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Abstract—Sleep apnea syndrome (SAS) is a very common
chronic disease characterized by the repetition of abnormal and
frequent respiratory events, including central and obstructive
apneas or hypopneas. Facing this public health problem, the
challenge is twofold: improving early detection with minimally
intrusive devices, and helping the diagnosis with an automatic
scoring of recordings. In this context, we propose to exploit a
dual thoracic and abdominal accelerometry system combined
with electrocardiography (ECG) to classify sleep apnea events.
Several common deep learning architectures were applied and
performances were compared against several configurations of
signals including nasal airflow from reference polysomnography
(PSG), and according to manual expert annotations from PSG
recordings. A Gated Recurrent Unit network was found to be the
most efficient model and the configuration including ECG and
abdominal and thoracic respiratory efforts from accelerometers
as input channels provided very promising classification perfor-
mances of normal and abnormal respiratory events. Thus, the
simple technological proposition of dual accelerometry offers the
possibility of an automatic identification of SAS events, very close
to the expert annotations established from PSG multi-sensors.

Index Terms—classification, accelerometry, deep learning, sleep
apnea syndrome

I. INTRODUCTION

Sleep Apnea Syndrome (SAS) is one of the most common
chronic diseases, with one billion affected people worldwide
[1]. It is a sleep-associated pathology that manifests itself
by the repetition of abnormal, frequent and abnormally dis-
tributed respiratory events. These events may correspond to
total (apnea) or partial (hypopnea) obstruction of the upper
airways and are characterized by episodes of cessation or
significant reduction of respiratory airflow for at least 10
seconds [2]. The events’ origin is either obstructive or central.
Obstructive events are due to pharyngeal collapse, and in
that case, thoracic and abdominal movements are preserved.
Central apneas or hypopneas are characterized by reduced
control of the respiratory centers and are associated with the
absence of thoracic and abdominal movements [3].

Polysomnography (PSG) is today the standard method for
the diagnosis of sleep disorders, especially SAS. It consists
in the simultaneous recording of several signals including
electroencephalography, electrocardiography (ECG), airflow
measured by a nasal cannula, oxygen saturation, and respira-
tory movements measured by respiratory inductance plethys-
mography. PSG recordings are then manually annotated in
order to establish the diagnosis of SAS, based on the apnea-

hypopnea index (AHI), which corresponds to the number of
abnormal respiratory events per hour of sleep and evaluates the
severity of the syndrome [4]. This human expertise, based on
the analysis of all PSG signals, also aims to identify the type
and origin of each event, in order to personalize the therapeutic
solution.

This manual scoring of PSG recordings by expert, coupled
with the cumbersome acquisition itself, makes the SAS diag-
nosing process complex, long and costly and is one of the
explanations of the current underdiagnosis of this syndrome.
SAS is therefore a real public health problem, including the
challenge of early detection with minimally intrusive devices,
and also the challenge of a diagnostic aid with an automatic
scoring of recordings. Considering this last challenge, several
approaches of machine learning or deep learning have been
proposed these last years for automatic detection of SAS
[5]–[9]. They are mainly focused on AHI estimation and
only a few considers the automatic classification of events
according to their types and origins [10]–[12]. Considering
the technological challenge of reducing the complexity of PSG
sensors, accelerometry has already been investigated for sleep
monitoring [13]–[15]. We recently proposed a solution for
night monitoring based on the use of 2 accelerometers placed
on the subject’s chest, from which thoracic and abdominal
efforts are measured and lead to an estimation of the respira-
tory airflow. This estimation, called ADR for ”Accelerometry-
Derived Respiration” was first validated during sleep without
abnormal events [16], and then, in terms of AHI estimation,
for sleep-apnea screening [9].

The present study intends now to further exploit this
double-accelerometry proposition and to evaluate its ability
to differentiate the various types of respiratory events in
SAS. For that purpose, several deep learning approaches are
considered and evaluated on different combinations of signals
including thoracic and/or abdominal respiratory movements
from accelerometry, with or without ECG, and also nasal
cannula airflow as reference.

II. MATERIALS AND METHODS

We first describe our proposed methodology, starting with
the data considered, followed by the description of the four
different deep learning architectures used to classify our data
samples and finishing by the training strategy.
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A. Data

a) Signals of interest: The sleep study protocol included
28 volunteers and untreated SAS patients at the sleep lab-
oratory of Grenoble University Hospital for an overnight
recording. Subjects were equipped with classical polysomnog-
raphy sensors and a dual accelerometry system. They provided
written information consent and the study was approved by
the relevant ethics committee (CHU Grenoble Alpes). From
the recorded data and in this particular study, we were only
interested in 4 signals: the abdominal and thoracic efforts
reconstruction calculated from accelerometer data [16], the
reference nasal airflow measured by nasal cannula and the
cardiac activity measured by electrocardiogram, respectively
noted {ABD, THO, CAN, ECG} and all acquired at 256 Hz.

Besides, all normal and abnormal respiratory events were
manually annotated by a unique sleep expert, according to all
PSG signals, and not only the 4 signals of interest. This expert
analysis leads to 5 annotated classes of events, associated
with their time locations: normal respiration, obstructive and
central sleep apneas, obstructive and central sleep hypopneas,
respectively noted {resp, apnobs, apncen, hypobs, hypcen}. An
illustration of signals with two examples of abnormal events
is given in Fig. 1. More details about the data acquisition,
formatting, labelling and post-acquisition processing are given
in previous studies [9], [16].

b) Preprocessing: A preprocessing step was applied to
each signal of interest {ABD, THO, CAN, ECG} in order to
make them suitable for deep learning processes. It consists of:
1. Segmenting the overnight recordings into 12-seconds sam-

ples with a 11-seconds overlap maximizing the number of
samples (the shortest possible event being of 10 s [2]),

2. Resampling each sample at 128 Hz (being a good com-
promise between reducing the amount of data and still
correctly assess ECG signals),

3. Normalizing each sample by z-score based on 5-minutes
sliding window means µ and standard deviations σ (5 min
being the reference time for sleep scorers): z = x−µ

σ
4. Separating each class in separate datasets,
5. Shuffling each dataset,
6. Removing some events of over-represented classes to re-

duce data imbalance (indeed e.g. respiration events out-
number central apnea ones by a factor 400),

7. Splitting data into training/validation/testing sets with a
stratified 80/10/10 distribution, such that each class is
evenly distributed in each set.

In order to have reproducible results and compare models,
shuffling and splitting were set to be rigorously the same
across experiments. This was done by fixing the random seed,
responsible for initializing the random number generator.

B. Deep Learning Architectures

a) Multilayer perceptron (MLP): Firstly, we considered
an MLP [17] as it is the most classical type of neural network,
often used as a standard baseline for its simplicity. Our MLP
model is composed of an input flatten layer, followed by 3
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Fig. 1. An illustration of our signals of interest with two abnormal events
highlighted, one central apnea (cyan) and one obstructive hypopnea (pink),
according to the expert annotations.

hidden dense layers of 32 units with relu activations and batch
normalizations, a dropout layer of rate 0.2 and an output dense
layer of 5 units with a softmax activation.

b) Convolutional neural network (CNN): Secondly, we
considered a CNN [18] in its one-dimensional form. CNNs
usually involve the spatial study of two-dimensional images
via convolutions but they are also relevant for time series study
as time can be seen as a spatial dimension. Our CNN model
is composed of 3 1D-convolution layers of 32 filters of size
3 with relu activations and batch normalizations, followed by
a flatten layer, a dense layer of size 32 with relu activation
and a batch normalization, a dropout layer of rate 0.2 and an
output dense layer of 5 units with a softmax activation.

c) Long short-term memory (LSTM): Thirdly, we consid-
ered a LSTM network [19], a famous recurrent neural network
(RNN) designed to capture temporal dependencies in time
series by using an internal memory. Our LSTM model is
composed of a LSTM layer of 256 units, followed by an output
dense layer of 5 units with a softmax activation.

d) Gated recurrent unit (GRU): Fourthly, we considered
a GRU network [20], another RNN simpler than the LSTM
network with less memory consumption and also a bit faster.
Our GRU model is composed of a GRU layer of 256 units,
followed by a dropout layer of rate 0.2 and an output dense
layer of 5 units with a softmax activation.

C. Training Strategy

Being in a multi-class classification, we used the categorical
cross-entropy (CCE) as loss function. CCE is defined as:

CCE(y, ŷ) = −
N∑
i=1

yi · log(ŷi) (1)

where N is the number of classes (5 in our case), yi is the
true value (0 or 1) indicating whether class i is the correct
classification for the observation y, and ŷi is the probability
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value, predicted by a model, of the observation y being in
class i.

For training, the Adam algorithm was selected as the
optimizer and a batch size of 128 was used. All networks
were trained with a learning rate of 10-3 on 150 epochs
until convergence. The implementation was done in Keras and
massive parallelization was exploited via GPU computation.

III. RESULTS AND DISCUSSION

In this section, we are first interested in the computational
performances of the deep learning models and their compari-
son through classification metrics. Then, with the exploitation
of the best model according to our application context, we
compare several configurations of input signals, later called
(input) channels.

A. Parameters and Training Time Evaluation

We evaluated the time duration of the training phase on
a PC with an Intel Xeon(R) Silver 4214R CPU performing
at 2.40GHz x 48 that exploited GPU computations on an
Nvidia Quadro RTX 6000. In addition, we also compared the
number of parameters per model with different numbers of
input channels (more details about the performance results of
each configuration are given in III-C).

Tab. I summarises the results. As we can see, changing the
number of input channels has a big influence on the number
of parameters in the MLP model but it does not significantly
influence the other models. Indeed, an MLP architecture
flattens all the input channels and then connects each point
to each neuron of the first layer, multiplying therefore the
number of weights of the first layer. Whereas the three other
architectures treat multiple input channels in parallel, which
does not really impact the size of the network. About CNN,
the high number of parameters is due at 99% to the dense
layer preceded by the flatten layer. To reduce it, pooling layers
or less convolution filters could be used, but in our case it
decreases a bit the performances without being significantly
faster.

Looking at the training times, we can see that the MLP
and CNN models are much faster than the LSTM and GRU
models. This is a normal behaviour since processing MLP and
CNN models are well adapted to GPU computations, while
it is not the case for RNN models like LSTM and GRU as
they need to deal with temporal memory, which is hardly
parallelizable. However, about 70 min to train a model is still
an acceptable time as it is done only once. Moreover, it is

TABLE I
NUMBER OF PARAMETERS AND TRAINING TIME FOR THE

4 CLASSIFICATION MODELS ACCORDING TO THE NUMBER OF INPUT
CHANNELS

Model 1-channel 2-channels 3-channels Training time∗
MLP 58 K 113 K 169 K 5 min
CNN 1574 K 1574 K 1574 K 11 min

LSTM 265 K 267 K 268 K 71 min
GRU 200 K 201 K 202 K 67 min
∗Training times are almost the same whatever the number of channels.

worth noting that a forward pass to classify the test set was
less than a minute for all models.

B. Model Comparison

During the test phase, for a given input, a probability is
given for each class at the output of the models. The highest
probability is chosen to be the predicted class. To compare
the performances of our models, we considered classification
metrics such as the balanced accuracy for its ability to deal
with imbalanced data and the f1-score as it is the traditional
way to measure classification’s accuracy. They are defined
according to numbers of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN), as:

balanced-accuracy =

(
TP

TP + FN
+

TN

TN + FP

)/
2 (2)

f1-score =
2 · TP

2 · TP + FP + FN
(3)

Tab. II gives the scores of balanced accuracy and f1-score
of the four models of classification into 5 classes. Here only
one configuration of inputs with the three channels ABD, THO
and ECG was chosen to compare the models.

In our case study and in terms of classification per-
formances, we have the following hierarchy of models:
GRU>LSTM>CNN>MLP. With higher performances, the
RNN models better capture the temporal features of our chan-
nels allowing a good classification. Even if CNN is capable of
considering spatial information as temporal information, it is
not sufficient and less adapted than RNN here. Outperforming
the other models, GRU will therefore be chosen for deeper
analyses in the next section.

C. Quantitative Evaluation

Now, we want to study which input channels are needed
to well classify the samples into the right class over the 5
{resp, apnobs, apncen, hypobs, hypcen}. In this purpose, we
tried different configurations of input channels such as a 1-
channel input with ABD or THO samples, a 2-channels input
with a combination of ABD-THO or CAN-ECG samples, and
a 3-channels input with ABD-THO-ECG samples.

Fig. 2 shows the confusion matrices of these configurations
of input channels. A confusion matrix allows the visualization
of the performance of an algorithm with a classification
problem. It represents, here in percentage, the ratio of correct
predictions (called ”predicted label” on the figures) compared
to the reality (called ”true label”) for each of the 5 classes.

TABLE II
METRIC SCORES OF THE 4 MODELS OF CLASSIFICATION

IN 5 CLASSES WITH 3 INPUT CHANNELS (ABD, THO, ECG)

Model balanced-accuracy f1-score
MLP 0.527 0.508
CNN 0.594 0.583

LSTM 0.827 0.819
GRU 0.920 0.916
∗Best results are highlighted in bold.
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(a) ABD (b) THO (c) ABD-THO

(d) ABD-THO-ECG (e) CAN-ECG

Fig. 2. Confusion matrices to classify into the 5 classes {resp, apnobs, apncen, hypobs, hypcen} with different configurations of input channels: (a) only
abdominal ABD signal, (b) only thoracic THO signal, (c) ABD-THO signals, (d) ABD-THO-ECG signals, (e) reference nasal airflow CAN and ECG signals.
*On the figures, the word ”label” is similar to ”class”.

By analysing the confusion matrices, several results can be
discussed.

Firstly and globally by looking at all confusion matrices
from Fig. 2 (a) to (e), the events from a central origin are
very well classified whatever the type and number of inputs.
This behaviour may be explained by the specific signature of
signals, caused by the disappearance of thoracic and abdominal
movements during central events.

Secondly, comparing 1-channel ABD (Fig. 2 (a)) or THO
(Fig. 2 (b)) versus 2-channels ABD-THO (Fig. 2 (c)), we
can see the importance of using two accelerometers instead
of only one. Indeed, using two accelerometers improves a
lot the classification of respiration and obstructive events,
especially the hypopnea ones. That can be explained by their
complementarity and their phase opposition found in this kind
of events. With only one channel, such a phase opposition
can not be observed, which depreciated the classification
performances.

Thirdly, when adding ECG as an input channel (Fig. 2 (d)),
we can notice that it improves the classification results for all
types of events compared to Fig. 2 (c). In fact, ECG brings
information about the cardiac activity such as the heart rate
variability which is known to be linked to the sleep apnea
syndrome. With our observation, we can therefore confirm that
cardiac information plays an important role in SAS helping to
differentiate events, and that we should use ECG to classify

them.
Finally, considering ABD-THO-ECG the set of channels

to make our classification, we need to investigate if this
dual accelerometry approach combined with ECG provides
performance of events’ classification in line with those of
a reliable reference. A reference classification is therefore
considered with the airflow measured by nasal cannula CAN
(as it is currently the respiratory reference in PSG analysis)
and the ECG for cardiac activity. The confusion matrix of
this reference CAN-ECG is given by Fig. 2 (e). Thus, our
choice to consider the channels ABD-THO-ECG as inputs for
events’ classification seems convincing since the performances
are getting very close to the reference CAN-ECG. However,
we can still see some confusions between respiration and
obstructive hypopnea events. An obstructive hypopnea event
is nothing but a shallow breathing, making it similar to
a respiration event. This similarity can lead to confusions
during classification. Nevertheless, such confusions happen
only around 9% of the time for these concerned events.

IV. CONCLUSION

Our study aimed at evaluating the ability of a dual ac-
celerometry system to correctly classify sleep apnea events.
We compared the performance of four famous deep learning
architectures MLP, CNN, LSTM and GRU in different config-
urations of input channels, including accelerometric signals,
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electrocardiography and reference respiratory airflow. GRU
was found to be the most efficient model of all and the
configuration with ABD-THO-ECG signals as input channels
had classification performances very close to the reference
classification, including airflow from a nasal cannula and
ECG. Thus, we can conclude that our proposition of using
accelerometry for abnormal respiratory events’ detection is
promising, provided to consider both thoracic and abdominal
accelerometers, combined with ECG. It allows thus, with a
few simple sensors, an automatic identification of events, very
close to the expert annotations established from PSG multi-
sensors.

In future clinical use, our proposed method might be
coupled with the AHI estimation for a SAS diagnosis of
new subjects. In this context, the fusion of the classified
events will have to be considered in order to reconstruct the
events’ location on an overnight recording. Moreover, it could
be interesting to investigate a leave-one-out cross-validation
strategy instead of a stratified one.

REFERENCES

[1] A. Benjafield, N. Ayas, P. Eastwood, R. Heinzer, M. Ip, M. Morrell,
C. Nunez, S. Patel, T. Penzel, J.-L. Pépin, P. Peppard, S. Sinha,
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