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Abstract—The cocktail party problem occurs when hearing
aid users are in an environment with more than one speaker.
For these people, it is difficult to follow a particular speaker.
One possible solution would be to use electroencephalography
signals recorded by the hearing aid to identify which speaker to
listen to and amplify it. To improve this detection, we developed
a long-short-term-memory-based neural network architecture
that detects which of two speakers the person is currently
paying attention to. The model was tested with two different
preprocessing pipelines on two publicly available datasets. The
network achieved 92% accuracy with an input window length of
0.25 seconds, the highest value for the dataset used.

Index Terms—LSTM, Auditory attention, EEG, Attention,
CNN

I. INTRODUCTION

According to the World Health Organization’s hearing re-
port 2021, 20 % of people will experience some form of
hearing loss in their lifetime, of which about 27% will require
rehabilitation [1]. To help these people, better and better
hearing aids are needed. One problem that hearing-impaired
people often encounter is that they have difficulty following a
particular speaker when several people are talking at the same
time. Many hearing aids amplify the signal that is directly in
the direction of the listener’s gaze. However, this is not always
the person who should be amplified. The basic idea to solve
this problem is to use electroencephalography (EEG) signals
to identify which of the multiple speakers the person wants to
listen to and amplify that speaker.

Two datasets are available in which several subjects had
to focus on one of two speakers [2], [3]. The subjects’ EEG
signals were recorded simultaneously. It was shown that by
looking for correlations between the envelopes of the speaker’s
signals and the EEG signals, it is possible to determine
which speaker the subject is attending to. These correlations
were found in the frequency range 1-8 Hz [4]. By using
canonical correlation analysis (CCA) to extract features for
prediction of the attended speaker, accuracies of over 90%
were achieved [5]. However, these approaches require window
lengths of 30 seconds to achieve this high accuracy [6]. This
makes their use in real-time applications such as decoding in
hearing aids impossible. To achieve higher accuracy at short
windows, methods that do not rely on correlation are currently
being tested. For example, neural network-based methods that

achieve high accuracies with time windows of one second or
shorter have been developed in the last two years [6]–[11]. For
overview purposes, we have taken the results of the various
existing methods from the publications and summarized them
in Table I.

Although these networks have already significantly im-
proved accuracy, a real-world application requires even higher
accuracy at shorter windows. In our work, we aim to improve
the existing algorithms for the problem of speaker detection.
For this, we use long short-term memory (LSTM) based
networks. These have already been applied to the problem
in different ways [9], [10]. The previously published networks
followed an early fusion strategy of combining the EEG and
audio data and then processing them together [7]–[9], [12].

However, the audio and EEG signals have different prop-
erties. These properties are not considered in the above-
mentioned procedures. In this paper, we present the new
3LSTM architecture and its extension. This follows a late fu-
sion strategy, where first the audio and EEG data are processed
separately by LSTMs before the results are combined. For the
evaluation, the current best networks have been reproduced [7],
[8]. We compare the stability of the networks for two different
preprocessing pipelines: a widely used one and a simplified
variant [6].

II. METHODS

A. Channel Attention

The channel attention mechanism weights the input chan-
nels by multiplying the entries of each channel by a scalar.
For computing these scalars, a neural-network-based attention
block is created [7], [11], [13]. This block consists of one
convolutional layer (CONV) and two fully connected layers
(FC). The input signal is of size X ∈ RC×T , where T
is the number of time samples and C is the number of
channels. First, one CONV layer with one filter is applied.
The filter has input sample length 1 × T and is followed
by an exponential linear unit (ELU) activation function. Then
channel-wise pooling is applied and output E1 has size C×1.
E1 is further processed by two FC layers, the first layer has
8 outputs and the second C outputs and thus one scalar per
channel. We tested two configurations that differ in the used
activation and pooling functions. The formulas for the two
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Fig. 1. Structure of the 3LSTM network consisting of LSTMs, FCs and optional attention blocks C1 and C2. T represents the number of samples. The input
size after preprocessing is shown to the left of the LSTM symbols, while the output dimension is shown on the right.

different blocks Y ∈ RC×T are given as follows:
C1:

E1 = Max(ELU(CONV1×5(X))) ∈ RC

Y = X × ELU(FCC(ELU(FC8(E1)))),
(1)

C2:

E1 = Ave(ELU(CONV1×5(X)) ∈ RC

Y = X × Tanh(FCC(Tanh(FC8(E1)))).
(2)

B. Cosine Similarity-based Channel Attention

Adapted channel attention based on cosine similarity has
also been tested [8]. The cosine similarity computes a score
for the input vectors x ∈ RT and y ∈ RT as

l(x, y) =

∑N
n=1 xnyn√∑N

n=1 x
2
n

√∑N
n=1 y

2
n

. (3)

For one multichannel input X ∈ RC×T , the scores E ∈ RC

are computed separately for each channel Ei = l(xi, y) with
xi ∈ RT . E is used as input for two FC layers. The results
are multiplied by the input X .

C. 3LSTM

The designed network is inspired by an LSTM-based net-
work which is also used for auditory attention detection [10].
An overview of our 3LSTM network can be seen in Fig. 1.
The first block consists of three independent LSTMs for each
of the input signals. These are the 64 EEG channels and the
two audio stimuli. T is the number of time samples, which
depends on the chosen window length and sampling frequency.
LSTM-1 receives the EEG signals as input (T × 64), LSTM-
2 the audio signal from Speaker 1 (T × 1) and LSTM-3 the
audio signal from Speaker 2 (T × 1). Each LSTM has 15
hidden states and produces a 15× 1 output. In the next step,
the outputs of the LSTMs are combined. To do this, the output
of LSTM-1 is subtracted from the output of LSTM-2 and

subtracted separately from the output of LSTM-3. The two
resulting outputs are then concatenated. Finally, these results
are passed into FC layers. The first, FC-1, has 30 units. The
second one, FC-2, provides two output units that are applied
to a softmax function. This network is extended to LSTM-C1
and LSTM-C2 by the previously described channel-attentions
C1 and C2 to the EEG signal, see (1) and (2).

D. Convolutional Neural Networks

We compared our network to three different networks. The
first one is a basic convolutional neural network (CNN) which
was used in [6], [8]. It consists of one CONV layer followed
by max-pooling and two FC layers. This network is extended
to CNN-C1 and CNN-C2 by the previously described channel-
attentions C1 and C2, see (1) and (2). This attention is applied
to the EEG signal as the first step after preprocessing. The third
network is the CNN-CM, which applies the described cosine
similarity-based channel attention (CM) [8]. This attention
is used two times, once for each speaker. The EEG signal
is applied to both attentions separately, producing two 64-
channel outputs that are concatenated and then processed by a
CONV layer and two FC layers similar to CNN and CNN-C.
An overview of the published results of these networks can
be found in Table I.

III. EXPERIMENTS AND DATA

A. Datasets

For the evaluation, we used two publicly available datasets.
DTU: The dataset was created by the Technical University

of Denmark (DTU) [15]. It contains recordings of 18 normal
hearing subjects. Two naturally spoken stories were played
to the subjects. The stories were divided into 50-second
segments. Each subject listened to 60 trials, in which two
audio stimuli were presented simultaneously. The subjects had
to concentrate on one of the stories. In parallel, the subject’s
EEG signals were recorded. There was a pause between each
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TABLE I
RESULTS OF AUDITORY ATTENTION METHODS FOR INPUT WINDOW

LENGTHS OF ONE AND TWO SECONDS TAKEN FROM THE LITERATURE AND
THE RESULTS ACHIEVED WITH OUR METHODS FOR THE SAME WINDOW
LENGTHS. THE FIRST VALUE IS THE MEAN ACCURACY, AND THE VALUE

AFTER THE ± IS THE STANDARD DEVIATION. THESE RESULTS WERE
GENERATED ON THE KUL AND THE DTU DATASETS, AS DESCRIBED IN

SECTION III-A.

KUL
Model 1s 2s

CCA [14] 60 64
CNN [6] 78.9 ± 11.6 80.4 ± 11.7

CNN-C [7] 81.1 ± 11.9 82.1 ± 12.0
CNN-FC [7] 83.6 ± 10.3 86.9 ± 8.8
CNN-CM [8] 86.5 ± 8.0 88.3 ± 7.9

3LSTM 89.0 ± 5.7 86.9 ± 7.2
3LSTM-C2 92.8 ± 6.2 93.0 ± 6.2

DTU
CCA [14] 60 64
CNN [6] 69.2 71.2

CNN-CF [7] 79.3 ± 8.17 82.9
3LSTM 85.5 ± 9.1 80.1 ± 11.7

3LSTM-C2 89.6 ± 7.7 88.4 ± 8.9

of the segments. The direction of the stimuli was randomly
reversed. Three different virtual auditory environments (VAEs)
were simulated in which the two audio sources were positioned
at a distance of 2.4 meters in ±60 degree from the subjects’
line of gaze. The audio signals were presented through plug-
in earphones at 65 dBA, and the EEG was recorded using a
64-channel EEG system with a sampling rate of 512 Hz [3].
The data without any preprocessing is publicly available.

KUL: The dataset was created by the Department of Neu-
roscience at KU Leuven [16]. It contains datasets from 16
normal-hearing subjects. As audio stimuli, four audiobooks,
divided into two parts of six minutes each, were used. For
each subject, two of the stories were randomly selected so that
the subject hears only two different speakers at the same time.
First, the subject had to listen to two parts of a story, switching
the condition and the stimulated ear. Then the same stories
were played again, but this time the listener had to listen to the
other story. This was repeated with the two remaining stories.
So in total, there were eight different presentations with a
length of 48 minutes. The audio was presented via plug-in
headphones at 60 dBA, with low-pass filtering at 4 kHz. EEG
was recorded using a 64-channel EEG system with a sampling
rate of 8192 Hz. The available data has been preprocessed. The
EEG signals were filtered with a high-pass filter with a cutoff
of 0.5 Hz and sampled down to 128 Hz.

B. Preprocessing

We tested two different preprocessing pipelines for the
KUL dataset and one for the DTU dataset. In Pipeline 1, the
EEG signals were bandpass filtered between 1 and 32 Hz,
downsampled to 64 Hz, and standardized. The standardization
was performed channel by channel as

f(x) =
x− x̄

σx + ϵ
. (4)

Here x is one sample, x̄ is the mean, and σx is the standard de-
viation of the corresponding channels samples. The envelopes
of the audio signals were extracted by applying the built-in
Hilbert transform from SciPy and extracting the absolute value
[17]. The result was low-pass filtered with a cutoff frequency
of 32 Hz, downsampled to 64 Hz, and standardized.

Pipeline 2 followed the preprocessing used in [7], [8]. The
EEG channels were referenced to the mean, bandpass filtered
between 1 and 50 Hz and sampled at 128 Hz. For the audio
stimuli, the auditory-inspired method developed by Briesman
et al. was used [12]. The audio signal was decomposed into
subbands by applying a gammatone filter bank. The center
frequencies were placed uniformly on the Erb scale. For the
resulting sub-bands, the envelopes were calculated by taking
the absolute value. The resulting envelopes were summed
together to create the overall envelope. This signal was given
a power of 0.6, bandpass filtered between 1 and 50 Hz and
downsampled to 128 Hz.

C. Setup

The described models receive the preprocessed EEG data
and the audio stimulus as input and are designed to predict
the attended speaker. The models were trained and tested
separately for each of the subjects. The data are divided into
non-overlapping windows of constant length and split into test
and training data. A 5-fold cross-validation was performed so
that in each run 80% of the windows were used for training
and the rest for testing. The training data was augmented
by creating overlapping windows on the training set with an
overlap of 50%. This procedure ensured that no data from the
test was contained in the training. Window lengths of 0.25, 0.5,
1, and 2 seconds were tested. Networks were implemented in
Tensorflow 2.4 using the Adam optimizer with a step size of
0.001. Each model was trained for 100 epochs.

D. Decoding Performance

The results of the described models on the KUL dataset
using preprocessing Pipelines 1 and 2 can be found in Table
II. Here, the accuracy and standard deviation were averaged
for all 5 training/test splits and subjects. Results for the DTU
dataset are shown in Table III.

IV. DISCUSSION

Compared to the previous methods tested on the datasets
used, the new architecture of the 3LSTM achieved a major
improvement. The previously published best value of accuracy
for 1-second windows was 86% (CNN-CM) on the KUL and
79% (CNN-CF) on the DTU dataset, see Table I. The base
version of the 3LSTM has already increased this to 89% for
the KUL and 85% for the DTU dataset. By extending the
3LSTM with the channel attention C2 this could be further
increased to 92% and 89% respectively.

As can be seen in Tables III and II, the late fusion strategy
chosen in combination with the use of LSTMs in place
of CNNs achieved higher accuracies across all experiments.
Comparing the results of the 3LSTM with the published results
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TABLE II
AVERAGED ACCURACY AND STANDARD DEVIATION OVER ALL SUBJECTS
AND RUNS ON THE KUL DATASET FOR THE CORRESPONDING WINDOW

LENGTHS IN SECONDS AND PREPROCESSING PIPELINE.

Window length in seconds
Model 0.25 0.5 1 2

Pipeline 1
CNN 78.3 ± 7.2 78.5 ± 7.6 78.1 ± 8.1 73.9 ± 8.3

CNN-C1 75.2 ± 8 77.9 ± 7.9 79.4 ± 7.7 75.7 ± 9.2
CNN-C2 74.0 ± 8.1 78.2 ± 7.9 79.9 ± 7.7 78.8 ± 9.2
CNN-CM 76.0 ± 8.1 79.1 ± 8.0 76.7 ± 10.1 79.5 ± 8.8
3LSTM 84.6 ± 5.7 88.0 ± 5.6 87.9 ± 5.5 85.6 ± 7.1

3LSTM-C1 79.8 ± 8.9 86.2 ± 7.2 85.3 ± 7.5 80.9 ± 10.9
3LSTM-C2 83.1 ± 6.6 88.0 ± 5.9 87.9 ± 6.6 86.0 ± 8.4

Pipeline 2
CNN 83.6 ± 6.9 82.9 ± 6.6 80.8 ± 9.0 78.3 ± 7.4

CNN-C1 87.7 ± 5.5 85.2 ± 9.2 82.2 ± 10.9 75.2 ± 13.4
CNN-C2 88.9 ± 6.4 90.8 ± 6.5 90.6 ± 7.1 89.6 ± 6.4
CNN-CM 83.4 ± 7.1 86.1 ± 6.6 85.1 ± 7.4 81.9 ± 8.8
3LSTM 90.4 ± 3.9 90.5 ± 4.3 89.1 ± 5.3 79.0 ± 11.0

3LSTM-C1 90.9 ± 7.1 91.9 ± 4.3 89.8 ± 5.7 83.1 ± 10.4
3LSTM-C2 91.8 ± 3.7 92.8 ± 4.2 92.8 ± 6.2 93.0 ± 6.2

TABLE III
AVERAGED ACCURACY AND STANDARD DEVIATION OVER ALL SUBJECTS
AND RUNS ON THE DTU DATASET FOR THE CORRESPONDING WINDOW

LENGTHS IN SECONDS AND PREPROCESSING PIPELINE.

Window length in seconds
Model 0.25 0.5 1 2

Pipeline 1
CNN 88.1 ± 7.3 88 ± 7.6 87.5 ± 9.2 85.1 ± 10.6

CNN-C1 88.7 ± 7.8 88.4 ± 8.2 88.9 ± 8.6 88.5 ± 8.7
CNN-C2 88.1 ± 8.2 86.9 ± 9.0 87.9 ± 9.4 88.9 ± 8.8
CNN-CM 87.6 ± 7.9 86.1 ± 8.5 86.9 ± 9.1 87.4 ± 9.1
3LSTM 87.7 ± 7.2 85.9 ± 8.7 85.2 ± 9.9 80.3 ± 11.6

3LSTM-C1 89.9 ± 6.8 89.7 ± 7.2 90.0 ± 9.0 88.4 ± 9.1
3LSTM-C2 88.0 ± 7.3 88.8 ± 7.3 89.6 ± 7.7 88.4 ± 8.9

Pipeline 2
CNN 78.7 ± 9.9 75.6 ± 9.4 73.8 ± 9.8 69.8 ± 9.9

CNN-C1 80.3 ± 11.5 76.9 ± 12.5 72.4 ± 13.3 68.8 ± 11.8
CNN-C2 85.8 ± 9.8 84.4 ± 9.9 81.7 ± 10.3 79.9 ± 11.0
CNN-CM 80.8 ± 10.8 80.0 ± 10.9 79.7 ± 11.1 76.8± 10.7
3LSTM 85.5 ± 8.5 82.5 ± 9.2 77.1 ± 10.9 67.5 ± 12.8

3LSTM-C1 86.2 ± 5.8 85.6 ± 9.2 81.1 ± 11.1 74.8 ± 12.9
3LSTM-C2 86.6 ± 8.3 85.4 ± 10.5 83.8 ± 11.4 81.9 ± 11.9

of the CNN-LSTM, which combines the EEG and audio data
and processes them with a single LSTM, the advantage of
early fusion becomes clear [9]. In the work, only a median
accuracy of 75% for the KUL and 55% for the DTU could be
achieved for 2-second windows [9].

A weakness of the 3LSTM is that it achieves significantly
worse results for the window lengths of 1 and 2 seconds than
for 0.5 seconds. Here the LSTM with the given 15 hidden units
seems not to be able to keep the context information about the
larger number of time steps. Since for the intended application
of hearing aids the latencies should be as short as possible,
we did not try to optimize the parameters for these window
lengths. Moreover, by using the channel attention C2, it is
already possible to improve the prediction for two 2 seconds
to a level similar to that for 0.5 seconds, see Table II.

Overall 3LSTM-C2 is the most stable one, especially for
a window length of 2 seconds. In combination with Pipeline

2 always the highest accuracy was achieved. For Pipeline 1,
the model either achieved the highest accuracy or was close
to it. Attention C2 achieves better results than Attention C1.
This could be due to the pooling function, where C2 uses
the average instead of the maximum. The average contains
information about the overall distribution of the data, while
the maximum is very susceptible to outliers. Also, tanh seems
to be the more effective activation function since it limits the
range of values to the interval from -1 to 1, which seems to be
more suitable for weighting in contrast to the elu function. This
is also evident in the comparison of CNN, CNN-C1, and CNN-
C2. Again, CNN-C2 is the best of the variants across all setups.
In particular, for short window lengths of 0.25s, the 3LSTM
has led to significant improvements over previous methods.
With an accuracy of 91.8%, the 3LSTM-C2 achieves better
results for 0.25s than the previous best method CNN-CM for
0.5s on the KUL dataset [8]. It should be noted that the values
achieved in this study cannot be directly compared to those
from previous studies due to differences in the partitioning of
training and test data. Cai et al. performed 10 random splits of
the data, with 60% allocated for training, 20% for validation,
and 20% for testing [7], [8]. In contrast, we used a 5-fold
cross-validation approach, where 80% of the data was used
for training and 20% for testing.

The applied preprocessing pipeline has a strong impact
on the performance of CNN-based networks. This effect is
especially noticeable on the KUL dataset, where the CNN-C2
achieves an accuracy of 74% for 0.25s with Pipeline 1. With
Pipeline 2, however, the same network achieves an accuracy
of 88% for 0.25s. This effect can also be observed with the
3LSTM, but the difference is weaker at 6%.

In previous works with CNNs, the difference in perfor-
mance between subjects was very high, as indicated by the
relatively large standard deviation of up to 12. As described
by Vandecappelle et al., this effect only occurs when using
neural networks instead of correlation-based methods [6].
One possible explanation for the large variability in accuracy
between subjects could be that the number of training samples
for the neural networks used in classification was insufficient.
It can be observed that for LSTMs and Pipeline 2, the variance
increases when the window length increases. This issue could
be addressed by increasing the overlap of windows or by
performing data augmentation.

For the KUL dataset, it can also be seen that the standard
deviation for the 3LSTM-based methods is lower than for the
CNN-based methods. This suggests that the model general-
izes better across different subjects, although the differences
between them can still be large. For example, the lowest
accuracy achieved by the LSTM-C2 for one subject at 0.25s
was 81%, while the highest was 98%. For the DTU dataset,
these differences in the standard deviation between the CNNs
and 3LSTMs occur only sporadically.

V. CONCLUSION

The goal of this work was to improve auditory attention
detection. We developed an LSTM-based network architecture
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to detect which of two speakers a person is listening to. In
contrast to the methods used in the past, our architecture
pursued a late fusion strategy instead of an early fusion one.
The network was applied to two publicly available datasets
(DTU and KUL) [2], [3]. The networks were compared with
current state-of-the-art networks. Two different preprocessing
methods were tested [12].

The LSTM-based networks achieved high accuracies, espe-
cially for time windows of 0.25 seconds and 0.5 seconds. With
an accuracy of 92% for a window length of 0.5 seconds on
the KUL dataset, the achieved accuracy is 8% higher than the
previously published ones achieved by the CNN-CM on the
same dataset [8]. Our work shows not only that the late fusion
strategy using multiple LSTMs achieves higher accuracy than
the current state-of-the-art, but also that it can be combined
with much less complex preprocessing (Pipeline 1).

This is another important step to enable a real-world ap-
plication. The next steps in development include using audio
signals from speakers that were not yet separated. Further-
more, the network architectures are only working with two
speakers while the datasets provide only experiments with
two competing speakers. The presented networks have to
be adapted to allow a different number of speakers. Future
work should also test the networks on more realistic datasets
recorded with portable EEG devices such as CEEGrids [18]
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