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ABSTRACT 

Recent advances in sensing technologies enable the 
measurement of Blood Pressure (BP) on a smart phone by 
analyzing the patterns in a remote Photoplethysmograph 
(rPPG). In this paper, we propose a device agnostic method 
to non-invasively measure BP using rPPG signals. We 
achieve state-of-the-art results on 1276 rPPG samples 
collected from 18 different smartphone models by training a 
sequence model on the longitudinal features extracted from 
the signal. These features are invariant to changes in the 
sampling rate and are closely related to the underlying 
physiological processes. The results conform to the criteria 
established by the American and British measurement 
standards for BP measurement in certain ranges. Clinical 
validation of the algorithm on 111 rPPG signals using 4 
different smartphones resulted in an average RMS error of 
17.79 mmHg and 10.83 mmHg for systolic and diastolic BP 
measurements, respectively. 
  
Index Terms— rPPG, LSTM, Smartphone, BP  
 

1. INTRODUCTION 

The heart’s contraction and relaxation during each heartbeat 
correspond to higher and lower blood pressures, referred to 
as systolic and diastolic blood pressure respectively [1]. 
While cuff-based systolic and diastolic BP measurement is 
the clinical standard, the requirement of wearing a cuff for 
each BP measurement causes inconvenience and is obtrusive. 
Recent research on estimating BP without using a cuff has led 
to exploring Photoplethysmography (PPG) technology [2]. 
The PPG signal captures the sequence of events during the 
heartbeat and analyzing the PPG signal provides an indirect 
approach to measuring BP. There is sufficient evidence in 
literature that suggests PPG as a potential source for non-
invasive BP measurement [3]. The typical workflow to 
measure BP from PPG signals involve a pre-processing step 
to remove power line interference, denoise, and detrend the 
signal. This is followed by feature extraction and regression 
for estimation for systolic and diastolic BP values [3].  
 
Bandpass filters with cutoff at 0.1Hz (𝑓!") and 8Hz (𝑓!#) are 
the usual choice to pre-process the signal for denoising [3]–
[6]. Feature engineering methods involve feature extraction 
from the PPG signal, such as: (a) morphological features [6]–
[9] and their second derivatives that are related to the pulse 
amplitude, pulse width, and peaks of systolic and diastolic 

values in the PPG signal; (b) frequency and time domain 
features and their first and second derivatives [10]; (c) 
anthropometric features, such as age, sex, height, and weight 
[11]. In recent years, there has been a growing interest in 
using deep networks as regressors to estimate the BP from 
PPG signal features. CNN-based architectures like LeNet and 
GoogleNet [12], [13], as well as sequence models like 
LSTMs [14]–[16], have been attempted for BP estimation. A 
common trend observed in existing approaches is the use 
publicly available datasets to train and validate the 
algorithms. One popular dataset is the MIMIC dataset  [17] 
which comprises of PPG signals extracted from subjects 
under strictly controlled environments using medical graded 
devices with specialized sensors and fixed acquisition 
settings, such as constant sampling rate, for data collection.  
 
There is increasing interest in the research communities and 
industry, particularly since the advent of COVID-19 
pandemic, to develop algorithms for self-monitoring of health 
vitals such as BP using a smartphone device. BP 
measurement using a smartphone offers a non-invasive, 
unobtrusive, convenient, and user-friendly method. However, 
the luxuries of a controlled environment and fixed acquisition 
settings are not present when it comes to BP measurement on 
a smartphone. Furthermore, each smartphone manufacturer 
may have different hardware configurations that significantly 
impacts the sampling rate of the PPG signal, typically around 
30fps, while medical grade devices like those used in [17] 
operate at over 125fps. As a results, existing approaches such 
as [10] restrict their analysis to the signals obtained from a 
single phone. Additionally, existing algorithms based on the 
MIMIC-III dataset implicitly rely on the sampling rate being 
125fps to produce reliable results and are therefore not 
generalizable for use on smartphones. Furthermore, the 
features extracted by the existing algorithms do not capture 
the time dependent correlations that provides valuable 
information about the underlying physiology contributing to 
BP. 
 
In this paper, a novel approach to estimate BP on any 
smartphone is proposed. The approach involves employing 
robust longitudinal features that are unaffected by changes in 
the sampling rate and are closely tied to the underlying 
physiological processes. The features are integrated into a 
deep learning framework using sequence model. The model 
can accurately estimate BP on various smartphone.    
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2. METHODOLOGY 

This section provides detailed information about the dataset 
used and the proposed PPG-based BP measurement method 
utilizing the LSTM network.  
 
2.1. Dataset Details  
To facilitate the data collection process, we developed a 

dedicated mobile application specifically designed for 
Android devices. This application allows for easy recording 
of PPG data and the corresponding ground truth BP values. 
For accurate reference measurement, a standard clinical 
device manufactured by Omron (BP7100) is utilized. The BP 
measurement using BP7100 device is treated as ground truth 
and the readings are logged into the dedicated mobile 
application.  
 
In the existing literature, it has been shown that the variation 

in the light intensity captured using a visible wavelength light 
source can capture pulsatile information related to heartbeat 
[18]. In this work the flashlight and camera sensor are utilized 
as light source and receiver, respectively for capturing the 
pulsatile information from the user’s index finger. The video 
recording of the user’s index finger placed on the camera 
sensor while the flashlight is turned on is used to extract PPG 
signal. Thus, the necessary data for designing PPG based BP 
measurement method is obtained. To ensure sufficient data 
for analysis and capture long-term dependencies in the PPG 
signal, the duration of video recording is set to 60sec. This 
duration allowed for the stabilization of the hand and 
facilitated the capture of vital information within the PPG 
signal.  
 
The proposed experiment has obtained approval from an 

ethical committee (Ace Independent Ethics Committee: 
MFIN003) recognized by the regulatory authorities. Prior to 
data collection, trained nurses obtained verbal consent from 
the subjects for the collection of fingertip video data. The data 
collection process took place at two clinical sites, and a total 
of 18 different smartphone manufactured by OnePlus (112 
samples), Xiaomi (496 samples), Samsung (73 samples), 
Oppo (170 samples), RealMe (139 samples), Vivo (226 
samples), HMD Global (8 samples), Huawei (25 samples), 
and Google (14 samples) were used for data collection. For 
the training of BP measurement method, a total of 1,267 
samples collected from the 18 smartphones were utilized. To 
validate the trained BP model, separate clinical test data was 
collected. This test data consists of 111 fingertip videos 
samples obtained using 4 different smartphone devices, 
namely Xiaomi (47 samples), Oppo (31 samples), Motorola 
(4 samples), and Samsung (30 samples) form the clinical test 
data. 
 
To extract the pulsating information from the 60s fingertip 

video recording, the video is converted into a continuous 1-D 
signal. If the recorded video has a frame rate of 30fps, then 

the total number of frames in a 60s video is 1800. To convert 
the video into a 1-D signal, the pixel intensities in each frame 
are averaged. In other words, the average of pixel intensities 
in	𝑖$# frame corresponds to	𝑖$# sample point in the 1-D signal. 
This process is performed separately for the red, green, and 
blue channels in the frames of the 60s video. The resulting 
continuous 1-D signal is shown in Fig. 1. It can be observed 
that the red channel contains prominent pulsating information 
compared to the green and blue channels. A sample PPG 
signal from the dataset shown in Fig. 1 demonstrates that, the 
amplitude range of the red channel is ~8 whereas, the 
amplitude range of the green and blue channels is ~4. The 
presence of prominent pulsating data over a larger amplitude 
range in the red channel benefits in detecting health vitals 
such as BP.  Thus, the 1-D signal extracted from the red 
channel is considered as PPG signal for BP measurement. 
 
2.2. Estimating BP from PPG signal 

The proposed BP measurement method mainly includes three 
steps – signal preprocessing, derivative filter bank, and 
LSTM network as illustrated in Fig. 2.  

2.2.1. Preprocessing and Derivative filter bank 
To improve the quality of the noisy PPG signal, pre-
processing steps are applied. The continuous PPG signal is 
subjected to band pass filtering between 0.5 Hz and 8 Hz 
using a 4th order Butterworth filter. This step removes the 
high-frequency noise caused by abrupt finger movement and 
eliminates any DC offset present in the signal. To ensure the 
reliability of the data for BP measurement, the first 5s and last 

 
 
Fig. 2. Block diagram of the proposed BP measurement method. 
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Fig. 1. Continuous 1-D extraction from R, G, and B channels 
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10s data of the PPG signal are excluded from consideration. 
It is assumed that the central 45s data contain fewer artifacts 
and provide a more representative portion of the signal.   
 
The PPG signal is then segmented based on the detection of 
successive onsets (O) landmarks using peak detection 
method. For the peaks to be considered valid, its height must 
exceed the threshold of 0.5	𝜎 ± 𝜇, where 𝜎 is the standard 
deviation and 𝜇 is the mean of the PPG signal. Additionally, 
the distance between two peaks should be greater than 10 
samples. The signal segment between two successive onset 
points corresponds to one heartbeat and it is referred to as a 
PPG segment. Within a PPG segment the systolic (S) and 
diastolic (D) peaks corresponds to the contraction and 
relaxation phases of the heart, respectively. The valley point 
between S and D peaks is known as notch (N)[19] To detect 
S, N, and D peaks, the peak detection method is employed 
again within each PPG segment. The amplitudes of the 
detected peaks are used to label the PPG segment as either 
‘good’ or ‘bad’.  
 
The literature on PPG based BP measurement suggests that 
the features extracted PPG and its derivatives carry 
information related to BP. In order the capture the BP related 
information from PPG signal, this work proposes the use of 
filter bank that contains derivative filters. The filter bank is 
designed to perform numerical differentiation up to the 4th 
order. The output signal length will be smaller compared to 
the input signal length due to numerical differentiation 
operation. In the training dataset, the average length of the 
‘good’ PPG segments, which is the input to derivative filter 
bank is  21.05 ± 5.61 samples. The length of the resulting 
derived signal will be smaller compared to the original length. 
The length of the resulting derived signal varies depending on 
the order of the differentiation. To ensure the uniformity in 
the length of the derived signal, zero padding is applied. The 
uniform length of the signal is made equal to 50 samples and 
the zero-padded sequences are denoted as PPG0, PPG1, 
PPG2, PPG3, and PPG4 where the number in the suffix 
indicates the order of the derivative operation (as shown in 
Fig. 2).  
 
2.2.2. LSTM Network  
To extract the underlying blood pressure-related information 
from the PPG sequence and its derivatives, a LSTM-based 
neural network model is proposed. The architecture of the 
proposed model is depicted in Fig. 3.  
 
The zero-padded uniform length signals, namely, PPG0, 
PPG1, PPG2, PPG3, and PPG4 serves as input to the LSTM 
network shown in Fig. 3 The proposed network has two layers 
of LSTM network, and both the layers are followed by batch 
normalization for improved performance. Subsequently, a 
dropout layer is incorporated for regularization purpose, 
which is then followed by a dense layer with two output nodes 
representing systolic and diastolic BP values. The PPG-based 

BP measurement method is formulated as a regression 
problem. The mean squared error given in (1) is utilized as a 
loss function to optimize the weights of the network.  
In the equation (1), 𝑁 represents the total number of training 

samples, 𝑦% and 𝑦2% represents the actual and predicted BP 
values of 𝑖$#	sample, respectively. The proposed LSTM 
network is trained with a learning rate of 0.003 using Adam 
and the maximum number of training epochs was set to 50 
with early stopping to prevent overfitting. 
 

3. RESULTS 

The proposed rPPG-based BP measurement method is trained 
using a dataset of 1,297 samples collected from 18 different 
smartphones. The trained method is then tested on the 111 
PPG samples collected from 4 different smartphones. The 
contraction and relaxation cycle of the heartbeat is captured 
by ‘good’ PPG segments and the BP measured using a PPG 
segment is referred to as beat-to-beat BP. In this work, 
training and test dataset contains, 16,873 and 2059 ‘good’ 
PPG segments, respectively. These segments are used to train 
and evaluate the performance of the rPPG-based BP 
measurement, respectively.  
 
3.1. Performance Evaluation of the proposed method 
The learning of the LSTM network is evaluated by 
monitoring the training and validation loss, measured in 
terms of Mean Absolute Error (MAE) and Mean Square Error 
(MSE). These losses are plotted using blue and orange colors, 
respectively, in Fig. 4. It can be observed that the losses 
decrease from their initial values and converge to a stable 
lower value. This indicates that the trained LSTM model is a 
good fit for the data and has learned the underlying pattern 
and relationships effectively.The trained LSTM model using 

 
 

Fig. 3. LSTM architecture for PPG based BP measurement. 
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Fig. 4. Training loss of the proposed LSTM network. 
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derived signals up to order 2 (i.e., PPG0 to PPG2, model-3) 
achieved the best RMSE on the test data. For systolic blood 
pressure, the model achieved an RMSE of 17.79	𝑚𝑚𝐻𝑔, 
while for diastolic pressure, the RMSE is 10.83	𝑚𝑚𝐻𝑔. In 
comparison, the BP model trained using PPG0, PPG0 to 
PPG1, PPG0 to PPG3 and PPG0 to PPG4 achieved higher 
RMSE values, indicating lower accuracy in predicting blood 
pressure values. Therefore, model-3 trained with PPG0 to 
PPG2 demonstrates superior performance in estimating 
systolic and diastolic blood pressure values compared to other 
models.  
The scatter plot in Fig. 5 represents the absolute error of the 

BP model trained using PPG0, PPG1, and PPG2. The blue 
and red points in the scatter plot represents absolute error for 
diastolic and systolic BP, respectively. The scatter plot 
reveals that the absolute error is minimal for BP values within 
the normal range of diastolic (~80 mmHg) and systolic (~ 120 
mmHg) blood pressure. This trend is similar to the absolute 
error observed in the BP measurement method using 125 Hz 
PPG dataset (MIMIC) [20]. The observed trend is attributed 
to the non-uniform distribution in the ground truths BP 
values. Approximately 80% of the PPG samples lie within the 
normal BP, resulting in higher absolute error when measuring 
abnormal BP values. This suggests that the limited 
performance of BP measurement method is influenced by the 
non-uniform data distribution of the ground truth BP values. 
Addressing this issue and improving the performance for 
abnormal BP values can explored as a potential area of future 
work.  
 
3.2. Benchmarking the BP measurement method 
The performance of the proposed rPPG-based BP 
measurement method is benchmarked against the US 
Association for Advancement of Medical Instrumentation 
(AAMI) and British Hypertension Society. The mean error of 
the proposed method for the systolic BP range of 115 −
125	𝑚𝑚𝐻𝑔 and 80 − 90	𝑚𝑚𝐻𝑔 is reported to be less than 
5 ± 8	𝑚𝑚𝐻𝑔 (Table I). This indicates that the average 
difference between the predicted and ground truth BP values 
fall within an acceptable range of AAMI. The percentage of 
cumulative mean error for the same systolic and diastolic BP 
range is reported in Table II. The proposed method achieves 
cumulative mean error greater than 60% for mean error <

5	𝑚𝑚𝐻𝑔 , greater thank 85% for mean error < 10	𝑚𝑚𝐻𝑔, 
and greater than 95% for mean errors < 15	𝑚𝑚𝐻𝑔. This 
indicates that the proposed method is graded as A as per BHI 
criteria within the said range of BP values.  

3.3. Comparison of Results  
To the best of our knowledge, the existing PPG-based BP 
measurement methods are reported only on the PPG data with 
fixed 125 Hz sampling rate. The proposed work is first of its 
kind to test the PPG based BP measurement on a real-world 
dataset. To ensure a fair comparison, existing methods that 
utilize PPG and its derivates ([12, 17, 18]) are implemented 
on the same dataset used in this work. The average RMSE 
achieved on the test dataset using different methods is 
reported in Table III. 

According to the reported RMSE in Table III, the proposed 
method achieves an RMSE of 14.78	𝑚𝑚𝐻𝑔 and 
8.39	𝑚𝑚𝐻𝑔 for systolic and diastolic BP, respectively. The 
proposed method achieves lowest RMSE compared to the 
existing methods. These results highlight the effectiveness of 
the proposed method and its potential to provide more 
accurate and reliable BP measurement in real-world 
scenarios.  

4. CONCLUSION 

In this paper, we present a groundbreaking approach to 
estimate BP using any smartphone. The proposed method 
incorporates robust features that are not affected by the 

 
Fig. 5. Absolute error achieved between predicted and ground 
truth BP values on the test data.  
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TABLE I. MEAN ERROR OF BP MEASUREMENT – AAMI. 

Systolic BP Diastolic BP 
Range 

(mmHg) 
MAE Range 

(mmHg) 
MAE 

< 115 16.99 ± 7.50 < 80 12.09 ± 5.77 
115 − 125 𝟐. 𝟎𝟑 ± 𝟏. 𝟖𝟎 80 − 90 𝟑. 𝟒𝟑 ± 𝟐. 𝟑𝟐 
> 125 19.12 ± 10.06 > 90 15.83 ± 6.92 

Full Range 14.78 ± 19.87 Full Range 8.39 ± 6.84 
 

TABLE II. PERCENTAGE CUMULATIVE MEAN ERROR – BHI. 

          MEAN ERROR à ≤ 	5 ≤ 	10	 ≤ 	15	 
Systolic 
(mmHg)  

< 115 11.57	% 29.35	% 77.76	% 
115 − 125 𝟗𝟕. 𝟖𝟕	% 𝟏𝟎𝟎	% 𝟏𝟎𝟎% 
> 125 17.62	% 25.29	% 49.43	% 

Full range 13.84	% 39.1	% 58.23	% 
     

Diastolic 
(mmHg) 

< 80 0.71	% 23.31	% 45.01	% 
80 − 90 𝟗𝟓. 𝟕𝟒	% 𝟏𝟎𝟎. 𝟎% 𝟏𝟎𝟎. 𝟎% 
> 	90 17.62	% 29.12	% 31.80	% 

Full range 40.40% 62.07	% 85.19	% 
 
 

 

TABLE III. COMPARISON OF RMSE.  

 
BP Measurement Method 

Average RMSE 
Systolic BP 
(mmHg) 

Diastolic BP 
(mmHg) 

InstaBP [10] 18.43 12.77 
LSTM + LASSO [15] 19.30 10.85 
GRU [16] 19.30 10.85 
Proposed Method 𝟏𝟕. 𝟕𝟗 𝟏𝟎. 𝟖𝟑 
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variations in the hardware dependent sampling rate and are 
closely related to underlying physiological processes. This 
work utilizes diverse real-world dataset collected from 
multiple smartphones using dedicated mobile application, 
ensuring generalizability of the method across various mobile 
platforms. The proposed rPPG-based BP measurement 
method demonstrates promising results, achieving an average 
RMSE of 17.79 mmHg and 10.83 mmHg for systolic and 
diastolic BP, respectively. Notably, proposed method meets 
AAMI and BHI performance criteria for measuring BP in 
normal ranges. In future, work needs to be done to address 
the imbalance nature of the dataset and conduct large scale 
clinical trials to further validate the method. These future 
effors will enhances the robustness and reliability of the 
proposed method, ultimately advancing the field of rPPG 
based BP measurements on smartphone. 
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