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Abstract—The lack of access to cardiology resources in many
regions of the world has motivated the development of automatic
diagnostic systems based on cardiac signals. In recent years, a
wide range of supervised learning models have been proposed
that can make an initial diagnosis of heart disease from heart
sounds. To achieve high accuracy, however, such supervised
learning models generally require a large amount of labeled data,
which can be costly to obtain. In this regard, self-supervised
learning has been recently employed to reduce the over-reliance
on annotated data. Wav2vec 2.0 is an audio self-supervised
learning model that has shown promising results in a variety
of speech-related tasks. In this paper, we adapted the wav2vec
2.0 for murmur detection from heart sound signals. For this
purpose, we pre-trained and fine-tuned this model on the Circor
DigiScope heart sound dataset. The results confirm the feasibility
of using the wav2vec 2.0 model for heart sound classification. The
model shows a competitive performance by achieving a weighted
accuracy of 0.80 and a UAR of 0.70 for murmur detection on
the holdout test set. To investigate the impact of the fine-tuning
data size on the downstream performance, we also fine-tuned the
wav2vec 2.0 model on small sizes of annotated data. The results
confirm that this model is robust to small fine-tuning data sizes,
and as a result, can reduce our reliance on large, annotated heart
sound data.

Index Terms—Heart Sound, Murmur Detection, wav2vec 2.0,
Self-supervised Learning

I. INTRODUCTION

Cardiovascular diseases are a major cause of death around
the world. Each year, over 18 million people die of heart
disease which accounts for around one-third of all mortalities
worldwide [1]. Early diagnosis using pervasive and low-cost
techniques can reduce the high mortality rate due to heart
disease. In this regard, using cardiac signals such as heart
sounds towards developing automatic heart disease detection
systems has recently become an active area of research. A wide
range of data-driven classification models have been proposed
that can provide a preliminary diagnosis of heart disease by
detecting abnormalities (murmurs or extra sounds) in heart
sound signals [2].
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Most of the existing heart sound classification models have
been developed using supervised learning algorithms and
in particular deep learning techniques. However, to achieve
high accuracy rates, supervised learning algorithms generally
require a large amount of annotated data which can be
costly and time-consuming to obtain. This is more of a chal-
lenge for biomedical data, as domain-specific medical knowl-
edge is required for accurate and consistent data labeling.
Self-supervised learning (SSL) is another machine learning
paradigm that rather than using human annotations, obtains
supervisory clues from the data itself by solving a pretext
task. SSL can leverage large amounts of unlabelled data to
produce meaningful representations that can be subsequently
used for a variety of downstream tasks and domains, including
computer vision [3], natural language processing [4], and
speech processing [5], [6]. SSL techniques have also been
applied to biomedical signals [7], [8]. There are also a small
number of examples of using SSL techniques to develop heart
sound classification models [9], [10]. However, based on the
limited existing research, it is hard to conclude whether such
models can reduce our reliance on annotated heart sound data
or not.

In the last few years, SSL has been adopted successfully
in the audio processing field. BYOL-A [11], wav2vec 2.0
[6] and HUBERT [5] are just a few examples of recently
proposed audio SSL models. Such models generally differ in
terms of the architecture, input format (i.e., raw waveform
vs. handcrafted features) and the task they are designed for
(i.e., general audio vs. speech) [12]. Wav2vec 2.0 is a widely
adopted SSL framework for learning speech representations.
This model takes raw waveforms as input and benefits from
a transformer-based architecture. The wav2vec 2.0 model has
achieved promising results in a variety of speech-related tasks
such as speech recognition [6], speaker recognition [13], and
language identification [14]. While this model was originally
designed for speech recognition, prior work has shown its
potential to offer competitive performance for non-speech
audio tasks such as music classification [15]. Although some
efforts have been made towards adapting wav2vec 2.0 for
the processing of brain signals [16], we could not find any
adaptation of this model for biomedical audio signals, and in
particular, heart sounds.
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Fig. 1. — Illustration of the main components of the wav2vec 2.0 model (pre-
training phase). Adapted from [6].

In this study, we employ wav2vec 2.0 as a successful
and widely used audio SSL model to provide an end-to-
end solution for heart murmur detection. In particular, we
aim to answer the following questions: 1) Can we achieve
a competitive accuracy for heart murmur detection by pre-
training and fine-tuning the wav2vec 2.0 model on heart sound
data? 2) How does the choice of data classes used in the pre-
training phase impact the model’s performance? 3) How does
the fine-tuning data size affect the model’s performance?

To answer the above questions, we pre-train and fine-
tune the wav2vec 2.0 model on unlabeled and labeled heart
sound data, respectively. For this purpose, we use a dataset
that includes heart sounds captured at different auscultation
points across patients’ chest areas and annotated based on the
presence or absence of heart murmurs. We investigate how
classes of data used for pre-training of the model affect the
downstream performance by training multiple models with
data of different classes. We also explore the impact of fine-
tuning data size on the downstream performance by fine-tuning
a model with varied amounts of annotated data. To assess the
performance of the models, we evaluate them on a separate
test set and provide patient-level results for each model.

II. METHODS
A. The wav2vec 2.0 Model

Fig. 1 illustrates the main components of the wav2vec 2.0
model [6]. As shown in Fig. 1, this model includes three mod-
ules: the feature encoder, context network, and quantization
module. Following, we summarize the structure and function
of each module:

Feature encoder: This module comprises a 7-layer single-
dimensional convolutional neural network (1D-CNN) which
takes raw waveform X’ as input and outputs Z latent speech
representations.

Context network: This module consists of 12 transformer
blocks with 8 attention heads each and a model dimension
of 768 (Base model). Context network receives masked latent
vectors as input and produces contextualized representations
C.

Quantization module: This module discretizes the con-
tinuous latent speech representations Z into quantized rep-

resentations Q. Quantized units are automatically learned by
sampling from the Gumbel-Softmax distribution. These units
are composed of codewords that are sampled from codebooks.
The wav2vec 2.0 quantization module includes 2 codebooks
with 320 codewords in each one.

To pre-train the wav2vec 2.0 model, a certain proportion of
the feature encoder outputs are randomly masked before being
fed into the context network. We should note that the inputs
to the quantization module remain unmasked. The pre-training
process uses a contrastive loss £ which requires distinguishing
the true quantized latent speech representation within a set
of negative distractors. The contrastive loss encourages high
similarity with the true positive target while at the same time
penalizes high similarity scores with the distractors. Readers
can refer to [6] for more details regarding the wav2vec 2.0
and its pre-training process.

B. Data Pre-processing

For training and evaluation of the models, we use CirCor
DigiScope heart sound dataset [17] which was introduced as
part of the George B. Moody PhysioNet Challenge 2022 [18].
This dataset contains 3163 recordings from 963 patients. The
duration of recordings varies between 5 to 65 seconds. For
each patient, multiple recordings were captured from different
auscultation locations on the patient’s body. Each patient was
annotated based on the presence or absence of the cardiac
murmur in their recordings:

o Present: murmur waves were detected in at least one
heart sound recording of the patient (179 patients)

o Absent: murmur waves were not detected in any heart
sound recording of the patient (695 patients)

o Unknown: the presence or absence of murmurs was
unclear for the annotator (68 patients)

We split each recording into 5-second segments with a
stride of 2.5 seconds. Segments are labeled according to the
patients’ labels (e.g., if a patient is labeled as murmur present,
the present label is assigned to all 5-second segments of
that patient). According to [19], the average heartbeat cycle
duration is 0.8 seconds, and as a result, a 5-second segment
would include six heartbeat cycles on average. Also, the 2.5-
second stride allows us to increase the amount of data which
is used for the training and evaluation of the models. The
original sampling rate of the recordings is 4 kHz. We resample
the segments to 16 kHz in accordance with the training
requirements of the wav2vec 2.0 model [6]. Also, amplitude
normalization is applied to all segments. The segments are
randomly apportioned into training, validation, and test sets.
The training set includes 65% of the data (22 hours), 10% of
the data (3.5 hours) goes to the validation set, and the test set
contains 25% of the data (8.5 hours). We should note that the
segments are stratified by class labels. Also, when splitting the
segments into the aforementioned sets, we make sure that the
data from the same patients do not appear in different sets.
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C. Model Pre-training

Pre-training of the model is performed using the fairseq
framework [20]. We randomly sample 80% of the segments
in the train set and use them for pre-training of the model.
Three pre-training configurations are explored: pre-training on
all classes (absent, present, and unknown), pre-training on two
classes (absent, present), and pre-training on one class only
(absent). Analyzing the results of these configurations allows
us to understand how the classes of data used in the pre-
training phase affect the downstream performance. Depending
on the configuration, pre-training took 24-31 hours on two
Nvidia V100 GPUs.

D. Model Fine-tuning

To fine-tune the pre-trained model, an average pooling layer
and a fully connected layer are added on top of the wav2vec
2.0 model. Then, fine-tuning is carried out using the entire
labeled training set. To investigate the impact of different
fine-tuning strategies on the downstream performance, three
configurations are considered: 1) Freezing both the feature
encoder and context network and doing feature extraction by
only training the fully connected layer (FE), 2) Fine-tuning
the context network while keeping the feature encoder frozen
(FT1), and 3) Fine-tuning the whole network (FT2). Also, to
understand how fine-tuning data size influences the model’s
performance on the downstream task, we decrease the amount
of annotated training data and fine-tune the best-performing
model using smaller data sizes. These data sizes include 1/2
(50%), 1/4 (25%), 1/8 (13%), and 1/16 (6%) of the training
set. These data sizes are in fact specific percentages of all
segments available in the training set.

For all configurations, training is performed for a maximum
of 20 epochs. To avoid overfitting, the training process is
stopped if validation loss does not decrease for 5 consec-
utive epochs. The optimization is performed using AdamW
optimizer [21] and OneCycle learning rate scheduler [22]
with a maximum learning rate of 10e-5. As mentioned in
Section II-B, the dataset used in this study is imbalanced. To
address the class imbalance, a weighted cross-entropy loss is
employed, with weights equal to the inverse probability of the
classes.

E. Evaluation

For each configuration, the best-performing epoch is chosen
based on the performance on the validation set and evaluated
on the test set. We should note that the model’s predictions are
segment-level. To determine the prediction for each patient, we
need to first aggregate segment-level predictions to produce
recording-level predictions. To this end, the average of the
segments’ probabilities for each class is calculated and the
class with the highest probability determines the recording’s
prediction. Then, the following rules are employed to aggre-
gate the recording-level predictions and produce the patient-
level results:

o Assign present if at least one recording was classified as
present.

TABLE I
MODELS’ EVALUATION RESULTS ON THE TEST SET. RESULTS ARE
PATIENT-LEVEL.

Model FT Recall Recall Recall

# config Wacc  UAR (absent)  (present) (unknown)
Pre-train on absent, present and unknown classes

1 FE 0.75 0.65 0.91 0.73 0.30
FT1 0.77 0.68 0.82 0.82 0.41

3 FT2 0.78 0.69 0.84 0.82 0.41

Pre-train on absent and present classes
4 FT1 0.78 0.70 0.81 0.82 0.48
5 FT2 0.80 0.70 0.83 0.86 0.41
Pre-train on absent class only
6 FT1 0.77 0.73 0.85 0.75 0.59
7 FT2 0.77 0.71 0.83 0.77 0.53

o Assign unknown if none of the recordings was classified
as present, and at least one recording was classified as
unknown.

o Assign absent if all recordings were classified as absent.

The above aggregation rules give the highest priority to the
murmur present class given the clinical priority of detecting
heart problems, then the unknown class, and lastly the absent
class.

We use three metrics to report the performance of the
models: (1) Recall which is used to measure the models’
performance across each class. (2) Unweighted average recall
(UAR) [23] which is used to quantify the overall performance
of the models. (3) Weighted accuracy (W.acc) [18] which
was introduced in PhyioNet 2022 challenge and used to
rank the models submitted to the challenge. The goal of the
challenge was to identify the presence, absence or unclear
cases of murmurs from multi-auscultation location heart sound
recordings. This metric is similar to the accuracy metric, with
the difference being that it gives more weight to the higher
cost present and unknown classes than the absent class, as a
missed diagnosis is more harmful than a false positive [18].

ITI. RESULTS AND DISCUSSION
A. Pre-training and fine-tuning configurations

Table I summarizes the models’ evaluation results on the
test set for all pre-training and fine-tuning configurations.
Following, we analyze the evaluation results for different pre-
training and fine-tuning configurations:

Fine-tuning configurations: The results indicate that freez-
ing the entire model and training the fully connected layer only
(FE) leads to a lower performance compared to the other two
fine-tuning configurations (FT1 and FT2) for most metrics.
This is expected as in the FE configuration, we perform
simple feature extraction and only train the fully connected
layer. Therefore, the results of this fine-tuning configuration
have only been reported in the case of the first pre-training
scenario (pre-training on all classes). The other two fine-tuning
configurations (FT'1 and FT2) perform roughly similar in terms
of the UAR and weighted accuracy metrics.

Pre-training configurations: The models that are pre-
trained on all three classes (Models 1-3) show a slightly
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lower UAR compared to models from the other pre-training
scenarios (Models 4-7). Pre-training on both present and
absent classes leads to the highest weighted accuracy and
present class recall (Model 5) while pre-training on only the
absent class leads to the highest UAR (Model 6). Crucially,
however, pre-training on only the absent class leads to a
lower present class recall compared to the other pre-training
scenarios. This is expected as in the pre-training phase, the
present class is excluded, and the model is not pre-trained
on present class samples. These results show the importance
of pre-training on both absent and present classes to achieve
higher recall values for the present class, which is obviously
the most important class for the murmur detection problem.

Overall analysis: The results indicate that we should avoid
pre-training on only the absent class as it leads to a low
present class recall. Also, pre-training on all three classes
leads to a slightly lower downstream performance compared
to pre-training on absent and present classes. In other
words, adding unknown class samples to pre-training data
reduces the downstream performance. Given that unknown
class samples are likely noisier than the samples of the other
two classes, this observation suggests that the cleanliness of
the data influences the quality of the learned representations.
Regarding the fine-tuning strategies, the results indicate that
we should fine-tune both the feature encoder and context
network (FT2) or at least the context network (FT1). Given
that the weighted accuracy metric prioritizes the present class
over the other two classes, we use this metric to determine
Model 5 as the best-performing model.

B. Comparison with Previous Work

In this section, we compare our best-performing model
(Model 5) with previous work. Table II compares the results
of this model with that of the PhysioNet 2022 challenge
winners for the heart murmur detection task on the challenge
training set. We should note that due to different evaluation
strategies and data splits, we are not able to directly compare
the evaluation results of our model with that of previous work.
However, reporting these results would allow us to have an
estimate of the position of the proposed method compared to
the previous work.

As shown in Table II, the performance of our model
(wav2vec 2.0) is similar to the previous work in terms of
weighted accuracy. In terms of the UAR, the proposed method
performs slightly better than the CUED_Acoustics [24] model.
If we compare the recall at the class level, we can see that
the CUED_Acoustics model performs better on the present
class while our model performs better on absent and unknown
classes. The results of the other two challenge winners (HearT-
ech+ [25] and CAU_UMN [26]) in terms of the recall on each
class have not been reported. Therefore, we cannot provide a
comparison with those models in terms of the recall and UAR
metrics. These results confirm the possibility of achieving
competitive performance in murmur detection task by pre-
training and fine-tuning the wav2vec 2.0 model on heart sound
data.

TABLE 11
COMPARING THE BEST-PERFORMING MODEL WITH PREVIOUS WORK
Recall Recall Recall
Model Wace  TAR (absent)  (present) (unknown)

wav2vec 2.0 0.80 0.70 0.83 0.86 0.41
CUED_Acoustics 0.80 0.68 0.78 0.93 0.34
HearTech+ 0.81 NA NA NA NA
CAU_UMN 0.79 NA NA NA NA

C. Impact of the Fine-tuning Data Size

The train set which is used for fine-tuning contains about
22 hours of heart sounds. Out of these, 17 hours belong
to the absent class, 4 hours to the present class, and 1
hour to the unknown class. As discussed in Section II-D,
in addition to the entire training set, we fine-tune the model
using 1/2 (50%), 1/4 (25%), 1/8 (13%) and 1/16 (6%) of the
training set. Fig. 2 shows the evaluation results of the best-
performing configuration (Model 5) fine-tuned on different
data sizes. To remove any potential bias due to the aggregation
rules employed to produce patient-level results, segment-level
results are provided. Following, we analyze the results for each
class separately:

Absent class: Recall fluctuates slightly for different
amounts of data (between 0.82 to 0.89).

Present class: Recall fluctuates between 0.60 and 0.68 in
the case of the first four scenarios (100% - 13% of the data).
For the last scenario (6% of the data), the recall falls to
0.48. However, we should note that only about 15 minutes
of murmur present samples are used for training the model in
the last scenario.

Unknown class: Recall fluctuates between 0.47 and 0.53
for the last four scenarios. For the first scenario (whole
training set), recall of the unknown class is 0.32 which is
the lowest recall compared to the other scenarios. However,
if we consider the recall values of the other two classes
(present and absent) in the first scenario, we can see that
they are larger compared to that of the other four scenarios
with smaller data sizes. In other words, it seems that in the
case of the first scenario, higher recall values of the present
and absent classes led to a lower recall of the unknown class.
This is expected because any unknown sample in the dataset
is ultimately murmur-absent or present, and a classifier that
can detect absent and present samples more accurately would
classify a larger number of unknown samples as absent or
present. Also, given that the train set only contains 1 hour
of unknown samples, it would be difficult to achieve a high
recall on the unknown class, and as a result, higher recall
values of the unknown class in the last four scenarios may not
be realistic.

Overall analysis: The results indicate that reducing the
amount of training data does not have a large impact on
the performance of the model. We can achieve comparable
results by fine-tuning the model on a considerably smaller
amount of annotated data (13% of the training set or around
3 hours of heart sounds). In other words, these results show
that the wav2vec 2.0 SSL model can reduce our reliance on
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Fig. 2. Performance of the best-performing configuration fine-tuned on
different data sizes of the training set (segment-level results)

the annotated heart sound data. This is an important finding as
labeling heart sound data is hard and requires domain-specific
medical knowledge. This finding is in line with previous
studies that explored the influence of fine-tuning data size on
the performance of the wav2vec 2.0 model for speech-related
tasks [27].

IV. CONCLUSION

In this study, we showed the feasibility of employing the
wav2vec 2.0 model for murmur detection task. We demon-
strated that by pre-training and fine-tuning this model on heart
sound data, we can achieve competitive murmur detection
performance. We saw that including both present and ab-
sent classes while at the same time excluding the unknown
class (noisier data) in the pre-training phase improves the
model’s downstream performance. By fine-tuning the model
on different data sizes, we also showed that the wav2vec 2.0
model is robust to small data sizes. In other words, this model
can decrease our dependency on large, annotated heart sound
datasets without sacrificing much accuracy. This is particularly
important in this domain because there is only a limited
number of publicly available annotated heart sound datasets.

The wav2vec 2.0 SSL model has been originally designed
for speech-related tasks. Although we achieved competitive
performance on the heart murmur detection task using the orig-
inal architecture and hyperparameters of the wav2vec 2.0, in
the future, we will modify the model to tailor that to the heart
sound classification task. Such modifications can potentially
include changing the receptive field of the feature encoder,
changing the context network architecture, and modifying the
model’s codebook size. We will also extend this work by
exploring the impact of the size and quality of the data used
in the pre-training phase on the downstream performance.

REFERENCES

[1] “World health  organization.” [https://www.who.int/health-
topics/cardiovascular-diseases; Online; accessed 2023-02-15].

[2] A. K. Dwivedi, S. A. Imtiaz, and E. Rodriguez-Villegas, “Algorithms
for automatic analysis and classification of heart sounds—a systematic
review,” IEEE Access, vol. 7, pp. 8316-8345, 2019.

[3] I. Misra and v. d. L. Maaten, “Self-supervised learning of pretext-
invariant representations,” p. 6707-6717, 2020.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

1014

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “Hubert: Self-supervised speech representation learning
by masked prediction of hidden units,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 29, pp. 3451-3460, 2021.
A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” 10
2020. arXiv:2006.11477 [cs, eess].

P. Sarkar and A. Etemad, “Self-supervised ecg representation learning
for emotion recognition,” IEEE Transactions on Affective Computing,
vol. 13, pp. 1541-1554, 7 2022.

H. Banville, I. Albuquerque, A. Hyvarinen, G. Moffat, D.-A. Engemann,
and A. Gramfort, “Self-supervised representation learning from elec-
troencephalography signals,” (Pittsburgh, PA, USA), pp. 1-6, IEEE, 10
2019.

A. Ballas, V. Papapanagiotou, A. Delopoulos, and C. Diou, “Lis-
ten2yourheart: A self-supervised approach for detecting murmur in
heart-beat sounds,” 10 2022. arXiv:2208.14845 [cs, eess].

P. N. Soni, S. Shi, P. R. Sriram, A. Y. Ng, and P. Rajpurkar, “Contrastive
learning of heart and lung sounds for label-efficient diagnosis,” Patterns,
vol. 3, p. 100400, 1 2022.

D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino,
“Byol for audio: Self-supervised learning for general-purpose audio
representation,” (Shenzhen, China), pp. 1-8, IEEE, 7 2021.

S. Liu, A. Mallol-Ragolta, E. Parada-Cabaleiro, K. Qian, X. Jing,
A. Kathan, B. Hu, and B. W. Schuller, “Audio self-supervised learning:
A survey,” Patterns, vol. 3, p. 100616, 12 2022.

N. Vaessen and D. A. van Leeuwen, “Fine-tuning wav2vec2 for speaker
recognition,” pp. 7967-7971, 5 2022. arXiv:2109.15053 [cs, eess].

Z. Fan, M. Li, S. Zhou, and B. Xu, “Exploring wav2vec 2.0 on speaker
verification and language identification,” 1 2021. arXiv:2012.06185 [cs,
eess].

A. Ragano, E. Benetos, and A. Hines, “Learning music representations
with wav2vec 2.0,” 10 2022. arXiv:2210.15310 [cs, eess].

D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, “Bendr: using transform-
ers and a contrastive self-supervised learning task to learn from massive
amounts of eeg data,” 1 2021. arXiv:2101.12037 [cs, g-bio].

J. Oliveira, F. Renna, P. D. Costa, M. Nogueira, C. Oliveira, C. Ferreira,
A. Jorge, S. Mattos, T. Hatem, T. Tavares, A. Elola, A. B. Rad,
R. Sameni, G. D. Clifford, and M. T. Coimbra, “The circor digiscope
dataset: From murmur detection to murmur classification,” IEEE Journal
of Biomedical and Health Informatics, vol. 26, pp. 2524-2535, 6 2022.
M. A. Reyna, Y. Kiarashi, A. Elola, J. Oliveira, F. Renna, A. Gu,
E. A. Perez Alday, N. Sadr, A. Sharma, S. Mattos, M. T. Coimbra,
R. Sameni, A. B. Rad, and G. D. Clifford, “Heart murmur detection from
phonocardiogram recordings: The george b. moody physionet challenge
2022,” tech. rep., 8 2022. DOIL: 10.1101/2022.08.11.22278688.

V. N. Varghees and K. Ramachandran, “A novel heart sound activity
detection framework for automated heart sound analysis,” Biomedical
Signal Processing and Control, vol. 13, pp. 174-188, 9 2014.

M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
4 2019. arXiv:1904.01038 [cs].

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

L. N. Smith and N. Topin, “Super-convergence: Very fast training of
neural networks using large learning rates,” vol. 11006, p. 369-386,
SPIE, 2019.

Z. Ren, K. Qian, F. Dong, Z. Dai, W. Nejdl, Y. Yamamoto, and
B. W. Schuller, “Deep attention-based neural networks for explainable
heart sound classification,” Machine Learning with Applications, vol. 9,
p. 100322, 2022.

A. McDonald, M. Gales, and A. Agarwal, “Detection of heart murmurs
in phonocardiograms with parallel hidden semi-markov models,”

Y. Xu, H.-K. Lam, and E. N. Kamavuako, “Hierarchical multi-scale
convolutional network for murmurs detection on pcg signals,”

J. Lee, T. Kang, N. Kim, S. Han, H. Won, and W. Gong, “Deep learning
based heart murmur detection using frequency-time domain features of
heartbeat sounds,”

H. Becerra, A. Ragano, and A. Hines, “Exploring the influence of fine-
tuning data on wav2vec 2.0 model for blind speech quality prediction,”
pp- 4088-4092, ISCA, 9 2022.



