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Abstract—This paper presents an automated approach for cal-
ibrating change point detection algorithms for high-dimensional
time series. Our method leverages partial annotations provided
by experts to learn a diagonal Mahalanobis metric, combined
with a detection algorithm to replicate the expert’s segmentation
strategy on new signals. Our approach includes sparsity-inducing
regularization to improve accuracy, which performs dimension
selection and adapts to partial annotations. Our experiments on
audio signals and physiological time series signals demonstrate
that supervised learning improves detection accuracy signifi-
cantly.

Index Terms—change-point detection, metric learning, dimen-
sion reduction

I. INTRODUCTION

Change point detection, or signal segmentation, is crucial
in many machine learning pipelines that process time se-
ries. It consists in finding the temporal limits of successive
homogeneous regimes of a multivariate signal. There are a
large number of applications, from sleep monitoring [9], DNA
sequences [4], study of neurological disorders [2], etc. In
practice, the expert (e.g., a medical researcher or biologist
in the context of healthcare time series) must choose the
most appropriate change point detection procedure from the
extensive associated literature [13]. One critical parameter to
select is the kind of change to detect, related to the signal
representation or the metric to measure the distance between
samples. This calibration step is complex, time-consuming and
often achieved by trial and error. However, the expert can often
manually segment a few signals, at least partially (i.e. give
approximate change locations). For instance, Fig. 1 shows the
partial annotation of an expert: on a signal collected by moni-
toring, with an inertial sensor, a subject performing a sequence
of simple activities (stand, walk, turn around, walk, stop) [2],
a medical researcher has indicated a rough estimation for the
activity changes. This work aims to formulate a procedure to
automatically learn from segmentation examples (i.e. signals
and their partial annotations) an appropriate metric. Combining
the learned metric with a change-point detection algorithm
could then replicate the expert’s segmentation strategy.
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of this work has been funded by the Industrial Data Analytics and Machine
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In this article, we propose a procedure to learn from expert
labels an appropriate norm that can replicate the expert’s
segmentation strategy and select relevant signal dimensions
for this task, thanks to a sparsity regularization.

The article is organized as follows. Section II presents
the change-point detection problem and an overview of the
metric learning topic in the context of change-point detection.
Section III describes the learning procedure and the associated
optimization problem. Finally, Section IV presents the results
obtained on synthetic and real data.

II. BACKGROUND

A. The change point detection problem.

Consider a Rd-valued signal y = [y1, y2, . . . , yT ] with
T samples. Formally, change-point detection with an fixed
number K of changes consists in solving the following discrete
optimization problem

{t̂1, t̂2, . . . , t̂K̂} :=

arg min
{t1,t2,...,tK}

[
K∑

k=0

tk+1−1∑
t=tk

∥∥yt − ȳtk..tk+1

∥∥2] (1)

where ya..b is the empirical mean of the sub-signal {yt}b−1
t=a

and t0 := 1 and tK+1 = T + 1 are dummy indexes and
∥·∥ is a user-defined norm on Rd (e.g. the Euclidean norm).
The indexes {t̂1, t̂2, . . . , t̂K̂} are the instants when the signal
has the most significant mean-shifts. Several methods have
been developed to optimize this sum of residuals (see [13]
for a review). Algorithms based on dynamic programming
solve Problem (1) exactly with a complexity of O(dKT 2).
This is the method that will be adopted. Any faster but
approximate methods, such as window-based procedures and
binary segmentation, could be used instead, depending on the
operational constraints.

B. Metric learning for change-point detection

Calibrating a change-point detection algorithm necessitates
specifying the norm ∥·∥ used in Problem 1, which is related
to the type of change that can be detected. While there are
many articles focused on calibrating segmentation methods
in a unsupervised way [13], only a few works have tackled
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Fig. 1. Signal example with partial annotation. One (out of 6) dimension of
a gait signal (acceleration along one axis) is shown along with its short-term
Fourier transform (see Section IV for details). The annotations indicate that
there is one change-point in each hatched area. The annotation here is partial
(the exact location of the change is not provided); annotated portions are 1-
second long.

this problem from a supervised standpoint. In [8], the authors
learn a linear data transformation using a structured learning
approach. The resulting optimization problem is computa-
tionally intensive as each gradient step requires an exact
change-point estimation. Similarly, [6] proposes to minimize a
well-chosen differentiable loss which still requires performing
change detection many times; nevertheless, the authors are able
to learn a more complex transformation of the data (a neural
network). In [12], a kernel-based norm is fitted to the signals
and change-point labels using a metric learning approach. The
learned non-parametric transformation is not interpretable and
still has a heavy memory footprint (quadratic in the number of
samples). Contrary to existing approaches, our method learns
a simpler data transformation. As a result, the associated loss
minimization problem is easier to solve with standard convex
optimization tools. In addition, important dimensions (for the
change detection task) are selected while other are discarded.

III. METHOD

The procedure consists of two steps: (i) a learning step
during which a norm is learned using labelled signals, and
(ii) a prediction step during which a change-point detection
procedure is applied to out-of-sample signals to segment them.
This section formally introduces the nature of the labels
provided by the expert and the metric learning approach.

A. Sparse Mahalanobis-type norm

To learn an adequate norm ∥·∥ from annotated examples, we
restrict ourselves to a parametrized Mahalanobis-type (pseudo-
)norm ∥x∥2w := x⊺ diag(w)x where diag(w) is a diagonal
matrix for a vector w ∈ Rd

+ of positive weights.
Considering this norm, calibration reduces to finding an

appropriate w, which can be seen as a scaling of each
dimension p by wp. In the context of high-dimensional signals,
likely, all dimensions are not relevant for the change-point
detection task. For instance, the signal might contain noisy
components that could alter change detection algorithms.

To address this issue, we propose to enforce a sparsity
constraint on the vector w. This constraint will force the metric
learning step to select only the most relevant dimensions for

the change-point detection problem, removing all noisy or
misleading dimensions. By replacing in (1), the norm ∥·∥ by
∥·∥w with a properly calibrated and sparse w, the change-
point detection procedure will only use the relevant dimensions
and thus detect the change-point in an adequate representation
space.

B. Annotations and labels

Annotations are provided by an expert and transformed into
triplet constraints, which are then fed to the sparse metric
learning algorithm. This article will consider two types of
labels: full or partial.

For each training signal y(l), a full label consists in the set
of change points T (l) = {t(l)1 , t

(l)
2 , . . . }. The set T (l) includes

all the changes contained in the signal y(l), according to the
expert.

For each training signal y(l), a partial label consists in
the set of intervals S(l) = {[s(l)1 , e

(l)
1 ], [s

(l)
2 , e

(l)
2 ], . . . } that

contain a change point. Instead of giving the exact position of
a change t

(l)
k , the expert only provides an approximate position

[s
(l)
k , e

(l)
k ] such that t(l)k ∈ [s

(l)
k , e

(l)
k ]. All the changes contained

in the signal y(l), according to the expert, are in one of the
intervals of the set S(l). Each interval [s(l)k , e

(l)
k ] contains only

one change and the intervals do not overlap. An example of
partial annotations is shown on Fig. 1.

C. Construction of the triplets of samples

The proposed metric learning procedure relies on triplets
of samples (anchor sample, positive sample, negative sample)
that will be used to construct some constraints that will be
used in the metric learning procedure. Intuitively, two samples
that belong to the same homogeneous segment (i.e. without
change) are from the same class, while two samples that
belong to two consecutive segments (i.e. separated by a change
point) are from different classes. The procedure to construct
these triplets varies according to the labels type (full or partial).

Using a full label T (l), a triplet can be created as follows:
for any anchor sample yt in a certain segment [t

(l)
k , t

(l)
k+1[, a

positive sample is any element of the same segment yt+ of
[t
(l)
k , t

(l)
k+1[ (except the anchor sample) and a negative sample

yt− is any element of the previous segment [t(l)k−1, t
(l)
k [ or the

following segment [t(l)k+1, t
(l)
k+2[.

Using a partial label S(l), a triplet can be created similarly:
for any anchor sample yt in a certain segment [e(l)k , s

(l)
k+1], a

positive sample is any element of the same segment yt+ of
[e

(l)
k , s

(l)
k+1] (except the anchor sample) and a negative sample

yt− is any element of the previous segment [e(l)k−1, s
(l)
k ] or the

following segment [e(l)k+1, s
(l)
k+2].

D. Sparse metric learning

Let D(l) be the set of triplets generated from the labels (full
T (l) or partial S(l)). The sparse metric learning procedure
for change-point detection consists in solving the following
optimization problem
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min
w∈Rd

+

[∑
l

1

|D(l)|
∑

(yt,yt+ ,yt− )∈D(l)

ℓw (yt, yt+ , yt−)


+λ ∥w∥1

]
(2)

with

ℓw (yt, yt+ , yt−) :=
[
1 + ∥yt − yt+∥

2
w − ∥yt − yt−∥

2
w

]
+

(3)

where [·]+ := max(0, ·) and λ > 0 controls the trade-
off between the sparsity of w and the triplet constraints.
This is simply the sum over the training set of the margin-
based hinge loss and a sparsity inducing regularization. The
learned ŵ, which is the solution of Problem 2, is then such
that the distance between samples from the same segment is
smaller than the distance between samples from consecutive
regimes (separated by a change-point). Because there can
be a large number of possible triplets in D(l), learning a
weight vector w can be computationally costly. A sampling
strategy is frequently used to focus to reduce the computational
burden; such a strategy is often called triplet mining [7]. In
this work, a fixed number of triplets is simply sampled at
random from each set D(l). Also, Problem 2 includes a non-
smooth regularization and large number of triplet constraints,
stochastic composite optimization has been proposed [10].
This is an iterative minimization algorithm where each step
is a stochastic gradient step followed by the application of
a proximal operator (for the ℓ1 norm). This work uses the
implementation of [3].

IV. EXPERIMENTS

In the following, our method is denoted SML-CPD for
Sparse Metric Learning for Change-Point Detection.

a) Detection algorithms: Our method SML-CPD is com-
pared to two common change-point detection algorithms:
EUC-CPD which is equivalent to SML-CPD without the
sparse metric learning step (i.e. the norm ∥·∥w reduces to the
Euclidean norm ∥·∥) and RBF-CPD which is a kernel-based
segmentation procedure that can detect general changes in the
distribution of the samples [1]. The chosen kernel is the radial
basis function (RBF). Note that both SML-CPD and EUC-
CPD are applied on the time-frequency representation of the
signal, while RBF-CPD is applied on the original data1.

b) Evaluation metrics: The detection power is evaluated
with the accuracy which is the proportion of correctly
detected changes. For a given margin M > 0, a true change
t is considered detected if the estimated change-point t̂ is
such that |t− t̂| < M . All scores are computed with a 5-fold
cross-validation.

1We use the Python package “ruptures” [13] for the segmentation algo-
rithms.

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
[H

z]

Fig. 2. STFT of a synthetic signal (SNR=-10 dB).

A. Simulated data

a) Data: The simulated data set consists in 50 au-
dio time series created following the dual-tone multi-
frequency (DTMF) system. The DTMF is the signal pro-
duced when dialling a phone number. This system encodes
a sequence of digits as a sequence of sounds and each
sound follows a dual-tone model y[t] = cos(2πf1t) +
cos(2πf2t) with f1 ∈ {697, 770, 852, 941} Hz and f2 ∈
{1209, 1336, 1477, 1633} Hz; each one of the 16 possible
combinations of frequencies (f1, f2) is associated with a
symbol in “0123456789ABCD#*”. Here, the signals are
sequences of 10 symbols separated by silences; segments
(sound or silence) have a random duration between 50 and
200 ms (sampling frequency: 44.1 kHz). The time series
have been corrupted by two types of noise: a sound with
smoothly varying instantaneous frequency and an additive
Gaussian white noise of variance chosen such that the signal-
to-noise ratio (SNR) is equal to 10 dB (“High SNR” scenario),
0 dB (“Medium SNR” scenario) and -10 dB (“Low SNR”
scenario). The input to our method is the short-term Fourier
transform (STFT) of the raw signals (window of 10 ms and
50% overlap). See Fig. 2 for an example. The objective is to
estimate the start and end of each sound.

b) Results: For all noise scenarios (high, medium and
low SNR), the supervised approach SML-CPD is more accu-
rate, uniformly on all error margins, as shown on Fig. 3. Un-
surprisingly, when the SNR decreases, performance diminishes
but the gap between SML-CPD and the other methods is wider,
meaning the supervision adapts to the noise. A very interesting
feature of our method is the ability to select dimensions that
are important for the change-point detection task. The selected
dimensions (here, frequencies) are shown on Fig. 3-d: they
coincide with the true DTMF frequencies (there is a small
discrepancy due to the discretization of the frequency domain
by the STFT) while the frequencies associated with the noisy
part are discarded.

B. Physiological data

a) Data: The Gait data set contains 42 labelled time
series (sampling frequency: 100 Hz) from an inertial sensor
placed at the lower back of a subject performing a fixed
sequence of simple activities: “Stand”, “Walk”, “Turnaround”,
“Walk”, “Stop”. The objective is to detect the time indexes
at which the activity of the subject changes (each signal has
4 change-points). The time series have d = 6 dimensions:
the accelerations (m/s2) along three axes (X , Y and Z) and
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(b) Medium SNR (0 dB)

0.00 0.01 0.02 0.03 0.04 0.05
Margin (s)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

SML-CPD
EUC-CPD
RBF-CPD

(c) Low SNR (-10 dB)
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Fig. 3. Results on the simulated data. (a-c) Accuracy is plotted versus the
allowed error margin (in seconds). The top curve (SML-CPD) has the best
accuracy for all margin levels. (d) Selected frequencies by SML-CPD for the
low SNR scenario. True frequencies are marked with a small black triangle.

the angular velocities (deg/s) around the same three axes.
Fig. 1 shows an example (only on dimension is displayed). The
time-frequency representation is the STFT, computed with 300
samples per segment and an overlap of 299 samples, of each
dimension; the concatenation of all STFT yields a d = 906-
dimensional signal. As for the partial annotations, a medical
researcher used an annotation tool to provide portions of 50
samples (0.5 s) around activity’s changes.

b) Results: Supervision improves detection accuracy.
The cross-validated accuracy is shown in Fig. 4-a. The ac-
curacy curve can be read like a ROC curve: here, SML-CPD
has the highest curve and outperforms other methods, meaning
supervision markedly improves the detection at all margins.
For a reasonable margin M = 1 s, accuracies are 91.1% for
SML-CPD, 86.9% for EUC-CPD, 83.9% for RBF-CPD.

Our method projects the signals into a low-dimension space.
The number of non-zero coefficients in the learned w of SML-
CPD is around 15 in the different folds of the cross-validation,
meaning that only 15 dimensions are kept to perform the
segmentation, compared to the 906 dimensions of the original
STFT.

SML-CPD provides useful insights on the segmentation.
The learned weight vector ŵ in SML-CPD helps the expert
understand the important dimensions to segment their signals.
Fig. 4-b displays the selected dimensions/frequency distri-
bution of the STFT. First, even though possible frequencies
range from 0 Hz to 50 Hz, no frequency above 4 Hz was
ever chosen. Second, for the accelerations, most frequencies
are picked from the [1 Hz - 2.5 Hz] band; this corresponds
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Fig. 4. Results on the physiological data. (a) Accuracy is plotted versus the
allowed error margin (in seconds). The top curve (SML-CPD) has the best
accuracy for all margin levels. (b) Selected frequencies by SML-CPD for each
dimension of the signal.

to the frequency of the prominent phenomenon during the
walk: the repetitions of footsteps. A footstep lasts about 0.8
seconds for healthy subjects and less for neurological impaired
patients (both are present in the Gait data set). Third, for
the angular velocity around the Z axis (close to vertical),
selected frequencies are below 0.5 Hz. This is consistent with
the behaviour of the signal during the turnaround: there is a
relatively smooth peak in the angular velocity, which is visible
at frequencies below 0.5 Hz.

V. CONCLUSION AND FUTURE WORK

To sum up, this paper introduced an approach incorporating
expert annotations to enhance change-point detection algo-
rithms, avoiding time-consuming trial-and-error calibration.
Furthermore, our approach includes an informative dimension
selection mechanism that improves the performance of the
learned metric. In future work, we plan to address scenarios
where the number of changes is unknown by combining our
approach with existing methods [5], [11]. Additionally, we will
explore more advanced signal transformations, such as neural
networks.
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