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Abstract—Nowadays, the field of healthcare delivery is under-
going a revolutionary transformation through the implementation
of real-time health monitoring. This innovative approach utilizes
everyday environments, particularly leveraging the latest wear-
able health devices, to enable the continuous monitoring of indi-
viduals irrespective of their location or time. This breakthrough
allows for the timely identification and prevention of numerous
diseases. Among the array of technologies integrated into wear-
able devices to facilitate ongoing health monitoring, one of the
most significant techniques is Photoplethysmography (PPG). PPG
is a non-intrusive, cost-effective, easily implementable, and thus
convenient method for tracking physiological signals, including
oxygen saturation in the bloodstream, heart rate variability,
respiration rate, and more. Due to these merits, PPG has gained
extensive usage across various health applications, especially in
commercially available wearable devices. Nevertheless, despite
its advantages, PPG suffers from a primary drawback of being
highly vulnerable to motion artifacts and environmental distur-
bances. These factors significantly hinder the efficacy of PPG-
based applications, particularly when recording PPG signals
through wearable devices. Consequently, in order to ensure
reliable measurements, it is crucial to assess the quality of the
signals and discard unreliable ones. Signal quality assessment
emerges as the foremost priority in this context. This paper
presents an innovative method for evaluating the quality of PPG
signals, accomplished through a fusion of Gramian Angular
Fields (GAF) and Visual Transformer (ViT) techniques. The
results demonstrate that the proposed approach achieves a
competitive accuracy in predicting signal quality when compared
to the current state-of-the-art methods.

Index Terms—photoplethysmography, digital health, Gramian
angular fields, signal quality, vision transformers

I. INTRODUCTION

The integration of wearables and Internet of Things (IoT)
systems has significantly propelled the progress of remote
health monitoring. These systems employ specialized in-
frastructure for sensing, communication, and computation
to ensure continuous monitoring of individuals’ health and
prompt decision-making. Crucially, wearable devices like
smartwatches and smart rings play a pivotal role in this
process, enabling the continuous acquisition of biomedical
signals such as Electrocardiogram (ECG) and PPG [1]. PPG,
an optical technique, non-invasively captures variations in
blood volume by utilizing the properties of light transmission
and reflection through a light sensor conventionally posi-
tioned on the finger or wrist [1]. The changes observed
in these collected biosignals provide diverse physiological
information, including cardiac oscillation, oxygen saturation,

and respiration rate, facilitating various clinical applications
such as pain assessment, vascular stiffness evaluation, and
cuffless blood pressure estimation [2]. Due to its simplicity
of implementation and wide range of applications, PPG is
extensively incorporated into diverse wearable devices [3].
However, the primary limitation of PPG lies in its suscep-
tibility to noise, particularly arising from motion artifacts that
obscure or distort the information encoded within the signal.
This vulnerability can lead to erroneous predictions of health
status, misdiagnosis, and other issues in monitoring, which
are unacceptable in the context of healthcare applications.
Consequently, the development of a reliable PPG quality
assessment method is crucial to discern between dependable
and unreliable biosignals and prevent any misinterpretation.

The automatic assessment of quality using objective metrics
is an extensively explored field across a diverse range of signal
types [4]–[7]. In the particular scope of this paper (i.e., the
assessment of 1D physiological signals), the primary objective
of a quality assessment method is to automatically classify
signals as either “good” or “bad”. To achieve this classification
task, various methods have been proposed in the literature,
including waveform morphological analysis (referred to as
template matching [2] or rules [8]) and Machine Learning
(ML) techniques. Rule-based approaches involve extracting
diverse statistical features from the peaks and valleys in the
signals, such as pulse amplitude, width, slope, entropy, power,
skewness, and kurtosis. These features are used to assess signal
quality based on specific criteria. These methods compare
each pulse waveform to a template representing a high-quality
signal and establish a correlation to differentiate between
“good” or “bad” waveforms. Thresholds are employed to
distinguish between the waveforms. Rule-based approaches
offer the advantage of computational simplicity and speed.
However, they often suffer from inaccuracies and difficulties
in generalization across different implementations.

Learning-based methods for assessing signal quality center
around the utilization of data and classification algorithms
to construct predictive models. Machine learning (ML) algo-
rithms encompass a broad spectrum, ranging from support
vector machines [9] to deep neural networks [10]. More
recently, novel learning-based approaches have emerged that
leverage the spatiotemporal information embedded within the
PPG signal by transforming the one-dimensional waveform
into a two-dimensional representation. For instance, Roh &
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Shin [2] propose the transformation of one-dimensional PPG
signals into a two-dimensional image using recurrence plots,
enabling the characterization of the system’s behavior in phase
space. Similarly, Chatterjee et al. [11] convert one-dimensional
signal segments into image files, which are then fed as
input to a two-dimensional Convolutional Neural Network
(CNN) architecture, thereby leveraging the strengths of image
classification techniques.

In this manuscript, we present a novel technique adopting
the aforementioned strategy. It assesses the quality of PPG
signal by expanding the one-dimension PPG into a two-
dimensional GAF to build a deep learning model to achieve an
efficient assessment of signal quality. Using the GAF as input,
the method learns to differentiate ‘good’ and ‘bad’ signals by
a ViT on top of it. The proposed method is able to efficiently
recognize the waveforms that most approximately match the
ground-truth signals with proper reliable/unreliable labels.

II. PROPOSED METHOD

Figure 1 illustrates the proposed pipeline which is divided
into three steps: (1) GAF generation, (2) patchfication, and (3)
image classification that employs a Transformer-like architec-
ture over patches of the generated GAF to perform quality
index estimation. In the following subsections, we provide a
detailed description of each individual step illustrated in this
diagram.

A. Gramian Angular Field Generation

Given a PPG signal x = {x1, x2, · · · , xn} of n samples
so that all values are in the interval xi ∈ R [−1, 1]. We can
represent this signal x using polar coordinates by encoding
the value of signal amplitude as the angular cosine and the
timestamp as the radius as follows:ϕi = arccos(xi), −1 ≤ xi ≤ 1

r =
ti

N
, ti ∈ N,

(1)

where ti is the timestamp and N is a regularization factor
to stretch over the polar coordinate system. Using this polar
coordinate-based representation, we can encode the 1D signal
into an encoding map that is bijective as cos(ϕ) and monotonic
when ϕ ∈ [0, π]. It means that, for a given 1D signal, the
transformed map produces one and only one result in the
polar coordinate system with a unique inverse map. Moreover,
contrary to Cartesian coordinates, polar coordinates represen-
tations retain temporal relations. After this transformation, we
can model the GAF using the sum or the difference between
each point to describe the temporal correlation within various
time intervals. Therefore, in summary, two GAF methods
can be derived, namely Gramian Difference Angular Field
(GAFD) and Gramian Summation Angular Field (GAFS), that
are defined as follows:

GAFD = {sin(ϕi − ϕj)}i,j

=
(√

1− x2
)⊺

· x− x⊺ ·
√
1− x2

(2)

and
GAFS = {cos(ϕi + ϕj)}i,j

= x⊺ · x−
(√

1− x2
)⊺

·
√
1− x2,

(3)

where 1 is the unit row vector [1, 1, · · · , 1] with the same
length of x. After the transformation of the 1D signal into the
polar coordinate system, two types of GAFs can be defined
by the inner products ⟨x, y⟩ = x · y −

√
1− x2 ·

√
1− y2

and ⟨x, y⟩ =
√
1− x2 · y − x ·

√
1− y2. These products are

quasi-Gramian matrices since the defined functions ⟨x, y⟩ do
not satisfy the property of linearity in the inner-product space.

GAFs have multiple benefits. They provide a form of
preserving temporal dependency since time increments as the
position moves from top-left to bottom-right. They include
temporal correlation since their elements represent the corre-
sponding correlation by superposition of directions concerning
a time interval. The main diagonal is a special case that
comprises the original angular information. From this main
diagonal, it is possible to reconstruct the 1D signal from high-
level features learned by a neural network.

Figure 2 depicts how the 1D signal waveform relates to
the 2D GAF representations. The first column of this figure
(i.e., Figure 2-(a)) illustrates the waveforms of a ‘good’ and
a ‘bad’ signal. Figure 2-(b) illustrates the corresponding two-
dimensional projections of the GAF for each of them. From
these images, we can observe a noticeable visual regularity in
the projected version of ‘good’ signals. On the other hand, for
‘bad’ signals, the GAF projections present more irregularity
and chaotic visual patterns. The regularity characteristic be-
comes more apparent when we examine the similarity between
the various patches, as illustrated in Figures 2-(c), (d), and
(e). Hence, the distinction between the quality of the PPG
signals labeled as “good” or “bad” can be achieved by either
comparing their two-dimensional GAF representation and by
inter-correlating their intra-patches. Moreover, the motivation
for patchfication is also an essential part of ViT algorithm and
is more detailed in the next section.

B. Patchfication

In the proposed approach, images in Vision Transformers
(ViT) are represented as sequences, enabling the independent
learning of visual structures. The images are treated as a series
of patches, with each patch flattened into a single vector by
concatenating the channels of all pixels and linearly projecting
it to the desired embedding dimension. For the PPG signals
in this study, they are divided into windows of 3 seconds with
75 samples each and an overlap of 5 samples. As a result,
the generated 2D GAF representations correspond to images
with dimensions of 75×75 pixels. To ensure a perfect division
of the 75×75 image, patch sizes (PS) of 25×25, 15×15, and
5×5 were considered, as shown in Figure 2-(c), Figure 2-(d),
and Figure 2-(e) respectively.

C. Transformer-based Image Classification

The ViT model represents an input image as a series of
patches, like the series of word embeddings used when using
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Fig. 1. Depiction of the proposed Photoplethysmogram Signal Quality Assessment method using Gramian Angular Fields and Vision Transformers.

(a) Waveform (b) GAF (c) PS=25 (d) PS=15 (e) PS=5
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Fig. 2. Example of signals and their corresponding GAF encoding maps. A ‘good’ signal (a) produces symmetric encoding maps with a more redundant
pattern. On the other hand, a ‘bad’ signal (b) generates asymmetric encoding maps with less redundancy and higher visual variation. The last three columns
depict the effect of patchfication as function of different patch sizes (PS).

transformers to text, and directly predicts class labels for the
image. This model applies the Transformer [12] to the image
classification task as proposed by Dosovitskiy et al. [13].
The model architecture is almost the same as the original
Transformer but with a twist to allow images to be treated
as input, just like natural language processing.

Figure 3 depicts an overview of the ViT model. Its core, the
Transformer Encoder, is the same as the standard Transformer
proposed by Vaswani et al. [12]. This means that Transformer
Encoder receives as input a 1D sequence of token embeddings
and extracts features from the image, passing these processed
features into a Multiplayer Percecptron (MLP) head model for

classification. In order to handle 2D GAF images, the patches
are reshaped, flattened, and sent through a single Feed Forward
(FF) layer to get a linear patch projection so each patch can
be treated as a token, which can be input to the Transformer.

To assist with the classification bit, Dosovitskiy et al. [13]
took insights from Kenton et al. [14] by concatenating a
learnable embedding with the other patch projections (i.e.,
the original BERT’s [class] token, represented as ‘*’ in
Figure 3). Finally, the outputs of the Transformer Encoder are
then sent into a MLP to perform the quality classification.
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Fig. 3. ViT model overview. A GAF image is split into fixed-size patches, lin-
early embedded, and position embeddings are added. The resulting sequence
of vectors feeds an original Transformer Encoder (the same used by Vaswani et
al. for NLP purposes [12]). To perform the binary classification, we modified
the original Softmax activation layer by replacing it with a Sigmoid.

III. EXPERIMENTAL RESULTS

We used a dataset referred to as ‘ICON’ that was originally
developed for Inter-Beat Interval (IBI) detection purposes [8].
This dataset was originally collected with 46 volunteer sub-
jects. These subjects include 9 volunteers with permanent
Atrial Fibrillation (AF), 16 volunteers with Normal Sinus
Rhythm (NSR), and 21 volunteers with other non-specified
arrhythmias. The majority of these volunteers are older than
60 years, with a mean age of 66 years old and a median age of
70 years. The dataset used throughout this study was collected
using a Samsung Galaxy Watch Active 2 at 25Hz lasting 45-60
minutes per subject. Due to the purpose of the ICON dataset,
the quality of the signals in this dataset is manually labeled
by experts according to their waveforms, i.e., a ‘good’ signal
can provide reliable IBI measurements.

We used Optuna [15] to find the optimized combination of
hyperparameters. Since the PPG signals are split in windows of
75 samples in the ICON dataset, the search space included the
Patch Sizes (PSs) of 25×25, 15×15, and 5×5, as illustrated
in Figure 2-(c), Figure 2-(d), and Figure 2-(e), respectively.
Additionally, the ViT’s ‘number of encoding dimensions’ (D),
‘patch size´ (PS ,), and ‘number of transformer blocks’ (NB)
are also included in the search space. We implemented our ViT
model using Keras [16] and Einops [17] for a faster patchfying
execution.

During the Optuna execution, we saved the top-performing
results found in the optimization process using the F1-score
as the optimization criterion. Table I depicts the top-15 per-
formance metrics achieved in this process as well as the
corresponding hyperparameters used to achieve these metrics.

TABLE I
TOP PERFORMING METRICS OBTAINED USING GAF AND THE

CORRESPONDING VIT PARAMETERS USED TO ACHIEVE THESE METRICS.
D, PS , AND NB REPRESENT THE NUMBER OF ENCODING DIMENSIONS,
PATCH SIZE, AND NUMBER OF TRANSFORMER BLOCKS, RESPECTIVELY.

THE BEST SCORES AND SELECTED PARAMETERS ARE BOLDFACED.

Trial Accuracy Recall Precision F-Score D PS NB
1 0.89534 0.92326 0.92007 0.92166 75 15 10
2 0.90597 0.92894 0.92997 0.92946 25 5 3
3 0.92212 0.93383 0.94857 0.94114 32 5 1
4 0.88756 0.91837 0.91347 0.91591 64 15 6
5 0.89066 0.90796 0.92660 0.91718 64 15 3
6 0.89525 0.91337 0.92838 0.92082 32 5 6
7 0.92162 0.93429 0.94744 0.94082 32 5 1
8 0.90075 0.91684 0.93315 0.92492 64 5 10
9 0.90645 0.91321 0.94465 0.92867 25 15 3
10 0.90747 0.92646 0.93423 0.93033 75 15 1
11 0.90007 0.90571 0.94219 0.92359 32 25 1
12 0.92121 0.93324 0.94779 0.94046 32 5 1
13 0.92093 0.93405 0.94666 0.94032 32 5 1
14 0.90293 0.91464 0.93823 0.92628 32 25 1
15 0.92180 0.93664 0.94557 0.94108 32 5 1

From this table, the best results achieved are highlighted.
These results correspond to 32, 5, and 1 for D, PS , and NB,
respectively.

These best hyperparameters produce an accuracy of
0.92212, a recall equal to 0.93383, a precision of 0.94857,
and an F1 score of 0.94114 using the proposed method. These
results are also reported in Table II This table also presents the
results obtained using three state-of-the-art methods, expressed
as ‘Lucafo1’, ‘Lucafo2’, and ‘Hao & Bo’. All results in this
table were obtained using the ICON dataset with the same
train-test split and other experimental conditions. Based on
the results presented in Table II, it is noticeable the advantage
of the proposed approach.

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED AND STATE-OF-THE-ART
METHODS IN THE ICON DATASET. THE BEST RESULTS ARE BOLDFACED.

Method Reference Accuracy Recall Precision F1
Lucafo1 [8] 0.8980 0.8860 0.9590 0.9190
Lucafo2 [8] 0.8990 0.8750 0.9710 0.9200
Hao & Bo [18] 0.8060 0.7570 0.9050 0.8240
Proposed ∅ 0.9221 0.9338 0.9485 0.9411

Table III compares the results of previous studies with our
proposed approaches. From these results, Sukor et al. [19]
and Naeini et al. [20] tie with a classification accuracy of
0.8300, which is much lower than the models created from
the proposed approach, which achieves an accuracy score of
0.9221. Moreover, in the studies of Sukor et al. [19], Selveraj
et al. [21], Liu et al. [10], Li and Clifford [22], and Naeini
et al. [20], the number of subjects was small, which imply
in lower reliability of results. A small number of subjects
may induce bias and low variability in data, which can impair
the trustworthiness of these high accuracy scores reported in
Table III for these works. Considering this point, Roh and
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Shin [2], Fisher et al. [23], and this present study report their
results using a dataset with a large number of subjects, which
enable more reliable results. From these results, Roh’s and
Fisher’s present a higher performance than ours. However,
Fisher’s research presumes the detection of waveform features,
therefore it is dependent on the feature detector in realistic
usage. Roh’s method has high computational complexity and
its trade-off between performance and convenience needs to
be considered. As a result, these approaches may not be proper
to perform the signal quality assessment in some contexts. On
the other hand, our method can be applied in more diverse
scenarios since it uses only a GAF projection without any
extraordinary preprocessing of the original signal.

TABLE III
SIGNAL QUALITY ASSESSMENT PERFORMANCE COMPARED TO PREVIOUS

STUDIES (N IS THE NUMBER OF SUBJECTS).

Method Reference Input N Accuracy
Fischer et al. [23]

Detected Features

69 0.9780
Sukor et al. [19] 13 0.8300
Selvaraj et al. [21] 10 0.9480
Li and Clifford [22] 13 0.9520
Liu et al. [24] 10 0.8300
Roh and Shin [2]

Raw Signal

76 0.9750
Liu et al. [10] 14 0.9500
Naeini et al. [20] 1 0.8301
Proposed ∅ 56 0.9221

IV. CONCLUSION

In this paper, we proposed a novel method of assessing
the quality of PPG signals that are based on the GAF pro-
jections and ViT. We verified that the performance of the
proposed model is comparable to the results of a state-of-
the-art, showing a competitive level of performance without
separated complex pre-processing and feature detection steps.
However, in this study, the quality of the waveform is based
on the single projection method (i.e., the GAF algorithm).
Therefore, in future research, it is necessary to investigate
whether GAF can be used in combination with other 1D-to-
2D projection techniques, such as recurrence plots or Markov
transition fields. In addition, this study should be extended to
other types of 1D signals and time series.
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