1}^{\prime} \cdot X_{2} \cdot X_{3}^{\prime \prime}=X_{1}^{\prime} \cdot X_{2}^{\prime} \cdot X_{3}=$ $X_{1} \cdot X_{2}^{\prime \prime} \cdot X_{3}^{\prime \prime} \in \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}$, with $X_{1}^{\prime} \in \operatorname{St}\left(r_{1}, n_{1}\right)$, $X_{2}^{\prime \mathrm{R}} \in \operatorname{St}\left(r_{2}, r_{1} n_{2}\right),\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top} \in \operatorname{St}\left(r_{1}, n_{2} r_{2}\right)$, and $X_{3}^{\prime \prime \top} \in$ $\operatorname{St}\left(r_{2}, n_{3}\right)$, and let $A=A_{1}^{\prime} \cdot A_{2} \cdot A_{3}^{\prime \prime} \in \mathbb{R}_{\left(r_{1}^{\prime}, r_{2}^{\prime}\right)}^{n_{1} \times n_{2} \times n_{3}}$, with $A_{1}^{\prime} \in$ $\operatorname{St}\left(r_{1}^{\prime}, n_{1}\right)$ and $A_{3}^{\prime \prime \top} \in \operatorname{St}\left(r_{2}^{\prime}, n_{3}\right)$. If $\mathcal{P}_{T_{X} \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \nabla f(X)=$ 0 , then

$$
X_{1}^{\prime}=A_{1}^{\prime} B_{1}, \quad X_{3}^{\prime \prime}=B_{3} A_{3}^{\prime \prime}, \quad X_{2}=B_{1}^{\top} \cdot A_{2} \cdot B_{3}^{\top}
$$

for some $B_{1} \in \operatorname{St}\left(r_{1}, r_{1}^{\prime}\right)$ and $B_{3}^{\top} \in \operatorname{St}\left(r_{2}, r_{2}^{\prime}\right)$.
Proof. From (14), $\mathcal{P}_{T_{X} \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \nabla f(X)=0$ if and only if $\dot{W}_{1}=0, \tilde{W}_{2}=0$, and $\hat{W}_{3}=0$. From the second equation in (14), it is clear that \tilde{W}_{2} can only be zero if $X_{2}=X_{1}^{\prime \top} \cdot A \cdot X_{3}^{\prime \prime \top}$. The matrices X_{1}^{\prime} and $X_{3}^{\prime \prime}$ are decomposed as

$$
\begin{align*}
& X_{1}^{\prime}=\left[\begin{array}{ll}
A_{1}^{\prime} & A_{1}^{\prime \perp}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=A_{1}^{\prime} B_{1}+A_{1}^{\prime \perp} B_{2}, \tag{15}\\
& X_{3}^{\prime \prime}=\left[\begin{array}{ll}
B_{3} & B_{4}
\end{array}\right]\left[\begin{array}{c}
A_{3}^{\prime \prime} \\
A_{3}^{\prime \perp}
\end{array}\right]=B_{3} A_{3}^{\prime \prime}+B_{4} A_{3}^{\prime \prime \perp}
\end{align*}
$$

where $\left[\begin{array}{ll}A_{1}^{\prime} & A_{1}^{\prime \perp}\end{array}\right] \in \operatorname{St}\left(n_{1}, n_{1}\right),\left[\begin{array}{c}A_{3}^{\prime \prime} \\ A_{3}^{\prime \prime \perp}\end{array}\right] \in \operatorname{St}\left(n_{3}, n_{3}\right)$, $\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right] \in \operatorname{St}\left(r_{1}, r_{1}+r_{1}^{\prime}\right)$, and $\left[\begin{array}{l}B_{3}^{\top} \\ B_{4}^{\top}\end{array}\right] \in \operatorname{St}\left(r_{2}, r_{2}+r_{2}^{\prime}\right)$. Substituting (15) into the equation for X_{2}, we obtain $X_{2}=B_{1}^{\top} \cdot A_{2} \cdot B_{3}^{\top}$.

Substituting (15) into the equation for \dot{W}_{1} in (14), we get

$$
\begin{aligned}
& \dot{W}_{1}=0 \Leftrightarrow\left(\left(I_{n_{1}}-A_{1}^{\prime} B_{1} B_{1}^{\top} A_{1}^{\prime \top}-A_{1}^{\prime \perp} B_{2} B_{1}^{\top} A_{1}^{\prime \top}-\right.\right. \\
& \left.A_{1}^{\prime} B_{1} B_{2}^{\top}\left(A_{1}^{\prime \perp}\right)^{\top}-A_{1}^{\prime \perp} B_{2} B_{2}^{\top}\left(A_{1}^{\prime \perp}\right)^{\top}\right) A_{1}^{\prime} \cdot A_{2} \cdot A_{3}^{\prime \prime} \\
& \left.\left(A_{3}^{\prime \prime \top} B_{3}^{\top}+\left(A_{3}^{\prime \prime \perp}\right)^{\top} B_{4}^{\top}\right)\right)^{\mathrm{L}}\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}=0 \Leftrightarrow \\
& \left(\left(A_{1}^{\prime}-A_{1}^{\prime} B_{1} B_{1}^{\top}-A_{1}^{\prime \perp} B_{2} B_{1}^{\top}\right) \cdot A_{2} \cdot B_{3}^{\top}\right)^{\mathrm{L}}\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}=0 .
\end{aligned}
$$

Multiplying both sides by $\left(A_{1}^{\prime \perp}\right)^{\top}$, we obtain

$$
\begin{aligned}
\dot{W}_{1}=0 & \Rightarrow B_{2} B_{1}^{\top} A_{2}^{\mathrm{L}}\left(B_{3}^{\top} \otimes I_{n_{2}}\right)\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}=0 \\
& \Leftrightarrow B_{2} X_{2}^{\mathrm{L}}\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}=0 \\
& \Leftrightarrow B_{2} R^{-1} X_{2}^{\prime \prime \mathrm{L}}\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}=0 \Leftrightarrow B_{2}=0
\end{aligned}
$$

Thus, it holds that $X_{1}^{\prime}=A_{1}^{\prime} B_{1}$ with $B_{1} \in \operatorname{St}\left(r_{1}, r_{1}^{\prime}\right)$. From $\hat{W}_{3}=0$ in (14), it can similarly be derived that $B_{4}=0$. Hence, $X_{3}^{\prime \prime}=B_{3} A_{3}^{\prime \prime}$ and $B_{3}^{\top} \in \operatorname{St}\left(r_{2}, r_{2}^{\prime}\right)$.

The two equalities in Proposition 2 enable to deduce the TT-rank of A-and thus a value of $\left(k_{1}, k_{2}\right)$ for which the optimum of LRTAP (9) is zero-from any stationary point of $\min _{X \in \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} f(X)$.
Proposition 2. If the same conditions as in Lemma 1 hold, then $\nabla f(X) \in T_{X} \mathbb{R}_{\leq\left(r_{1}^{\prime}, r_{2}^{\prime}\right)}^{n_{1} \times n_{2} \times n_{3}}$, and

$$
\begin{aligned}
& \left(\operatorname{rank}\left(\left(\nabla f(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}\right), \operatorname{rank}\left(\left(X_{1}^{\prime \top} \cdot \nabla f(X)\right)^{R}\right)\right) \\
& =\left(r_{1}^{\prime}-r_{1}, r_{2}^{\prime}-r_{2}\right)
\end{aligned}
$$

Proof. By decomposing $\nabla f(X)$ as Y in (12) and by setting $\dot{W}_{1}, \tilde{W}_{2}$, and \hat{W}_{3} in (13) to zero because $\mathcal{P}_{T_{X} \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \nabla f(X)=0$, we obtain

$$
\begin{aligned}
& \nabla f(X)=P_{X_{1}^{\prime}}^{\perp} \cdot \nabla f(X) \cdot P_{X_{3}^{\prime \prime \top}}^{\perp} \\
+ & X_{1}^{\prime} \cdot\left[P_{X_{2}^{\prime \mathrm{R}}}^{\perp}\left(X_{1}^{\prime \top} \cdot \nabla f(X)\right)^{\mathrm{R}}\right]^{r_{1} \times n_{2} \times n_{3}} \cdot P_{X_{3}^{\prime \prime \top}}^{\perp} \\
+ & P_{X_{1}^{\prime}}^{\perp} \cdot\left[\left(\nabla f(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}} P_{\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}}^{\perp}\right]^{n_{1} \times n_{2} \times r_{2}} \cdot X_{3}^{\prime \prime} .
\end{aligned}
$$

Multiplying both sides on the right by $X_{3}^{\prime \prime \top}$, we obtain

$$
\begin{aligned}
& \nabla f(X) \cdot X_{3}^{\prime \prime \top}= \\
& P_{X_{1}^{\prime}}^{\perp} \cdot\left[\left(\nabla f(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}} P_{\left(X_{2}^{\prime \prime \mathrm{L}}\right)^{\top}}^{\perp}\right]^{n_{1} \times n_{2} \times r_{2}}=U_{1} \cdot \dot{V}_{2},
\end{aligned}
$$

with U_{1} and \dot{V}_{2} as in (13) with Y replaced by $\nabla f(X)$. Furthermore, from Lemma 1 , we know that $X_{1}^{\prime}=A_{1}^{\prime} B_{1}$,
$X_{3}^{\prime \prime}=B_{3} A_{3}^{\prime \prime}$, and $X_{2}=B_{1}^{\top} \cdot A_{2} \cdot B_{3}^{\top}$, for some $B_{1} \in$ $\mathrm{St}\left(r_{1}, r_{1}^{\prime}\right)$ and $B_{3}^{\top} \in \operatorname{St}\left(r_{2}, r_{2}^{\prime}\right)$. Therefore,

$$
\begin{aligned}
& \operatorname{rank}\left(\left(\nabla f(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}\right) \\
& =\operatorname{rank}\left(\left(X_{1}^{\prime} \cdot X_{2}-A_{1}^{\prime} \cdot A_{2} \cdot A_{3}^{\prime \prime} \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}\right) \\
& =\operatorname{rank}\left(\left(A_{1}^{\prime} B_{1} \cdot B_{1}^{\top} \cdot A_{2} \cdot B_{3}^{\top}-A_{1}^{\prime} \cdot A_{2} \cdot B_{3}^{\top}\right)^{\mathrm{L}}\right) \\
& =\operatorname{rank}\left(A_{1}^{\prime}\left(B_{1} B_{1}^{\top}-I_{r_{1}^{\prime}}\right)\left(A_{2} \cdot B_{3}^{\top}\right)^{\mathrm{L}}\right) \\
& =\operatorname{rank}\left(I_{r_{1}^{\prime}}-B_{1} B_{1}^{\top}\right)=r_{1}^{\prime}-r_{1}
\end{aligned}
$$

because $\left(A_{2} \cdot B_{3}^{\top}\right)^{\mathrm{L}}$ has full rank r_{1}^{\prime}, knowing that $X_{2}^{\mathrm{L}}=$ $B_{1}^{\top}\left(A_{2} \cdot B_{3}^{\top}\right)^{\mathrm{L}}$ has rank r_{1} and using the Sylvester rank inequality. Thus, $\operatorname{rank}\left(U_{1} \dot{V}_{2}^{\mathrm{L}}\right)=r_{1}^{\prime}-r_{1}$. A similar derivation can be made for $\left(X_{1}^{\prime \top} \cdot \nabla f(X)\right)^{\mathrm{R}}=U_{2}^{\mathrm{R}} V_{3}$. Hence, $\nabla f(X)$ can be parameterized as in (10) with $s_{1}=r_{1}^{\prime}-r_{1}, s_{2}=$ $r_{2}^{\prime}-r_{2}$), and thus by definition $\nabla f(X) \in T_{X} \mathbb{R}_{\leq\left(r_{1}^{\prime}, r_{2}^{\prime}\right)}^{n_{1} \times n_{2} \times n_{3}}$.

We propose to exploit the two equalities from Proposition 2 in the context of LRTCP (1) by using the estimated rank of $B \in \mathbb{R}^{n \times m}$ which is inspired by [11] and defined as:

$$
\tilde{r}_{s}(B):= \begin{cases}0 & \text { if } B=0 \tag{16}\\ \operatorname{argmax}_{j \leq s} \frac{\sigma_{j}(B)-\sigma_{j+1}(B)}{\sigma_{j}(B)} & \text { otherwise }\end{cases}
$$

where $\sigma_{j}(B), j=1 \ldots \operatorname{rank}(B)$, denote the singular values of B in decreasing order, i.e., $\sigma_{i}(B) \geq \sigma_{j}(B)$ for $i \leq j$, and $s<$ rank (B). The upper bound s prevents the estimated rank from being too high and should be chosen by the user. Thus, we propose $\left(\tilde{r}_{s}\left(\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}\right), \tilde{r}_{s}\left(\left(X_{1}^{\prime \top} \cdot \nabla f_{\Omega}(X)\right)^{R}\right)\right)$ as an adequate value for $\left(k_{1}, k_{2}\right)$ in (1), where $X=X_{1}^{\prime} \cdot X_{2} \cdot X_{3}^{\prime \prime}$ has been obtained by running a Riemannian optimization algorithm on

$$
\begin{equation*}
\min _{X \in \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{3}}} \frac{1}{2}\left\|X_{\Omega}-A_{\Omega}\right\|^{2} \tag{17}
\end{equation*}
$$

VI. EXPERIMENTS

In this section, three experiments are generated where we have optimized (17) for $\left(r_{1}, r_{2}\right):=(2,2), n_{1}:=n_{2}:=$ $n_{3}:=100$, and $\left(r_{1}^{\prime}, r_{2}^{\prime}\right):=(6,6)$, using a Riemannian conjugate gradient (CG) algorithm [5], [12]. The tensor A and the starting point X_{0} given to the optimization algorithm are generated as follows:

$$
\begin{aligned}
A & =\operatorname{randn}\left(n_{1}, r_{1}^{\prime}\right) \cdot \operatorname{randn}\left(r_{1}^{\prime}, n_{2}, r_{2}^{\prime}\right) \cdot \operatorname{randn}\left(r_{2}^{\prime}, n_{3}\right) \\
X_{0} & =\operatorname{randn}\left(n_{1}, r_{1}\right) \cdot \operatorname{randn}\left(r_{1}, n_{2}, r_{2}\right) \cdot \operatorname{randn}\left(r_{2}, n_{3}\right)
\end{aligned}
$$

where randn is a built-in Matlab function to generate pseudo-random numbers. It can be shown that the elements of A, generated in this way, have standard deviation $\sqrt{r_{1}^{\prime} r_{2}^{\prime}}=$ 6. To obtain $A_{\Omega}, 4 \cdot 10^{4}$ random samples of this tensor were generated. An illustration of how the estimated rank of $\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}$ can be used to estimate a good value for $\left(k_{1}, k_{2}\right)$ in (1) is given in Figure 1. The first 20 singular values of $\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}$ are shown in the left upper subfigure. The squared norm of the Riemannian gradient that is obtained

Figure 1. An illustration of the advantage of $\tilde{r}_{20}\left(\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}\right)$ compared to $\tilde{r}_{20}\left(\nabla f_{\Omega}(X)^{\mathrm{L}}\right)$, to estimate the rank of A, for $\left\|\mathcal{P}_{T_{X} \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \nabla f_{\Omega}(X)\right\|^{2}=10^{-8}$, obtained after 200 iterations.

Figure 2. The first 20 singular values of $\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}$ (left) and their relative gap (right), for $\left\|\mathcal{P}_{T_{X} \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \nabla f_{\Omega}(X)\right\|^{2}=504$, obtained after 10 iterations.
at X is approximately 10^{-8}. There were 200 iterations needed to obtain this accuracy. Based on the upper right subfigure, where the relative gap between the singular values is shown, it can be seen that the estimated rank equals $r_{1}^{\prime}-r_{1}$. In the lower two subfigures, the first 20 singular values of $\nabla f_{\Omega}(X)^{\mathrm{L}}$ are shown. The estimated rank of $\nabla f_{\Omega}(X)^{\mathrm{L}}$ equals 3 , and thus cannot be used to estimate the rank of A.

In Figure 2, it is shown that in practice the norm of the Riemannian gradient does not need to be very small for the estimated rank of $\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}$ to equal $r_{1}^{\prime}-r_{1}$. In this experiment, only 10 iterations of the Riemannian CG algorithm where used, such that the squared norm of the Riemannian gradient was approximately 504 . However the estimated rank still equals $r_{1}^{\prime}-r_{1}$.

In a last experiment, another advantage of the proposed method is illustrated. For this experiment noise with $\eta=10$ is added to the low-rank tensor as follows:

$$
\begin{equation*}
A_{\eta}=A+\eta \quad \text { randn }\left(n_{1}, n_{2}, n_{3}\right) \tag{18}
\end{equation*}
$$

This means that the noise has the same magnitude as A but the estimated rank of $\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}$ still equals $r_{1}^{\prime}-r_{1}=4$ after 120 iterations of the CG algorithm, as shown in Figure 3. The squared norm of the Riemannian gradient equals 0.9.

VII. CONClUSION

The two equalities given in Proposition 2 enable to compute the TT-rank of A based on a stationary point of LRTAP on

Figure 3. The first 20 singular values of $\left(\nabla f_{\Omega}(X) \cdot X_{3}^{\prime \prime \top}\right)^{\mathrm{L}}$ (left) and their relative gap (right), for $\left\|\mathcal{P}_{T_{X} \mathbb{R}_{(r 1}^{n_{1} \times n_{2} \times n_{3}}} \nabla f_{\Omega}(X)\right\|^{2}=0.9$, obtained after 120 iterations, and with noise added to the data as in (18) with $\eta=10$.
the fixed-rank manifold, i.e., $\min _{X \in \mathbb{R}_{\left(r_{1}, r_{2}\right)}^{n_{1} \times n_{2} \times n_{3}}} \frac{1}{2}\|X-A\|^{2}$, which can be obtained using classic Riemannian optimization. Moreover, numerical experiments indicate that, for LRTCP (1), using these equalities with the rank replaced by the estimated rank (16) provides a plausible estimation of the TT-rank of A which can be used as an adequate value for $\left(k_{1}, k_{2}\right)$.

We are working on a Riemannian rank-adaptive method using this rank estimation method on the LRTCP and additionally on an extension of this method to higher dimensions.

Acknowledgment

This work was supported by the Fonds de la Recherche Scientifique - FNRS and the Fonds Wetenschappelijk Onderzoek - Vlaanderen under EOS Project no 30468160, and by the Fonds de la Recherche Scientifique - FNRS under Grant no T.0001.23.

References

[1] B. Kutschan, "Tangent cones to tensor train varieties," Linear Algebra Appl., vol. 544, pp. 370-390, 2018.
[2] I. V. Oseledets, "Tensor-train decompositions," SIAM J. Sci. Comput., vol. 33, no. 5, pp. 2295-2317, 2011.
[3] S. Holtz, T. Rohwedder, and R. Schneider, "On manifolds of tensors of fixed TT-rank," Numer. Math., vol. 120, no. 4, pp. 701-731, 2012.
[4] F. Harper and J. Konstan, "The MovieLens datasets: History and context," ACM Trans. Interact. Intell. Syst., vol. 5, dec 2015.
[5] M. Steinlechner, "Riemannian optimization for high-dimensional tensor completion," SIAM J. Sci. Comput., vol. 38, no. 5, pp. S461-S484, 2016.
[6] S. Budzinskiy and N. Zamarashkin, "Tensor train completion: local recovery guarantees via Riemannian optimization," arXiv preprint arXiv:2110.03975, 2021.
[7] D. Kressner, M. Steinlechner, and A. Uschmajew, "Low-rank tensor methods with subspace correction for symmetric eigenvalue problems," SIAM J. Sci. Comput., vol. 36, no. 5, pp. A2346-A2368, 2014.
[8] M. Steinlechner, Riemannian Optimization for Solving HighDimensional Problems with Low-Rank Tensor Structure. PhD thesis, EPFL, Lausanne, 2016.
[9] C. J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard," Journal of the ACM (JACM), vol. 60, no. 6, pp. 1-39, 2013.
[10] C. Lubich, I. V. Oseledets, and B. Vandereycken, "Time integration of tensor trains," SIAM J. Numer. Anal., vol. 53, no. 2, pp. 917-941, 2015.
[11] B. Gao and P.-A. Absil, "A Riemannian rank-adaptive method for lowrank matrix completion," Computational Optimization and Applications, vol. 81, pp. 67-90, 2022.
[12] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, "Manopt, a Matlab toolbox for optimization on manifolds," Journal of Machine Learning Research, vol. 15, no. 42, pp. 1455-1459, 2014.

