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Abstract—Left atrial fibrosis is an important mediator of atrial
fibrillation and atrial myopathy. Late gadolinium-enhancement
(LGE) MRI is a proven non-invasive test for the evaluation
of left atrial (LA) fibrosis. However, manual segmentation is
labor-intensive. Automatic segmentation is challenging due to
varying intensities of data acquired by different vendors, low
contrast between the LA and surrounding tissues, and complex
LA shapes. Current approaches based on 3D networks are
computationally expensive and time-consuming due to the large
size of 3D LGE MRIs and networks. To address this, most
approaches use two-stage methods to first locate the LA center
using a down-scaled version of the MRIs and then crop the full-
resolution MRIs around the LA center for final segmentation. We
propose a light transformer-based model to accurately segment
LA volume in one stage, avoiding errors introduced by sub-
optimal two-stage training. Transposed attention in transformer
blocks can capture long-range dependencies among pixels in large
3D volumes without significant computation requirements. Our
proposed model achieved a promising dice similarity coefficient
of 92.6% in the 2018 Atrial Segmentation Challenge, with only
611k parameters, which is about 1% of the method ranked 3rd
in the challenge but with similar performance.

Index Terms—Left atrium segmentation, Late gadolinium
enhanced magnetic resonance image, Transformer

I. INTRODUCTION

The quantification of left atrial (LA) fibrosis from late
gadolinium enhanced (LGE) MRI currently requires labor-
intensive manual segmentation, which can result in significant
variance. Therefore, automatic LA segmentation with high
accuracy and robustness is of high interest. However, this task
is challenging due to complex LA shapes, varying shapes and
sizes among patients, low contrast, and background noise [1].

Convolutional neural networks (CNNs) have presented a
promising performance in multiple applications [2], [3]. No-
tably, 15 CNN-based methods outperformed the other two
traditional methods by about 7% in terms of dice score
during the 2018 Atrial Segmentation Challenge [4]. Among
these, U-Net [5] variants demonstrated the best performance
due to the skip connections in the U-Net architecture. These
connections not only recover spatial information for fine-
grained segmentation but also alleviate the potential vanishing
gradient problem during training.

CNN-based methods for LA segmentation can be divided
into 2D or 3D approaches. 2D approaches independently
segment each slice of a 3D scan along the Z-axis and stack
them for the final 3D prediction [6]–[8]. For example, Wong

et al. [6] developed a 2D U-Net variant called GCW-UNet,
which achieved a dice score of 93.57% on the testing set of
the 2018 Atrial Segmentation Challenge. For each individual
slice’s segmentation, the input is its three Gaussian blurred
images with different blur degrees. GCW-UNet employs a
channel weight module and Gaussian blurring to capture both
details and overall outlines of the LA. Bian et al. [7] combined
the PSPNet [9] and the ResNet [10] with dilated convolution.
The spatial pyramid pooling combines multi-scale features for
clear boundary outlining.

In contrast, 3D methods directly segment the entire 3D LGE
MRI. However, current 3D methods are inefficient in terms of
time and memory due to the large size of 3D scans, even
though they preserve the correlation among the surrounding
slices. Vesal et al. [11] proposed a single 3D CNN using the
U-Net architecture, which was ranked 4th in the 2018 Atrial
Segmentation Challenge. They used dilated convolution to en-
large the receptive field and residual connections to incorporate
the features extracted at different layers. However, the model
is the largest in the challenge with 104M parameters, which
is 50 times larger than the smallest one.

Many researchers have focused on two-stage approaches to
reduce the burden on memory and computation [12]–[14]. In
the first stage, the LA center is located from a down-sampled
version of the LGE MRIs, and a fixed area around the detected
center is cropped as the region of interest (ROI). The second
stage is to segment the LA from the ROI. Xia et al. [13]
trained two V-Net-based networks with the same architecture
separately for coarse and fine LA segmentation. The coarse LA
segmentation determines the coordinates of the LA center. In
contrast, Jamart et al. [12] applied a 2D version of V-net [15]
for the regression of LA center coordinates in the first stage.
However, two-stage methods have an issue: it is difficult to
train two networks jointly, and the errors from the first network
might badly affect the accuracy of the second one.

In this work, we propose a novel and light 3D transformer
model to accurately segment LA volume. Our approach is
inspired by the U-Net architecture, where 3D convolutions are
utilized to capture the inter-slice correlations at higher scales.
At lower scales, we employ transposed attention to extract
long-range interactions in 3D volumes while significantly
reducing the number of computations required for normal
attention. Additionally, carefully selected data augmentation
techniques further improve the segmentation performance. The
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Fig. 1. A patient’s 3D LGE MRI with manual segmentation (denoted in
orange) and the manual segmentation’s 3D reconstruction. An LGE MRI was
segmented manually slice-by-slice from the axial view (XY-plane), and all
segmentation results were stacked in the Z direction for the 3D LA geometry.

remainder of the paper is organized as follows: The details
of the proposed network are given in Section II, including
information on input, architecture, and loss function. Experi-
mental results and analysis are shown in Section III. Section
IV presents the conclusions.

II. METHODS

A. The input and challenges

Fig. 1 presents an example of a short-axis LGE scan and
its corresponding manual LA segmentation. When analyzing
the scan, automatic LA segmentation of LGE scans faces the
following challenges: (1) Class imbalance, as the LA is a small
part of the whole volume. (2) Blurry boundaries, which make
it difficult to distinguish the LA from surrounding tissues. (3)
Background noise, which can impact image quality and make
it harder to identify the LA. According to the 2018 Atrial
Segmentation Challenge [4], the Signal-to-Noise Ratio (SNR)
of all data was evaluated for image quality. Results showed that
less than 15% of MRI data were of high quality. (4) Complex
anatomy, which includes thin and long parts such as the left
atrial appendage (LAA), mitral valve (MV), and pulmonary
vein (PV). These structures are often sources of segmentation
errors. (5) Varied shapes and sizes among patients, making it
challenging to develop a general model for LA segmentation.

B. The network architecture

To overcome the challenges mentioned above, a
transformer-based segmentation model with a U-Net
architecture named Usformer is proposed. As depicted in
Fig. 2, Usformer comprises encoder and decoder networks
on the left and right sides, respectively. The encoder network
extracts high-level features from the input volume, while the
decoder network reconstructs these features to produce the
segmentation maps at the original size. To improve spatial
accuracy, skip connections are used to connect high-level
and low-level features. However, the U-Net architecture
has a limited receptive field and fails to capture contextual
information in areas with background noise. To overcome
this limitation, transformer blocks are introduced to capture
global context through their self-attention mechanism. Thus,
Usformer consists of the first two convolutional stages and
the last three transformer stages. Each transformer stage
consists of one transformer block followed by a max pooling
or upsampling layer.

The segmentation output is a probability map representing
the probability of each pixel belonging to LA. Pixels with a
probability higher than a certain threshold are classified as
LA. Our experiments demonstrate that the proposed method
is robust, as we observe only a 0.01% difference in the 3D
dice score when varying the threshold from 0.1 to 0.9.

C. Transposed attention module

The transposed attention module [16] in the transformer
block is shown in the yellow box of Fig. 2. From a layer-
normalized input of size Ĥ × Ŵ × Ẑ × Ĉ, Query (Q),
Key (K), and Value (V ) are generated through bias-free
convolutional layers. Ĥ, Ŵ , Ẑ represent the size in the X,
Y, and Z directions, respectively, and n is the number of
the input’s voxels, which is equal to Ĥ × Ŵ × Ẑ. Then the
matrix K is transposed to ensure the size of the attention map
generated by K and Q is Ĉ× Ĉ rather than n×n. Therefore,
the transposed attention is calculated as:

A(Q,K, V ) = V softmax(KQ) (1)

where Q,V ∈ Rn×Ĉ and K ∈ RĈ×n.
The computation complexity of KQ is O(Ĉ2n). In a

conventional self-attention module [17], Q,K, V ∈ Rn×Ĉ and
attention is computed using A(Q,K, V ) = softmax(QKT )V .
The computation complexity of QKT is O(n2Ĉ). Since
Ĉ ≪ n and O(Ĉ2n) ≪ O(n2Ĉ), the computation complexity
of transposed attention is considerably lower than the conven-
tional one.

D. Loss function

The total segmentation loss Lseg is calculated as the
weighted sum of binary cross entropy loss (BCE) and dice
loss, using Equation 2. The BCE loss LBCE

seg treats all pixels’
loss equally, but the LA pixels’ contributions to the training
process are badly harmed due to the significant class imbalance
between the LA and the background. On the other hand, the
dice loss Ldice

seg is area-based and remains constant regardless
of the background’s size, addressing the class imbalance issue
in the LA segmentation dataset. However, if only the dice
loss is used, the training process becomes unstable when the
foreground is small since minor changes can cause significant
changes in the dice loss. Therefore, Lseg combines both losses
to achieve a stable and effective training process. Lseg is given
by:

Lseg = 0.5LBCE
seg + Ldice

seg

= −0.5(Y logŶ + (1− Y )log(1− Ŷ )) + (1− 2Y ∩ Ŷ

Y ∪ Ŷ
)

(2)

where Y is the manual segmentation, Y ∈ {0, 1} and Ŷ is the
model output, Ŷ ∈ [0, 1], where 0 represents the background,
and 1 represents the LA.
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Fig. 2. The proposed Usformer for LA segmentation. Usformer incorporates a U-Net architecture with efficient transposed transformer blocks that significantly
decrease computation complexity.

III. EXPERIMENTS AND RESULTS

A. Dataset and Evaluation Metrics

The dataset used in this paper is from the 2018 Atrial
Segmentation Challenge [4], which is commonly used by
researchers studying LA segmentation. The original size of
each slice in this dataset is 576×576 or 640×640 pixels, and
each patient has 88 slices. Each slice is from the axial view.
The spatial resolution of each scan is 0.625×0.625×0.625
mm3. The LA cavity was manually segmented in agreement
by three trained observers, which included all pixels con-
tained within the LA endocardial surface, left atrial appendage
(LAA), mitral valve (MV), and pulmonary vein (PV). The
original training set in the challenge is randomly split into
80 3D LGE MRIs for training and 20 for validation. The
testing set is the same used by all researchers participating
in the challenge. Since the LA only occupies a small part of
the whole slice, as shown in Fig. 1, each original LGE MRI
scan was cropped in the volume center to the same size of
288×288×88 pixels to reduce the computational complexity.
The largest dimensions of the LA in the x, y, and z directions
in the original training set are 209, 128, and 73, respectively,
so 288 × 288 × 88 is sufficient to cover the whole LA.
Data augmentation (DA) was employed to prevent overfitting
and improve generalizability. Three transformation methods-
scaling, rotation, and translation- were applied to each XY-
plane with a probability of 50% for data augmentation. The
scaling factor, rotation angle, and translation were randomly
selected within (0.5, 1.5), (−25◦, 25◦), and (−10, 10) pixels
for the X and Y axes, respectively. Our experiments presented
that data augmentation increased the 3D dice score by 2.1%.

The dice score is the most commonly used metric for LA
segmentation [18]. The dice score for each individual LGE
MRI segmentation in 3D is calculated using Equation 3. The
average 3D dice score across all cases in the testing set is then
used to compare the performance of different models.

dice =
2TP

2TP + FN + FP
(3)

where TP , FN , TN , and FP represent respectively the
number of true positives, false negatives, true negatives, and
false positives over each patient’s entire volume.

B. Performance Evaluation

(1) Quantitative results
State-of-art methods for LA segmentation in the 2018 chal-

lenge are not publicly accessible, making it difficult to repli-
cate their results. Their publicly disclosed results are compared
in Table I. We implemented a 3D two-stage method using the
nnU-Net framework [19], which achieved a 93.1% 3D dice
score, similar to the best result in the challenge. In addition
to nnU-Net, we also implemented popular architectures such
as U-Net [5] and UNeXt [20] for comparison purposes.

Our proposed Usformer outperforms nnU-Net in the number
of parameters with a competitive 3D dice score. The total
number of parameters of Usformer is 611K, much smaller
than nnU-Net’s 16.2M. Moreover, Usformer also outperforms
U-Net and UNeXt, achieving about 8% higher and 2% higher
3D dice scores, respectively, in LA segmentation.

The transposed attention module in Usformer enhances
efficiency by reducing computational complexity and enabling
the learning of global information. Table I demonstrates that
our model is significantly lighter than other models without
compromising the 3D dice score. Additionally, it has the
lowest standard deviation, making it more robust.

(2) 3D visualization
Four cases are selected from the testing set with the best

and worst two performances in terms of the 3D dice score by
the proposed method for 3D and 2D visualization, as shown
in Figs. 3 and 5. Fig. 3 presents that our proposed method
has promising performance in LA segmentation even though
a large variation exists in LA shapes among patients. The
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TABLE I
EVALUATION OF THE PROPOSED USFORMER AND STATE-OF-ART

METHODS ON THE TESTING SET IN THE 2018 ATRIAL SEGMENTATION
CHALLENGE [4]. THE FIRST FOUR ROWS ARE OUR IMPLEMENTATIONS,

AND THE OTHERS ARE THE AUTHORS’ DISCLOSED RESULTS.

Method dice (%) Number of
parameters (M)

Usformer 92.6± 2.0 0.611
nnUNet [19] 93.1± 2.2 16.2
UNeXt [20] 90.5± 3.4 26.5
U-Net [5] 84.1± 3.9 1.9

Xia et.al [13] 93.2 ± 2.2 21
Huang et.al [4] 93.1± 2.2 2
Bian et.al [7] 92.6± 2.2 45

Vesal et.al [11] 92.5± 2.7 3
Yang et.al [21] 92.5± 2.3 104

Li et.al [22] 91.9± 2.3 5.14

P53  Dice = 85.39% P29 Dice = 86.66%
(1)

(2)

P39 Dice = 95.35%P31 Dice = 94.95%

(3)

(3) (3)

(1)

mm

mm

Surface Distance

0

2

4

6

8

10

Fig. 3. 3D visualization of the two worst and best LA segmentation results
achieved by the proposed method in terms of 3D dice score. The color on the
surface indicates the distance from the prediction to the manual segmentation.
The surface distances are scaled between 0 and 10 mm for better visualization.
Arrows (1-3) highlight the errors in MV, the regions between LA and RA,
and PV, respectively.

predictions are generally smooth and accurate. The main errors
are on the MV (highlighted by arrow(1)), the regions between
LA and the right atrium (RA) (highlighted by arrow(2)), and
the PV (highlighted by arrow(3)), which are also shown in 2D
visualization. The errors in the MV and the boundary regions
can be attributed to the unclear boundary between LA and LV
and the flat shape labeled by observers. The errors in the PV
are mainly due to its long, thin, and varied shapes.

(3) 2D visualization
Fig. 4 displays three examples of the LA segmentation

results obtained by our proposed method, Usformer, and two
other methods, nnUNet and UNeXt. Our results demonstrate
high accuracy in outlining LA segments. Furthermore, our
method outperforms nnUNet and UNeXt with higher 2D dice
scores, and the segmentation results are closer to the manual
segmentation. These findings highlight the potential of our
proposed Usformer for accurate LA segmentation.

Fig. 5 shows the 2D visualization of our LA segmentation
results in the axial view. Each row displays three slices of a
patient, with the 3D dice score denoted on the left and the slice
index and 2D dice score at the top of each slice’s visualization.

The proposed method achieves promising results in captur-
ing complex segments and detecting slices without LAs. As
shown in the last two rows of Fig. 5, our proposed method

Fig. 4. Axial view of LA segmentation results by our proposed method
Usformer, nnUNet [19], and UNeXt [20]. Contours of manual and predicted
segmentation are denoted in red and green.

Fig. 5. Axial view of the two worst and best LA segmentation results in terms
of 3D dice score by the proposed method. Contours of manual and predicted
segmentation are denoted in red and green. The arrows (1-3) indicate the
errors in MV, regions between LA and RA, and PV, respectively.

successfully outlines the LA segments, despite the complex
shapes and low contrast between the LA and its surroundings.
Additionally, the 75th slices of patients P29 and P31 are
successfully detected without LAs.

Our method has difficulty in predicting the MV and the
boundary between LA and RA, as denoted by arrows (1) and
(2). In the first case P53, the MV labeled by observers is a
flat plane, but the proposed method predicted it as a circle,
causing many false positives. The contrast around the error
area is poor, and observers might segment the region with large
variability, which confuses the network. Arrow (3) points out
errors in PV. It is difficult to segment the thin and long PVs
with varied shapes and lengths among patients.
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IV. CONCLUSIONS

This study proposes Usformer, a light, fast, and accurate
network for LA segmentation. Usformer adopts a UNet-like
architecture that integrates abstract features with precise spatial
control. Transformer blocks using transposed attention learn
the long-range dependencies between pixels in large 3D vol-
umes without incurring a high computational cost. Despite the
poor image quality of LGE MRI, our method shows promising
results in the 2018 Atrial Segmentation Challenge testing set
with an average 3D dice of 92.6% and only 611K parameters
in the network.

The main limitation is that the generalizability of the
proposed method is not validated outside of the 2018 challenge
dataset. The challenge dataset is limited in numbers, patients,
vendors, etc. More experiments could be done to explore the
model’s generalization ability. Another potential area for future
work is to combine different imaging modalities, such as other
MRI sequences and computed tomography (CT), to provide a
more comprehensive view of the LA anatomy.

Overall, the presented light Usformer accurately outlines the
left atrium from LGE MRI with low computation memory,
offering a flexible and viable alternative to costly manual
segmentation. It is envisioned that the proposed network will
be successful in other segmentation tasks.
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