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Abstract—In this paper, we propose an Enhanced Microwave
imaging technique for efficient breast Tumor Detection referred
as EMiTD, which mainly comprises of two key steps: an intel-
ligent scanning approach to optimize the scan duration and an
efficient model-based microwave imaging (MWI) technique. The
proposed model-based MWI is framed as an inverse problem by
building the forward model using a Point Spread Function(PSF),
and is solved by imposing sparsity prior since tumor is con-
centrated to limited regions. Further, we optimize the entire
scanning duration by viewing the problem as a sequential decision
making process for a Deep Reinforcement Learning (DRL) agent.
We benchmark the proposed EMiTD against other competing
techniques using a publicly available dataset. Both visual and
quantitative reconstruction results are provided which indicate
that the proposed EMiTD as compared to other competing
techniques provides significantly improved tumor localization
with close to 2× improvement in Signal to Mean Ratio (SMR).
Furthermore, negligible deterioration in visual results is observed
with the proposed approach in spite of using only 33% of the
total measurements.

Index Terms—Microwave imaging, intelligent scanning, cali-
bration model, tumor detection

I. INTRODUCTION

Breast cancer is one of the most prevalent cancer in
the world, predominantly occurring in women [1]. Detecting
breast cancer early can significantly reduce the mortality rate,
but this still remains a challenge owing to shortcomings
in early screening and detection with existing modalities.
Detection of breast cancer is typically done using screening
methods such as X-ray mammography, Magnetic Resonance
Imaging (MRI) and Ultrasound imaging (US), out of which
X-ray mammography is considered as a standard detection
method. But these methods have their own limitations such
as compression discomfort, inherent health risks, expensive,
and consumes more time and effort [2]. Recently, Microwave
Imaging (MWI) based techniques which can overcome some
of the above mentioned limitations have been explored in
literature [2].

MWI relies on the change in electrical properties when
excited with electromagnetic waves. It is observed that tumor
cells have more water content as compared to normal cells
and hence have higher dielectric properties of around 8-10%
more than the normal cells [3]. MWI is based on the principle
of radar that excites electromagnetic waves and reflections
from the breast are captured at different predefined locations.
Further, these collected measurements are processed using
various algorithms to reconstruct the MWI of the breast. [4]
uses Delay-And-Sum (DAS) which makes use of shifted time

delay at different antenna positions. This is a fast and effective
technique to reconstruct the image but results in significant
clutter artifacts [2]. Therefore, various improvements are made
on DAS resulting in different variants like Delay-Multiply-
And-Sum (DMAS) [5], Improved Delay-And-Sum (IDAS) [6]
etc. An evaluation of these algorithms on clinical patients can
be found in [7], where only DAS and DMAS were consis-
tent with clinical reports, with DMAS having significantly
reduced clutter. Further, these techniques requires dense radar
measurements to obtain a good quality MWI [4]–[9]. This
makes the entire system more time-consuming and hence is
not preferrable in the present case. On the other hand, more
recently, [8], [9] proposed Quantitative Microwave Imaging
(QMI) techniques by employing the point spread function
(PSF). Direct inversion techniques such as in [8] is typically
used to solve QMI technique but this is computationally more
complex and also error prone. Further, to reduce computational
complexity, [9] described 2D FFT based technique but this
requires a 2D grid based scanning with very dense radar
measurements. While QMI based approach looks promising,
the above limitations have to be efficiently addressed to make
it deployment friendly.

In this paper, we propose an implementation friendly mi-
crowave imaging based tumor detection approach referred to
as ”Enhanced Microwave imaging for efficient breast Tumor
Detection (EMiTD)”. EMiTD addresses the aforementioned
MWI limitations by using a computationally efficient model-
based reconstruction algorithm and an intelligent radar scan-
ning mechanism to reduce the scan duration. Firstly, we
formulate the model-based MWI as an inverse image recon-
struction problem by building the forward model using the
PSF (which may be obtained via calibration). Since the tumor
content is sparse and localized to fewer regions, we solve
the inverse problem efficiently by using sparsity as a prior.
Next, to reduce the number of scanning measurements, we
employ an intelligent scanning mechanism based on Deep
Reinforcement Learning (DRL) approach to optimize the radar
acquisition locations [10], [11] . We prefix the number of
measurements (say based on maximum duration) in a given
episode of tumor detection and a coarse uniform scan is
firstly performed to obtain an initial MWI. This coarse level
image helps the RL agent to optimally suggest the remaining
acquisition points. The proposed EMiTD is benchmarked
against the existing methods using an open dataset collected
using 3D breast phantoms having tumor [12]. Both the visual
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results and Signal to Mean Ratio (SMR) (employed in [12]) is
provided to compare the performance of the proposed EMiTD
with the other standard DAS and DMAS approaches. The
results clearly show that proposed EMiTD provides improved
tumor localized image with reduced clutter and shows up to
2 times SMR improvement over other existing techniques.
Further, only a marginal visual deterioration is observed with
the proposed EMiTD despite using only 33% of the total
measurements.

II. PROPOSED SYSTEM

Fig. 1: (a) An illustration of a subject undergoing detection test, (b)
A detailed view demonstrating the Na optimized locations selected
by the RL agent from a total of N possible radar locations around
the breast tissue

Fig 1(a) illustrates the typical deployment of EMiTD similar
to [12], where the subject simply lie on the bed by placing
the breast inside a cup. The radar which is placed below will
take measurements at different antenna positions in a circular
manner. The simplified view of radar scan is shown in Fig 1(b),
where the radar measurements taken at different locations are
fed to a model-based MWI reconstruction algorithm to detect
tumors. The RL agent intelligently chooses Na locations from
N (Na < N ) total measurements so that the overall scan
duration is reduced, without compromising on the MWI image
quality. The next subsection describes the model-based MWI
reconstruction algorithm followed by the intelligent scanning
using DRL.

A. Model-based MWI formulation

The monostatic radar time domain model of microwave
scattering denoted by m(x, y, t) captured at antenna position
(x, y) and at time t can be expressed as [8]:

m(x, y, t) =

∫∫
x′,y′

ε(x′, y′) [hinc
rx ∗ ∂2Einc

tx

∂t2
]︸ ︷︷ ︸

Kernel = K(x,y,x’,y’,t)

dx′ dy′ (1)

where ε(x′, y′) denotes the unknown contrast of the breast
tissue to be estimated at location (x′, y′), hinc

rx denote the
impulse field response and Einc

tx denote the total electric field
by transmitter antenna. Please refer to [8] for more details.
Notice from (1) that to compute unknown ε in (1), we require
the knowledge of the Kernel K. K depends upon the system
and we use the following approach to determine it.

1) Estimation of Kernel K: We make use of the calibration
measurement to estimate K as suggested in [8]. Assume a
reference point scatterer of dielectric value ε0 and area Ar at
position (x′

r, y
′
r), then K from (1) can be approximated as [8]

K(x, y, x′
r, y

′
r, t) ≃

m(x, y, t)

ε0Ar
(2)

This reference measurement corresponding to a point scatterer
can be obtained either through simulations or by experiments.
Although simulation enables us to precisely define the dielec-
tric and environment properties, in practice as observed in [8]
using a calibration measurement from actual experimental data
is found to be more effective. Since, we are using the open
dataset [12] for validation, we have used the time domain
output pulse obtained from the VNA provided along with the
dataset [12] for estimating K. Assuming that the background
is uniform, we can use the Kernel K(x, y, x′

r, y
′
r, t) of the

reference measurement to estimate the Kernel at any point
(x′, y′) using the following

K(x, y, x′, y′, t) ≃ K(x, y, x′
r, y

′
r, t− δt(x′, y′)) (3)

where δt(x′, y′) = δd
c , where δd is defined as the Euclidean

distance between the reference measurement (x′
r, y

′
r) and point

of interest (x′, y′). It is important to notice that the kernel
function K depends only on the system and is independent
of ε. Thus, it needs to be evaluated only once for a given
experimental setup.

2) Reconstruction: Discretizing the entire imaging plane
into Nx ×Ny and using (3), we can express (1) as follows

m(x, y, t) ≃
∑
x′

∑
y′

ε(x′, y′)K(x, y, x′
r, y

′
r, t− δt(x′, y′))

(4)
By stacking all the measurements after vectorization, we

obtain the following inverse model formulation

m = Kε+ η (5)

where m ∈ CNaNt×1, K ∈ CNaNt×NxNy , ε ∈ CNxNy×1 and
Nt denotes the number of time instances taken at a particular
antenna location (x, y). The dielectric constant of the tumor is
large as compared to other cells [3]. In other words, only a few
pixels of the reconstructed image ε corresponding to tumor
will be significant whereas the other regions corresponding to
normal cells can be neglected. Hence, we can assume ε to be
sparse and (5) can be written as

ε = argmin
ε

∥m−Kε∥22 + λ ∥ε∥1 (6)

where the ℓ1 regularizer ∥ε∥1 is introduced as it is well
known to promote sparse solutions and λ is a hyper parameter
which controls the amount of regularization. The reconstructed
microwave image ε is obtained using soft thresholding and
can be solved using popular ISTA algorithm, whose (k+1)th

iterative update is shown below [13].
ε(k+1) = soft

(
ε(k) +

1

α
KT (m−Kε(k)),

λ

2α

)
(7)

Where α indicates the learning rate. On implementation, it
was observed that for most instances, the above solution was
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converging with less than k = 5 iterations. However, for
efficient implementation one can also use the unfolded variant
of (7) to make it faster [14].

As shall be shown later in Section III, that the proposed
inverse modeling approach performs significantly better than
the standard DAS and DMAS. Notice that taking more mea-
surements of m(x, y, t) not only increases the dimension of
(6) (leading to increase in computational complexity), but as
described in Section I it is also not preferable in practice as
it leads to increase in total scan duration. Thus the following
section describes an approach based on DRL to reduce this
scan duration.

B. Intelligent Scanning using DRL
The radar acquisition setup is based on a DRL framework,

where the task is to find optimized radar locations,(x, y), to
ensure quick and accurate tumor detection. A typical DRL
system has the following components [10]: (1) A set of states
that defines observations received from the environment (2)
policy denoted by π that enables to decide an action based on
any given state (3) an environment that responds to the action
taken by the agent to output the next state and (4) a reward
for a given state action pair to indicate its performance.

Fig. 2: DRL building blocks for the proposed EMiTD
1) DRL formulation: The DRL building blocks with respect

to the proposed EMiTD system at any given time t is shown
in Fig. 2.
Agent: The scanning radar acts like an RL agent.
State set: A set of reconstructed microwave image St recon-
structed by the environment that is used by the agent to choose
an action.
Action set: The set of all positions from which the radar can
acquire measurements, i.e., At ∈ {1, 2, .., N}. Note that for a
given episode an already observed action will be removed from
the action space as taking measurements from same location
will not help in improving the image reconstruction.
Environment: Based on the cumulative actions selected by
the agent, a microwave image of scene is reconstructed. In
our implementation, we use the DAS algorithm for generating
the next state image. The DAS is chosen as it is fast, but it
is important to note that one can employ any other algorithm
like the one described in the previous subsection. This image
is then fed as the next state to the RL agent for further
acquisitions.
Reward function: For training the agent, we use the following
reward function R = 1−MSE(St,GT), where MSE denotes the
Mean Square Error between the state image St and ground
truth image GT obtained using all measurements.
Discount factor: a hyper parameter γ that indicates the
importance given to future rewards.

Fig. 3: DDQN value network architecture for training the RL agent

In a given episode of tumor detection, we restrict the
number of radar acquisitions, Na < N based on the maxi-
mum scanning time. Initially, a coarse level scan having Nu,
Nu < Na measurements is taken at uniform distances to
obtain a coarse MWI S0. This initial state S0 helps the RL
agent about the approximate tumor location and further select
an optimal action from the action space At. The scanning
radar then moves to that suggested location and collects data
corresponding to that action. This data is then used by the DAS
algorithm (environment) to reconstruct the next MWI state
St+1. A reward is also computed by comparing the current
state St with the ground truth DAS image GT obtained by
using all the measurements and this is fed back to the RL agent
to give feedback for a given state-action pair (only during
training). The RL agent then uses St+1 to choose the next
action in the given episode. These steps are repeated until the
given episode is completed. The RL agent must suitably be
trained to choose the optimal radar positions for a given MWI
state and this is explained in the next subsection.

2) Training RL agent: The RL agent tries to learn a policy
π(St; θ) → At that enables it to select an action At given a
MWI state St. This policy can be learnt using many recent
state-of-the-art DRL techniques [15], [16]. In our implemen-
tation we use Double Deep Q Networks (DDQN) [16] to train
our RL agent. The value network architecture similar to [10]
employed in our DDQN network is shown in Fig 3, which
consists of three convolutional layers followed by a fully
connected dense layers. The MWI image is fed as input to this
network and the DDQN network outputs the value function
corresponding to all the possible action space N . Further the
policy can be obtained by greedily selecting an action based
on this value function. An optimum π(St; θ) can be obtained
by suitably training the network parameters θ. For training,
we first randomly sample data from the replay memory buffer
that consist of data tuple consisting of information about the
state, action taken, reward obtained, and the next state. This
sampled data from replay buffer is used to compute the loss
based on the bellman equations and this is propagated to train
the DDQN network parameters θ. A modified epsilon greedy
exploration policy is used to fill the replay buffer [17]. For
more details on training refer to [16]. The trained network
can then be deployed for intelligent scanning which will give
the optimal action indices required for the model-based MWI
reconstruction.
C. Deployment

Based on the above discussions, here we summarize the
deployment steps employed in proposed EMiTD.
Step 1: Based on the maximum scanning time, we prefix the
maximum number of acquisitions Na for an episode.
Step 2: Nu scans are taken at uniform locations to obtain the
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initial coarse microwave image. The trained RL agent then
uses this coarse image to sequentially suggest the remaining
(Na −Nu) locations.
Step 3: The radar data at these acquired locations is then fed
to the model-based MWI reconstruction for improving MWI.

III. RESULTS AND DISCUSSIONS

In order to validate the proposed EMiTD system we use an
openly available dataset [12].
A. Dataset description

The open dataset [12] contains 3D MRI derived breast
phantoms from 9 patients having breast cancer. The phantoms
were made using different tissue layers such as adipose shell,
fibroglandular shell and is filled with liquids to mimic the
breast composition. Tumor dielectric properties were modeled
using spherical glass tubes that were immersed into these
phantoms. The entire breast phantoms composition along with
the tumor were placed in the center and the radar collects
data at N =72 antenna positions in a circular motion.
The microwave dataset comprises of different permutation of
adipose shells (A1- A3), fibroglandular shells (F1- F5) and
different size of tumor ranging from (1cm - 3cm) in radius.
The ground truth size and location of tumor is given in the
dataset to compare the MWI reconstruction performance. The
RL training is done on a set of 120 instances from this dataset
each containing 72 radar measurements and the performance
of the trained RL agent is evaluated for 20 test instances.

Fig. 4: Visual comparison of the proposed model-based MWI ap-
proach against DAS and DMAS. Note that we have used all the
N = 72 measurements for reconstruction

B. Model-based MWI reconstruction

In this section, we compare the performance of the proposed
model-based MWI reconstruction against the standard DAS
[4], DMAS [5]. Notice, for this comparison the intelligent
scanning is not considered and all N = 72 measurements
are used. The 2-D FFT based QMI approach mentioned in [9]
requires a very dense 2D scanning system for MWI which is
not available with this dataset and hence this result is not
provided. Since the dataset doesn’t provide any calibration
data, as mentioned in Section II-A, we have approximated
it by the time domain output pulse from the VNA which is
given in [12]. The value of α and λ after tuning is set to 0.1
and 50 respectively for the optimization framework.

Fig 4. shows the reconstructed image using different al-
gorithms. As can be clearly seen, the proposed model-based
MWI shows better tumor localization by suppressing the un-
wanted clutter. Here for the sake of illustration, we have only
provided for two instances, however one can expect a similar
performance in all other instances. This improvement with

the proposed model-based MWI approach can be attributed
for taking into account the kernel unlike the other techniques
which uses only time delay.

Fig. 5: Visual comparison of the proposed model-based MWI ap-
proach against uniform and RL based acquisitions. Note that we have
used only Na = 24 measurements for reconstruction
C. Intelligent Scanning Vs. Uniform Scanning

In this section, we provide results to demonstrate the ad-
vantage of intelligent scanning against a uniform set of mea-
surements using the proposed model-based MWI algorithm.

The RL agent is trained with the data sampled from the
replay buffer using the DDQN architecture shown in Fig 3.
Reward for the RL agent at any given state St is computed
by using the MSE of the reconstructed DAS microwave image
(St) with the ground truth DAS image (GT) obtained using all
the 72 measurements. Since, RL based scanning requires to
compute MWI (state) of the scene for each action, we employ
DAS in our implementation and only at the end of episode use
the proposed model-based MWI. Instead of DAS, one can also
use the proposed model-based MWI for state determination.
During experiments, we have found that the tumor location
plays a key role in optimal action determination (see Fig. 5(c))
and the impact is found to be minimal between using model-
based MWI and DAS. Since DAS is faster compared to other
algorithms, we have used DAS only for state determination.
DDQN network uses a replay buffer size of 20000 similar to
[10] and discount factor γ is set to 0.99. The DDQN network
is trained for 2.3M transition steps to learn the optimum policy
for any given state.

As described in Section II-B, we have fixed the maximum
number of acquisitions Na = 24, out of which the initial
Nu = 8 scans are done uniformly. The RL agent then
intelligently picks the antenna locations for the remaining
Na − Nu = 16 locations. Fig 5(a), 5(b) and 5(c) shows the
visual MWI obtained using all the 72 measurements, using
only 24 uniform measurements and the proposed EMiTD with
Na = 24 respectively. Observe from the Fig. 5(b) using only
uniform measurements results in poorer tumor localization.
However, with the proposed EMiTD, it is clearly evident that
the tumor localization has improved significantly. Fig. 5(c) also
shows the measurement locations suggested by the RL agent
from which it is important to notice that more measurements
are intelligently taken around the tumor which resulted in this
improvement.
D. Overall System

Next, we provide the quantitative and qualitative comparison
of the proposed EMiTD system against other techniques. The
intelligently scanned radar measurements from Na = 24
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Fig. 6: Visual comparison of the proposed EMiTD approach against
DAS-DRL and DMAS-DRL. Note that we have used only 24
measurements for reconstruction

Scanning SMR Metric (dB)
DAS DMAS Model-based MWI

Uniform 7.6 14.7 28.2
RL 9.2 17.1 31.0

TABLE I: Comparison of SMR Metric for DAS, DMAS and Model-
based MWI for both uniform and RL based scanning.

locations are fed to different algorithms such as DAS, DMAS
and model-based MWI to reconstruct the corresponding MWI
indicated as DAS-RL, DMAS-RL and the proposed EMiTD
respectively. For visual comparison we provide 5 test cases as
shown in Fig 6. As observed in all the cases EMiTD shows
improved tumor localization with better clutter suppression.
Further, Signal to Mean Ratio (SMR) used in [12] is used as
a metric to evaluate MWI reconstruction performance. SMR
is defined as

SMR = 20 log10
Smax

Cmean
(8)

where Smax is defined as maximum intensity in the tumor
region (area within the red circle) and Cmean is defined as the
mean of the intensity in the clutter region (area outside the
red circle). Average SMR values for 20 test cases is shown
in Table I, where The first row shows the different algorithms
such as DAS, DMAS and model-based MWI using uniform
scanning and the second row shows the same using RL based
scanning. As observed RL based scanning has shown improved
SMR metric for all the MWI algorithms. Further, DMAS
performs better than DAS in terms of clutter suppression and
a performance improvement of close to 2× can be observed
with the proposed model-based MWI.

The results thus shows that the proposed EMiTD which
comprises of the efficient model-based MWI reconstruction
and the intelligent RL based scanning system outperforms the
existing techniques by a factor of 2×. Furthermore, only a
minimal deterioration is observed despite using only 33% of
the total measurements as compared to using full measure-
ments.

IV. CONCLUSION AND FUTURE SCOPE

An enhanced MWI system (EMiTD) which comprises of
an efficient model-based reconstruction algorithm and an RL
based intelligent scanning mechanism is described in this
paper. The reconstruction algorithm is framed as an inverse
problem which is solved by imposing sparsity prior. A DRL

based intelligent scanning is proposed to optimally choose
the radar locations for a quicker scan. The reconstruction
performance of EMiTD is compared with other methods using
an open dataset and close to 2× SMR improvement is obtained
against other competing techniques. Furthermore, the visual
results also demonstrates a negligible deterioration for the
proposed EMiTD method in spite of using only 33% of total
measurements compared to using full set of measurements.

Thus, the proposed EMiTD overcomes the limitations of
the existing MWI approaches and provides improved tumor
reconstruction with reduced scan duration. This, makes it an
attractive breast tumor screening system that can help to extend
the detection process from clinics to anywhere.
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