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Abstract—As the number of automatic tools based on machine
learning (ML) and resting-state electroencephalography (rs-EEG)
for Parkinson’s disease (PD) detection keeps growing, the assess-
ment of possible exacerbation of health disparities by means
of fairness and bias analysis becomes more relevant. Protected
attributes, such as gender, play an important role in PD diagnosis
development. However, analysis of sub-group populations stem-
ming from different genders is seldom taken into consideration
in ML models’ development or the performance assessment for
PD detection. In this work, we perform a systematic analysis
of the detection ability for gender sub-groups in a multi-center
setting of a previously developed ML algorithm based on power
spectral density (PSD) features of rs-EEG. We find significant
differences in the PD detection ability for males and females at
testing time (80.5% vs. 63.7% accuracy) and significantly higher
activity for a set of parietal and frontal EEG channels and
frequency sub-bands for PD and non-PD males that might explain
the differences in the PD detection ability for the gender sub-
groups.

Index Terms—fairness analysis, Parkinson’s disease, EEG,
machine learning, classification, multi-center

I. INTRODUCTION

Machine learning (ML) advances are facilitating and ac-
celerating the development of automatic tools aimed to aid
clinicians in their daily tasks [1]. As the number of ML tools
continues to grow and affect high-stake decisions, fairness
analysis and bias assessment are becoming equally important
to ensure that algorithms do not create or amplify existing
biases in the population under analysis. On the contrary, calls
have been made to emphasize getting an equally accurate
performance for sub-populations stemming from, for example,
different genders or ethnicities [2], [3].

Parkinson’s disease (PD) is a slowly progressive neurode-
generative disorder, primarily manifesting in typical parkin-
sonian motor symptoms [4]. Currently, no diagnostic tests
allow clinicians to make a definitive early diagnosis. Elec-
troencephalography (EEG) presents a non-invasive and low-
cost alternative method that has been shown to be a reliable
clinical research tool for PD [5]. In particular, quantitative
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EEG (qEEG) and spectral features, such as power spectral
density (PSD), have garnered considerable interest due to the
association of their changes with the progression of PD [6],
[7].

Gender, along with aging, genetics, environment, and the
immune system, play an essential role in the development
and phenotypical expression of PD [8]. Research has shown
that the risk of PD is higher for men [9], although there is
a higher mortality rate and faster progression of the disease
for women [10]. Further, men and women with PD tend to
have different motor and non-motor profiles [11]. For instance,
imaging studies have reported significant differences for PD
males and females in executive functions, more atrophy in
cortical regions for males, cortical thinning in post-central and
pre-central regions [12], and reduced global cognition for PD
males than females [13].

Although a considerable amount of work has been carried
out in integrating rs-EEG with ML for PD detection [14],
[15], fairness and sub-group analysis of the developed tools is
seldom conducted, despite the relevance of protected attributes
such as gender [9]. Works in other fields, such as medical
imaging, have already shown significant disparities in the
diagnosis performance across datasets, tasks, and protected
attributes [16]. For example, a significant underdiagnosis
was found in chest X-ray classification algorithms for black
females, potentially resulting in delays in treatment [16].
Moreover, a significant decrease in diagnosis performance was
reported for different genders using chest X-ray images [17].

In this work, we systematically study the detection ability
for the different genders of a previously developed PD detec-
tion model based on PSD features of rs-EEG [18], where the
analysis of gender sub-groups is motivated by their relevance
from a clinical perspective. To the best of our knowledge,
this is the first study attempting to understand the effect of
a protected attribute such as gender in rs-EEG-based ML
models.

We make the following contributions: (i) a systematic
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Fig. 1: Breakdown of subject classes in train (N=118) and test (/N=51) sub-samples. The population is divided into two gender sub-groups

(males and females) followed by a division into disease-stage groups

analysis of an ML model performance [18] trained in a
gender-balanced regime for different gender sub-populations
(Fig. 1); (i1) a qualitative analysis of the influence of Unified
Parkinson’s Disease Rating Scale (UPDRS) III score and PD
duration on the exhibited disparities; (iii) an analysis of the
contribution of the different EEG channels and frequency sub-
bands in the disparities. We make our code publicly available
on GitHub.

We find significant differences in the detection ability for
males and females at testing time. Further, we find that those
differences might be explained by higher activity in a set of
frequency sub-bands of CP1, CP2, CP5, CP6, Fpl, Fp2, and
P3 channels for PD males when compared to PD females and
in CP5, FC2, Fpl, and Fp2 channels for non-PD males and
females. Our findings suggest that different frequency sub-
bands and channels might have a higher expressiveness for
PD detection depending on gender.

II. MATERIALS AND METHODS
A. Data

1) Study population: We include rs-EEG recordings of 169
subjects (84 PD and 85 non-PD) from four datasets collected
at different research centers in three countries: Colombia
(Medellin) [19], Finland (Turku) [20], and the USA (Iowa
City and San Diego) [21], [22]. PD and non-PD subjects
were matched by age in all the datasets. Furthermore, subjects
were matched by gender, level of education, and cognitive
performance in all the datasets except Turku.

TABLE I: Demographic and clinical characteristics (mean+SD) of
PD and non-PD subjects of each dataset. y=years, m=months.

Subjects Age,y #9 (%) Duration, m  UPDRS Il

Towa Cite PD (n=14) 705(8.6) 8(572) 669(38.7)  134(6.6)
OWatY  hon-PD (n=14)  70.5(8.6)  8(57.2) - -

" PD (n=36) 635 (3) 12(33) 616374  308(12)
Medellin | PD (n=36) 633(6.2)  12(33) . ;

) PD (n=15) 63382 8(33) 53605  32.7(104)
SanDiego 1\ PD (n=16)  63.5(9.7)  9(56.2) - .

Tk PD (n=19) 9677 11(579)  80563)  27.6(169)
urku non-PD (n=19)  67.5(64) 12(63.2) - -

We present each dataset’s available demographic and clin-
ical characteristics of PD and non-PD subjects in Table I as
mean and standard deviation (SD). Worthy of note that there
is no reported disease duration for two female subjects from
the Turku dataset.

based on UPDRS III stage scores and disease duration in months.

Fig. 2: EEG channels included in the analysis.

2) Acquisition: The rs-EEG recordings were acquired with
the eyes closed for Medellin, San Diego, and Turku subjects.
In contrast, the subjects from lowa City had their eyes open.
For PD subjects from Iowa City, Medellin, and San Diego,
the rs-EEG recordings were from the ON phase of levodopa
sessions, whilst, for Turku, only 6 PD subjects participated in
EEG acquisition in the ON phase, while the remaining were
in the OFF phase. All the datasets had 29 channels in common
that were included in the analysis: AF3, AF4, C3, C4, CPI,
CP2, CP5, CP6, Cz, F3, F4, F7, F8, FC1, FC2, FC5, FC6,
Fpl, Fp2, Fz, O1, 02, Oz, P3, P4, P7, P8, T7, and T8 (Fig.

‘3‘) Pre-processing: We applied a robust average re-
referencing and adaptive line-noise correlation combined with
detecting and interpolating noisy channels. The recordings
were high-pass filtered at 1 Hz and decomposed using wavelet-
based independent component analysis (ICA) to eliminate
artifacts. We applied a low-pass filter at 30 Hz followed
by segmentation of the signals into epochs of five-second
length. Finally, we applied an additional rejection of artifact-
compromised epochs. The common number of remaining
epochs across all subjects within each dataset was included
in the analysis.

B. Parkinson’s Disease (PD) Detection Model

A detailed description of the steps followed to obtain the
PD detection model used in this work can be found in [18].
For the sake of simplicity, we provide a brief description to
give a general idea of the model development and design:

1) Feature extraction and harmonization: For each epoch,
relative PSD values were computed by dividing PSD values
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TABLE II: Analysis of logistic regression (LR) model’s performance (mean [95% CIJ) for different gender sub-groups. Each result is
presented in terms of global and center-wise performances, which are presented together with the number of subjects in their corresponding

test sub-samples. f=females and m=males.

Accuracy, % Recall, % Specificity, % Precision, % Fi, % AUC

global (19f, 32m) 73.2 [66.5 79.9] | 68.9 [59.8 78.0] | 77.4 [67.3 87.5] 75.0 [66.2 83.8] 71.6 [64.4 78.7] | 0.73 [0.66 0.80]
Iowa City (3f, 5m) | 62.7 [52.2 73.3] 25.5 [4.5 46.5] 100 [100 100] 78.0 [26.6 129.4] 37.6 [9.4 65.8] 0.63 [0.52 0.73]
mixed Medellin (5f, 17m) | 68.2 [57.2 79.2] | 72.6 [57.2 88.1] | 63.8 [46.5 81.2] 67.5 [55.7 79.2] 69.4 [58.5 80.3] | 0.68 [0.57 0.79]
San Diego (3f, 6m) | 77.3 [66.1 88.5] | 75.0 [75.0 75.0] | 79.2 [59.0 99.4] 77.3 [57.8 96.9] 75.4 [66.0 84.7]1 | 0.77 [0.67 0.87]
Turku (8f, 4m) 84.2 [72.1 96.4] | 81.2 [62.5 99.8] 87.3 [73.3 101] 87.2 [73.6 101] 83.3 [69.7 96.9] | 0.84 [0.72 0.96]
global (32m) 80.5 [72.0 89.0] | 88.4 [78.5 98.2] | 74.3 [61.6 87.1] 73.6 [63.2 84.0] 80.0 [71.8 88.1] | 0.81 [0.73 0.90]
Iowa City (5m) 80.6 [63.6 97.6] 51.5 [9.0 94.0] 100 [100 100] 78.0 [26.6 130] 60.3 [17.0 104] 0.76 [0.54 0.97]
males Medellin (17m) 70.9 [57.8 84.1] 87.0 [71.9 102] 59.7 [39.5 79.9] 61.5 [48.4 74.5] 71.4 [59.8 83.0] | 0.73 [0.61 0.86]
San Diego (6m) 83.3 [66.8 99.9] 100 [100 100] 66.7 [33.6 99.8] 78.1 [58.5 97.7] 86.8 [74.6 99.1] 0.83 [0.67 1.0]

Turku (4m) 100 [100 100] 100 [100 100] 100 [100 100] 100 [100 100] 100 [100 100] 1.0 [1.0 1.0]
global (19f) 63.7 [54.1 73.3] | 46.1 [32.0 60.2] | 88.0 [74.8 101] 85.0 [68.9 101] 58.9 [45.6 72.3] | 0.67 [0.58 0.76]
Iowa City (3f) 33.3 [33.3 33.3] 0.0 [0.0 0.0] 100 [100 100] 0.0 [0.0 0.0] 0.0 [0.0 0.0] 0.50 [0.50 0.50]
females Medellin (5f) 60.8 [38.1 83.5] | 51.0 [22.6 79.4] 100 [100 100] 94.0 [64.5 124] 64.1 [35.4 92.8] | 0.76 [0.61 0.90]
San Diego (3f) 66.7 [66.7 66.7] 0.0 [0.0 0.0] 100 [100 100] 0.0 [0.0 0.0] 0.0 [0.0 0.0] 0.50 [0.50 0.50]
Turku (8f) 74.5 [57.0 92.0] 74.2 [48.1 100] 74.8 [49.3 100] 76.9 [55.5 98.2] 73.7 [543 93.1] | 0.74 [0.57 0.92]

within a given frequency sub-band by the total signal power. In
total, six sub-bands were applied: 0 [1—4) Hz, 6 [4—8) Hz (ad-
ditionally divided into slow-6 [4—5.5) Hz and fast-6 [5.5—8)
Hz), o« [8—13) Hz, and § [13—30) Hz. Besides, a/6 PSD
ratio is obtained. The resulting PSD values of all the epochs
were further averaged, log-transformed, and harmonized using
the modified ComBat harmonization model, producing 203
features (7 PSD valuesx29 channels) per subject.

2) Classification framework: The overall sample was ran-
domly divided into train and test sub-samples with a 70/30%
split stratified by center and diagnosis (Fig. 1). The best-
performing model was selected from several ML classifiers
based on the validation accuracy of a subject-wise binary
classification of PD or non-PD obtained by a nested 5-fold
cross-validation (CV) loop. In addition, we performed feature
selection by means of a univariate k-feature selection based
on ANOVA F'-value. The selection of model, hyperparameter
space, and optimal number of features was evaluated in terms
of average and 95% confidence intervals (CIs) for accuracy,
recall, specificity, precision, Fj score, and area under the
receiver operating characteristic (ROC) curve (AUC).

C. Fairness Analysis

1) Gender sub-group performance: We analyze the PD
detection performance for male and female gender sub-groups
(Fig. 1). At this point, we would like to emphasize that
developing a detection model is not the primary concern of
the study, nor do we claim any contribution in that regard.

We start by replicating the original train and test sub-
samples obtained by a 70/30% stratified split by center and
diagnosis. We note that the original dataset has an equal
presence of PD and non-PD subjects (Fig. 1), resulting in a
balanced representation of them in both train and test sub-
samples. In the remainder of the article, we focus on the
test sub-sample. We perform the gender sub-group analysis
by means of a stratified bootstrapping approach with n=100
replicates with replacement.

Debiasing sub-group estimation via bootstrapping: Lim-
itations in some of the existing sub-group analyses include
random splitting of the original dataset that was already
presenting bias in the form of a higher prevalence of some

of the sub-groups. We explore the use of gender, diagnosis,
and center as stratification parameters to construct a test
sub-group representative of the population of interest via
bootstrapping. We perform n=100 replicates with replacement
and analyze the results for male and female sub-groups in
terms of accuracy, recall, specificity, precision, F; score, and
AUC.

We present the results for the initial splitting results [18]
and each gender sub-group. Further, we present the rounded
confusion matrix for the mixed, male sub-group, and female
sub-group classifiers averaged over the n=100 bootstrap repli-
cates.

2) Qualitative sub-group analysis of other attributes: We
seek to understand whether misclassifications in gender sub-
groups are correlated with differences in UPDRS III stage
scores and disease duration. Since some of the included
research centers use different versions of the UPDRS III
stage, we apply a simple conversion rule [23] to obtain
Movement Disorder Society UPDRS (MDS-UPDRS) III from
UPDRS III stage scores. Further, for the sake of simplicity, we
trichotomize subjects based on the scores: onset stage if score
< 20 [24], mild stage if 20 < score < 35, and severe stage if
score > 35. Similarly, subjects are trichotomized based on the
PD duration (in months): onset stage if duration < 50 months,
mild stage if 50 < duration < 100 months, and severe stage
if duration > 100 months.

3) rs-EEG feature relevance for gender sub-groups: In the
last step of our fairness analysis, we focus on explaining the
gender sub-group differences through the expressiveness in the
detection framework of the PSD features extracted from the
rs-EEG for each gender sub-group. With that in mind, we
re-train the original model with a data sub-set containing
only males, and we repeat the same process for females,
obtaining two models specialized in each gender sub-group.
The proportions of the train and test data sub-sets are kept
at 70/30%, and we apply the original model development
stratification strategy: center and diagnosis. We fix the male
and female model hyperparameters and focus, exclusively, on
the feature selection process by means of ANOVA F-value. We
obtain the k-highest scoring features for the gender-specialized
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Fig. 3: Confusion matrices representing the test performances of the trained logistic regression (LR) model to classify PD and non-PD
subjects using mixed 3a, only males 3b, and only females 3c test sub-samples.

models with the best validation results through a 5-fold CV
process.

At this point, given our original biased model and our
gender-specific models that keep all the original model design
choices except for the feature selection process, we hypothesize
that there are significant differences in rs-EEG features from
the frontal and parietal regions of the brain [25], [26] and
that the three classifiers commonly select these features as
high-scoring features for the PD classification. Further, we
also hypothesize that the features that present differences in
average values between male PD, female PD, male non-PD,
and female non-PD can explain the differences in sub-group
performance of the original classifier.

To corroborate our hypotheses, we perform t-test followed
by a false discovery rate (FDR) correction for male and female
sub-groups of the common k-highest scoring features from the
frontal and parietal regions of the brain. Before accounting for
corrections, we consider p < 0.05 to be significant. We apply
FDR at the 0.05 significance level. Finally, we analyze the
rs-EEG features with respect to the scalp position (channel
position) and PSD sub-bands. We present the results in terms
of mean and 95% CI.

n
S

=
]

Hl total
3 misclassified

@

number of subjects
o 3
number of subjects

PDonset PDmild PDsevere non-PD
subject class

PDonset PDmid PDsevere non-PD
subject class

Il total
15 1 misclassified

number of subjects
3
number of subjects

PDonset PDmild PD severe non-PD
subject class

PDonset PDmild PD severe non-PD
subject class

(a) males (b) females

Fig. 4: Bar charts representing the number of misclassified PD divided
into different groups based on UPDRS III scores (first row) and
disease duration (second row). Misclassified non-PD subjects are also
presented.

III. RESULTS AND DISCUSSION

As depicted in Table II, we present the bootstrapped gender
sub-group PD detection analysis in terms of the original
classifier with matched genders and gender as a protected
attribute, only male and only female sub-group subjects. We
present the results for all the datasets together (global) and
the subjects of each dataset separately. Overall, there is an
evident degradation in PD detection performance for females
compared to males, reflected by a lower accuracy, recall,
F score, and AUC. The same trend is observed for all the
individual contributing centers. Confusion matrices (Fig. 3)
reveal that the model’s PD detection for the male sub-group
results in a high type I error (28%), two times as high as the
type I error in the female sub-sample (13%). In comparison,
detecting PD in the female sub-group results in a high type II
error (55%), almost four times as high as the type II error in
the male sub-group (15%).

The qualitative analysis presented in Fig. 4 reveals that for
males, the misclassified PD subjects belong to either the mild
stage in terms of disease duration or onset stage based on
UPDRS I scores. All the subjects from the severe stage
groups are correctly detected by the model. This might indicate
a lower model’s detection of early-mild stages of PD for males.
On the other hand, the misclassified PD female subjects have
either the onset or mild stages based on UPDRS III scores and
onset, mild or severe stages based on the disease duration.
Regardless of the disease stage, the model presents a clear
underperformance for PD detection in female subjects when
compared to males.

The best validation results are achieved with k=188 and
k=181 highest scoring features for the male and female gender
sub-group models, respectively. Out of these features, 169 are
selected as common features for both models, and channels
from both the frontal and parietal brain regions are further
analyzed to limit pairwise comparisons and on the basis of
previous research results. Table IIT presents mean and 95% CI
values of the significantly different (before FDR correction)
common PSD features with their corresponding channel and
frequency sub-band for PD and non-PD subjects for each
gender sub-group. We note that after FDR correction, no
significance is found in the differences.
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Given the log-transformation of our values and the ampli-
tude range of the original rs-EEG recordings, higher mean
absolute values might be indicative of lower activity for PD
and non-PD in the channel and sub-band whilst smaller mean
absolute values might be indicative of higher activation in
the channel and sub-band under analysis. In particular, we
can observe that overall, PD males have higher activity when
compared to PD females in the parietal and frontal channels
and resulting sub-bands of the analysis (Table III). In a similar
way, non-PD males show a higher activity in selected channels
and sub-bands when compared to non-PD females (Table III),
but not by a large margin.

TABLE III: Mean+SD values of the significantly different common
features with their respective channels and frequency sub-bands for
male and female subjects. p-values are presented non-corrected.

Channel Sub-band Gender Mean+SD 95% CI
o male | -0.77£0.13 | [-0.93-0.61]
female | -0.964+0.22 | [-1.24-0.69]
) male | -091F£0.17 | [1.12-0.71]
Pl female | -1.134023 | [-1.41-0.85]
5 male | -0.6720.25 | [-0.97 -0.36]
female | -0.45+0.19 | [-0.68-0.22]
N, male 026X025 | [-0.060.56]
female | 0474024 | [0.170.76]
9 male | -0.882027 | [-1.22-0.55]
female | -1.0040.25 | [-1.31-0.70]
P male | -L.00E031 | [-1.38-0.62]
— female | -1.144027 | [-1.47-0.81]
3 male | -0.62£030 | [-0.99-0.24]
female | -0.4240.15 | [-0.60-0.23]
N, male 0272026 | [-0.050.59]
female | 0494022 | [0.220.75]
male | -0.72£0.16 | [-0.91-0.53]
PD CP5 /0 female | -0.8940.30 | [-127-0.52]
male | -0.00£022 | [-1.17-0.64]
CP6 /0 female | -1.0040.26 | [-1.35-0.71]
ol N male | -0.8120.25 | [-1.I1-0.50]
P female | -0.62-£0.24 | [-0.93-0.32]
o male | -0.840.16 | [-1.05 -0.63]
oo female | -0.994£029 | [-1.35-0.63]
P N, male 0212032 | [-0.190.61]
female | 0.43£037 | [0.030.89]
Y male | -0.56£0.29 | [-0.92-021]
female | -0.4640.16 | [-0.66-0.26]
Jow0 male 0302030 | [-0.070.66]
P3 female 0.45+0.23 [0.17 0.73]
) male | -0.79F£0.16 | [-0.99-0.59]
female -0.92+0.20 [-1.17 -0.67]
3 male | -0.91F£0.18 | [-1.13-0.69]
female -1.04+0.24 [-1.33-0.75]
male | -L.11£030 | [-1.48-0.74)
CP5 8 female | -1.0940.15 | [-1.28-0.90]
male | -1.I0£0.26 | [-1.42-0.78]
non-PD Fpl B female | -1.12+0.17 | [-1.33-0.92]
o Jowd male | -0.97£023 | [-1.26-0.69]
P female | -0.98+0.12 | [-1.12-0.84]

IV. CONCLUSION

Different motor and non-motor profiles of PD and non-PD
in men and women might induce different rs-EEG profiles,
which are harder to detect in women due to their overall
lower activity in parietal and frontal channels. Our findings
corroborate the exacerbation of gender disparities found in
other studies. As depicted by our systematic analysis, measures
to ensure fair ML development for PD detection are required.
The findings can help to provide a more personalized diagnosis
using rs-EEG with ML by accounting for gender differences
in rs-EEG parietal and frontal activity. Limitations of the study
include the use of retrospective data, a limited amount of
patients, and statistical power.
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