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Abstract—The development of computer vision solutions for
gigapixel images in digital pathology is hampered by significant
computational limitations due to the large size of whole slide
images. In particular, digitizing biopsies at high resolutions is a
time-consuming process, which is necessary due to the worsening
results from the decrease in image detail. To alleviate this issue,
recent literature has proposed using knowledge distillation to
enhance the model performance at reduced image resolutions.
In particular, soft labels and features extracted at the highest
magnification level are distilled into a model that takes lower-
magnification images as input. However, this approach fails
to transfer knowledge about the most discriminative image
regions in the classification process, which may be lost when the
resolution is decreased. In this work, we propose to distill this
information by incorporating attention maps during training. In
particular, our formulation leverages saliency maps of the target
class via grad-CAMs, which guides the lower-resolution Student
model to match the Teacher distribution by minimizing the l2-
distance between them. Comprehensive experiments on prostate
histology image grading demonstrate that the proposed approach
substantially improves the model performance across different
image resolutions compared to previous literature. The project
code is available on https://github.com/cvblab/kd resolution.

Index Terms—Knowledge distillation, Attention constraints,
Inter-resolution, Histology image.

I. INTRODUCTION

Computer vision methods using deep learning have reached
remarkable results in a wide range of applications, including
medical image analysis. This is the case even in challenging
fields such as digital pathology, where digitized biopsies
take the form of whole-slide images (WSI) consisting of
hundreds of thousands of pixels. In addition, the relevant areas
may be contained in a small region of the image. Different
successful applications of deep learning in digital pathology
include global tasks such as biopsy level cancer detection [1],
tissue segmentation [2] or small structures detection, such
as mitotic figures [3]. In real-world scenarios, the highest
image augmentations might not be available, and hardware
and time constraints can present challenges to deploying these
models. These limitations emphasize the need for novel and
efficient solutions for implementing computer-aided systems
into clinical practice. In this line, recent work has explored
the feasibility of using well-known knowledge distillation
formulations to reduce the required image resolution during
inference [4]. However, the vanilla knowledge distillation and

feature-matching terms used in these studies do not allow
for transferring relevant and discriminative regions utilized
in high-resolution images. Based on these observations, we
propose an attention-aware formulation to reduce the required
image resolution during model deployment. The key contribu-
tions of our work can be summarized as follows:

• A novel attention-constrained formulation for inter-
resolution knowledge distillation.

• We propose to train a Student model which matches the
attention maps produced by a Teacher model trained with
higher-resolution images by minimizing the l2-distance.

• In particular, we propose to transfer only strictly-positive
gradients in the proposed AT+ term.

• The method is validated in the context of prostate histol-
ogy image grading. Using the proposed term, the model
archives competitive results while requiring 8× fewer
augmentations during deployment.

II. RELATED WORK

Constrained classification: Constrained learning aims to
regularize the training of deep learning models for image
classification tasks to produce a solution that satisfies a given
condition. Through this condition, the model can incorporate
additional prior knowledge of the task. The main core of
literature in this field is the introduction of constraints at the
pixel-level response of the model, which is achieved through
the regularization of attention maps. It is worth mention-
ing that, despite the recent widespread use of attention for
the trainable blocks of popular Transformers encoders [5],
we refer to attention as the saliency class-activation maps
produced by the image-level classifier when applied at the
pixel-level, in the form of semantic segmentation maps or
processed response maps such as Grad-CAMs [6]. In this
fashion, weakly supervised segmentation models can introduce
object proportion constraints as priors [7]–[9], or unsupervised
anomaly detection models can be forced to focus on the whole
image [10]–[12]. Also, self-supervised training methods can
leverage the most discriminant regions to enhance feature
learning [13], or attention constraints can be used to improve
fine-grained image recognition [14].

Knowledge distillation: Knowledge distillation [15] is a
field of machine learning that explores the use of deep learn-
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ing solutions in creating efficient models. The most popular
scenario aims to reduce the model size for deployment in
systems with limited resources, so-called model compression.
The main core of the literature involves using a pre-trained
Teacher model, trained on large-capacity settings, to transfer
an optimal solution to a low-capacity Student model. Vanilla
knowledge distillation (KD) [15] transfers the softmax scores
of the Teacher to the Student, which enhances inter-class
relations. Other popular terms match intermediate feature
representations (FM) [16] between both models via an l2-loss.
Recent works [17] have improved the base feature representa-
tion matching by indirectly using the Teacher classifier through
Student features by a softmax regression (SR) of the produced
logits. However, these terms do not ensure that the Student
model focuses on the same image regions for classification. To
alleviate this issue, [18] introduced an attention transfer loss
(AT), which forces the Student model to match the attention
maps produced by the Teacher. Concretely, the gradients ob-
tained for each spatial feature representation (before flattening
or global pooling) concerning the logits output by the model
are used as a proxy for attention distillation. Nevertheless,
as later pointed out in [6], gradients alone might produce
suboptimal results for highlighting the most relevant patterns
for the task at hand. In this work, we refine the AT term to
(i) weight both feature representation and gradients, and (ii)
use only strictly positive gradients, based on Grad-CAMs for
attention generation [6].

Besides model compression, knowledge distillation has also
been successfully applied to other computer vision fields such
as semi-supervised learning [19] or multi-modal to mono-
modal segmentation [20]. This work focuses on applying
knowledge distillation to enable the efficient use of deep
learning models at lower image resolutions, which we refer
to as inter-resolution knowledge distillation [4]. Despite its
importance in high-demanding image resolution fields such as
digital pathology, there is limited literature in this area, and
only basic vanilla KD or feature-matching distillation has been
validated [4].

III. METHODS

An overview of our proposed method is depicted in Figure
1. In the following, we describe the problem formulation and
each of the proposed components.

Preliminaries: In the context of image classification, we
denote a neural networks classifier as θ = {θf , θc}. The model
is composed of a convolutional feature extractor θf , which
processes input images x to extract a compressed pixel-level
feature representation, fΩ ∈ RC×Ω, such that C represents
the manifold dimensionality, and Ω is the spatial size. The
classifier θc then utilizes the global-average pooling operation
on the feature representation to output softmax scores ŷk for
the K target categories. In a standard image classification
scenario, the model is optimized to minimize the cross-entropy
loss between predicted scores and labels yk as follows:

LCE = − 1

K

K∑
k=1

yklog(ŷk) (1)

A. Inter-resolution knowledge distillation

Let us denote a Teacher model as θt, which is trained using
standard cross-entropy, as shown in Eq. 1, on high-resolution
input images (x). The objective of inter-resolution knowledge
distillation is to train a Student model θs, which takes distorted
input images at a lower resolution (x∗) to take into account
the rich information contained in the frozen Teacher model to
improve its performance. Vanilla knowledge distillation [15]
distills softmax outputs from Teacher model to incorporate
image-specific inter-class dependencies by cross entropy such
as:

LKD = − 1

K

K∑
k=1

ŷtklog(ŷ
s
k) (2)

Since this term only provides global information, the feature
matching term in [16] allows the distilling of information
regarding the feature representation by minimizing the l2-
distance of both embeddings. Applied before the global av-
erage pooling, this matching is applied spatially such that:

LFM =
1

|Ω|
∑
i∈Ω

||f t
i − fs

i ||2 (3)

B. Attention matching

The LFM term does not leverage the most relevant regions
for the target class classification. This limitation was addressed
in [18] by matching attention maps obtained solely by the
gradients of each spatial feature representation concerning the
target class. Nevertheless, later studies on attention generation
[6] suggested using only strictly positive gradients, weighted
according to the feature space, to obtain refined attention maps.
Thus, we compute attention maps using grad-CAMs [6], de-
fined as aΩ,k = ReLU(

∑
c αc,kfΩ,c), where αc represents the

class-wise generated gradients and are defined as αc,k = ∂fc
∂ŷs

k
,

using the logits before the softmax activation as the target.
Then, the attention information is distilled into the Student
training using the proposed AT+ term as follows:

LAT+ =
1

K

∑
k

1

|Ω|
∑
i∈Ω

||ati,k − asi,k||2 (4)

Based on the empirical observations, which are detailed in
the experimental section, we include in our formulation the
LFM and LAT+ terms, and we propose to train the Student
using the following global criteria:

L = LCE + αFMLFM + αAT+LAT+ (5)

α ∈ R+ is the relative weight of each knowledge distillation
term, which weights its importance with respect the standard
cross entropy loss in Eq. 1.
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Fig. 1. Method overview. In the context of inter-resolution knowledge distillation, a Teacher model is trained using high-resolution images by optimizing
Eq.1. To enable the deployment of efficient models that can operate at low resolutions, we train a Student model by transferring the information from the
frozen Teacher. We use the well-known feature-matching distillation (Eq.3) and propose a novel attention-matching term, AT+ (Eq.3), which distills spatial
information of relevant regions in the image by using strictly positive gradient weighting for attention generation (Eq.4). Both terms are combined with the
standard cross-entropy loss (Eq. 5) for the optimization of the Student model.

IV. EXPERIMENTS

A. Experimental setting

Datasets: The methods described in this work are val-
idated in patch-level cancerous histology image grading. In
particular, we use SICAPv2 [21], a public prostate histology
image dataset for patch-level Gleason grading. The dataset
includes 10, 340 tissue patches of size 512 pixels at 10×
magnification. According to the presence of cancerous tissue
and its severity, images have been labeled by expert patholo-
gists using the following labels: non-cancerous tissue, Gleason
grade 3, 4, and 5. The dataset presents class-balanced training,
validation, and testing splits, divided at the patient level.

Implementation Details: First, Teacher model is trained
using images at 10× magnification via standard cross-entropy
loss defined in Eq. 1. Then, the Student model is trained for
different lower-magnifications inputs by optimizing the knowl-
edge distillation criteria in Eq. 2, using the Student with frozen
weights. We use images at 5×, 2.5×, and 1.25× magnification
as input. Low-magnification inputs are artificially created from
the original 10× magnification images by sequential resam-
pling and bilinear interpolating. Teacher and Student models
are initialized with the same feature extractor, VGG16 pre-
trained on Imagenet. The models are trained during 20 epochs
using ADAM optimizer, with a learning rate of 1e− 4 and a
batch size of 32 images. Data augmentation is incorporated in
random image rotations, color jitter, and random affine trans-
forms. During training, we balance the class distribution of
the training samples using proportional sampling. We monitor
the performance of the model on the validation set throughout

training and select the best-performing model for testing. To
determine the relative weights of each knowledge distillation
term, we follow the same validation procedure with different
values of α = {0, 0.01, 0.1, 1, 10, 100}.

Baselines: To validate the goodness of the proposed
method, we focus on relevant previous methods of knowledge
distillation. Concretely, we use the vanilla knowledge distilla-
tion over softmax outputs (KD) [15], and its optimization in
combination with the feature matching term (KD + FM) [4].
Also, we include softmax regression (FM + SR) by matching
the logits produced by the features of Teacher and Student
models through the frozen Teacher, as described in [17]. It is
worth mentioning that only KD [15] and KD + FM [4] have
been previously proposed in the context of inter-resolution
knowledge distillation. Still, we include FM + SR [17], which
obtains leading results for model compression, the core of
the knowledge distillation literature. Also, we use the Student
models trained at different resolutions without any knowledge
distillation as a baseline. All models are trained using the
same hyperparameter setting described above for the proposed
method, which showed consistent performance.

Evaluation Metrics: We use standard metrics used in
previous literature for disease grading in the medical context.
In particular, we use the accuracy (Acc) between predicted
and reference labels and Cohen’s quadratic kappa (κ), which
considers inter-rater agreement in the context of ordered
categories classification. To ensure reproducibility and account
for random events in weight initialization, we repeat all
experiments using three fixed seeds and average the results
across repetitions.
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B. Results

Comparison to the literature: The results obtained using
the proposed method and baseline approaches on the test
subset are presented in Table I. Although using the vanilla KD
[15] yields the best results when using 5× augmentation im-
ages, its performance deteriorates as the resolution decreases
and the information becomes more distorted. In addition, fea-
ture regularization via FM [4] or SR [17] terms does not show
relevant improvements over KD in inter-resolution knowledge
distillation. In contrast, the proposed attention matching (AT+)
methodology performs comparably to these methods at 5×
magnification and outperforms previous literature by ∼ 3%
accuracy for images at 2.5×, and 1.25× magnification. In
addition, the proposed AT+ formulation can obtain comparable
accuracy to the Teacher model, trained at 10× magnification,
with even 8 times less resolution.

TABLE I
COMPARISON TO PREVIOUS LITERATURE ON SICAPV2. THE METRIC

PRESENTED IS THE ACCURACY AND QUADRATIC KAPPA (ACC/κ).

Method Augmentation
10x 5x 2.5x 1.25x

Teacher 0.733/0.829 0.723/0.781 0.710/0.789 0.700/0.772
KD [15] - 0.778/0.845 0.743/0.803 0.700/0.772
FM + KD [4] - 0.741/0.828 0.733/0.806 0.709/0.787
FM + SR [17] - 0.754/0.841 0.742/0.799 0.694/0.725
FM + AT+ - 0.763/0.837 0.770/0.807 0.731/0.803

In the following, we provide comprehensive ablation ex-
periments to validate the different elements of the proposed
methodology. It is worth mentioning that the results further
presented for the ablation experiments are obtained on the
validation set.

Optimizing AT+ distillation: First, we study the best way
of leveraging normalized attention maps for knowledge distil-
lation. To this end, after the gradient-weight of feature maps in
Eq. 4 to obtain pixel-level logits, we study different settings:
no normalization, min-max normalization to clip logits to [0, 1]
values, and min-max normalization after ReLU activation,
which weights only regions with positive gradients for each
target class, as used in Grad-CAM [6]. Results are depicted in
Figure 2. The results in the validation show that using ReLU
activation is essential for the correct knowledge distillation
at lower resolutions, with improvements over other attention
computations such as the one used in [18]. Also, normalizing
the obtained logits improves the model optimization. This can
be explained due to it allows both the Teacher and the Student
to reach absolute values for the embedding space without
affecting the knowledge transfer. It is worth mentioning that
this term is only applied during training, so the proposed
formulation does not involve any additional computational
burden during inference.

Combination with other knowledge distillation terms:
Next, we depict studies to evaluate the combination of the
proposed attention matching (AT+) loss with prior popular
terms on knowledge distillation. Concretely, the results ob-
tained in the validation subset of combining AT+ with vanilla

Fig. 2. Ablation study of the effect of attention map normalization on the
method performance. The Teacher model trained at the different resolutions
is used as a baseline.

knowledge distillation (KD) and feature matching (FM) are
presented in Table II. Results show how the FM term is the
only one that produces improvements over the AT+ criteria
alone, which is accentuated at lower augmentations.

TABLE II
ABLATION EXPERIMENT ON THE EFFECT OF THE COMBINATION OF

DIFFERENT KNOWLEDGE DISTILLATION TERMS. THE METRIC PRESENTED
IS THE ACCURACY AND QUADRATIC KAPPA (ACC/κ).

Method Augmentation
5x 2.5x 1.25x

Teacher 0.746/0.831 0.740/0.818 0.706/0.767
AT+ 0.773/0.836 0.765/0.836 0.764/0.804
AT+ + KD 0.753/0.846 0.761/0.834 0.729/0.781
AT+ + FM 0.767/0.849 0.776/0.837 0.753/0.812
AT+ + KD + FM 0.761/0.840 0.775/0.836 0.749/0.789

Qualitative evaluation: Finally, we include qualitative
visualization of the effect of including the proposed attention
matching in the training of the low-resolution Student, see
Figure 3. In the context of tumor grading, for a test case
with Gleason grade 3, the Teacher model’s attention (shown
in the second row on the left) focuses on small individual
glands. However, as the input image quality deteriorates,
the model shifts its focus to different patterns, resulting in
incorrect classifications. Upon incorporating the AT+ term in
the Student training (shown in the third row), the model’s
attention aligns with that of the Teacher model, focusing on
the same glandular patterns while simultaneously improving
the output score for the correct class.

V. CONCLUSIONS

This work introduces a novel constrained formulation for
knowledge distillation, aimed at enabling efficient image clas-
sification at lower resolutions. Specifically, we propose to dis-
till the knowledge from a high-resolution Teacher model on the
localization of discriminative regions in images for the given
task. To achieve this, we formulate the attention matching loss,
AT+, which forces the Student model trained at low resolution
to focus on the same regions as the Teacher model by mini-
mizing the l2-distance between attention maps obtained using
Grad-CAMs. The proposed approach is successfully validated
in the context of histology image grading. In this field, the
large size of digitized biopsies and the large augmentation
required are a burden for applying deep learning solutions
on real-time computer-aided diagnostic systems. The obtained
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0.98 0.59 0.26 0.08

10x 5x 2.5x 1.25x

0.95 0.96 0.16

Fig. 3. Qualitative assessment of the effect of the attention matching (AT+)
term. The top row presents original images at different resolution levels
(augmentations). The second row shows the Student output to the target class
trained without any knowledge distillation and the attention map produced.
The last row shows the effect of distilling the knowledge from the Teacher
model trained at 10x magnification. Green probabilities indicate a correctly
classified sample, while red indicates the opposite.

results show that attention distillation allows operating at up
to 8× fewer augmentations and outperforms previous relevant
literature in knowledge distillation in ∼ 3% accuracy. Still, it
is worth mentioning that the performance of these methods
might be limited at some minimum resolution since any of
the baselines and proposed methods performed properly at
resolutions below 0.625× augmentations. We believe that the
results obtained open further research directions to allow the
efficient use of deep learning solutions in the medical context.
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