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Email: algolsan@i3b.upv.es

Abstract—Prostate cancer is a common disease that affects
men, and its diagnosis and prognosis rely on the Gleason scoring
system. To automate this process, generative deep learning models
can be used to synthesize histopathological tissue patches of
non-cancerous and malignant patterns. This work proposes a
conditional Progressive Growing GAN to generate synthetic
samples by selecting the desired pattern. The model is trained
using conditional information about the pattern, and minibatch
standard deviation and pixel normalization are used to improve
performance and stability. The synthetic samples are assessed
using the Frechet Inception Distance (FID). Finally, the proposed
framework was applied to the SICAPv2 dataset, and the results
showed that data augmentation with our method improved the
classification accuracy obtained on this dataset. This demon-
strates the effectiveness of the proposed framework as a data
augmentation method. Overall, this study provides a promising
approach to address the issue of insufficient and unbalanced
datasets in prostate cancer diagnosis and prognosis, which can
improve the accuracy and reliability of clinical decision-making.

Index Terms—Prostate cancer, Progressive Growing GAN,
Conditional GAN, Histology image.

I. INTRODUCTION

Prostate cancer, the second most common cancer in men
with 1.4 million new cases in 2020, is diagnosed through
prostate biopsy following clinical examination and lab tests.
Digital pathology has gained prominence, involving scan-
ning glass slides to create high-resolution whole slide im-
ages (WSI). These WSIs are divided into patches to enable
Deep Learning (DL) models to analyze them, as shown in
Figure 1. The success of artificial intelligence and machine
learning solutions combined with this type of data promotes
the development of computer vision applications to automate
diagnoses, prognoses and disease predictions. Deep learning
(DL) approaches have shown potential in many tasks in digital
pathology, as mitosis detection [1], tissue classification [2],
brain tumor classification [3] and glioma grading [4].

DL models strongly depend on having a well-balanced
dataset to achieve optimal performance. However, many clas-
sification models struggle with imbalanced data, where some
classes have limited samples. This leads to poor performance,

Fig. 1. Patches from SICAPv2 dataset. (a) Non-cancerous; (b) Malignant.

particularly for minority classes. To address this, there is a
need to develop a generative DL model that can synthesize
WSI patches, helping overcome class imbalance and improve
classification accuracy.

In the following lines, we summarize the main contributions
of this work:

• A novel conditional progressive growing GAN framework
able to synthesise patches containing non-cancerous or
malignant patterns.

• We evaluate the quality of the synthetic data using the
Frechet Inception Distance (FID), state-of-the-art metric
evaluating image synthesis.

• The proposed method is validated as a data augmentation
method.

II. RELATED WORK

Generative models for image synthesis: Generative Ad-
versarial Networks (GANs) were introduced by Goodfellow et
al. [5] in 2014. GANs consist of two separate neural networks,
the generator G and the discriminator D. The generator G
takes a random noise vector z as input and generates synthetic
data G(z), while the discriminator D takes the generated data
and real images x ∈ pdata as inputs to classify them as real or
synthetic. The conditional GAN was later developed by [6],
which improved upon the original idea by conditioning the
output to the input label. However, previous GAN approaches
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have shown issues with stability and convergence. More com-
plex frameworks were proposed to address this, such as Deep
Convolutional GAN (DCGAN) [7]. X Chen et al. proposed an
alternative approach in [8] named InfoGAN. Rather than using
an unstructured noise vector z, the noise vector is decomposed
into two parts, one with incompressible noise and the other
with structured semantic features. The previously mentioned
GAN methods create synthetic samples from random input
noise but cannot do the reverse operation. To address this
limitation, Donahue et al. proposed the BiGAN model [9].
Finally, Karras et al. [10] introduced the first approach using
progressive growth training in their framework, Progressive
Growing GAN (ProGAN), which became the central core of
their paper.

Generative models for histological image synthesis: In
this section, we present the main contributions of the literature
on histological image synthesis. In [11], a Deep Convolutional
GAN (DCGAN) was used to perform style transfer for syn-
thesizing skin melanoma samples. Other literature examples
of this architecture being used for histological image synthesis
can be found in [12], [13], where conditional synthesis was
performed on the class of cervical cancer samples. This
framework was utilized as a data augmentation method and
demonstrated an increase in accuracy for classification tasks.

In [14], a ProGAN approach was presented. This framework
could synthesize histopathological images of brain tumours
and is capable of generating more realistic images. They
demonstrated that adding synthetic data to their dataset in-
creases the accuracy of their classification models by ap-
proximately 5%. Another work using this architecture was
presented by Teramoto et al. in [15]. It should be noted that the
last two frameworks presented did not have the capacity for
conditional synthesis. Although these papers prove their effec-
tiveness as data augmentation methods, they do not evaluate
the quality and realism of the synthetic samples generated.
Furthermore, a novel conditional deep learning architecture
based on StyleGAN [16], and BigGAN [17] was proposed in
[18] for synthesizing colorectal and breast cancer samples.

III. METHODS

The proposed framework was based on a conditional pro-
gressive growing GAN that was able to synthesize prostate
histology non-cancerous and malignant patches. The workflow,
which was composed of a generator θg and discriminator θd,
is presented in Figure 2.

CGAN: This work utilizes a conditional generative adver-
sarial network (CGAN) as its methodological core to produce
synthetic prostate histology patches with cancerous and non-
cancerous patterns. In this sense, the generator model aims
to produce synthetic prostate histology non-cancerous and
malignant patches. Formally, we denote the random input
noise as Z = {z1, ..., zi, ..., zC}, where zi is the i-th instance
obtained from a normal distribution N (µ = 0, σ = 1) and C is
the total number of generated samples. We note as N the total
number of patches in the dataset, and for convenience, we give
C the same value as N . Furthermore, the generator is provided

with the desired cancerous pattern present in the synthetic
sample. This pattern is indicated by P = {NC,M}, where
NC represents the non-cancerous pattern, and M represents
the malignant one. Accordingly, the synthetic patch generation
process can be defined as follows:

G = f(Z,P ; θg) (1)

where G ∈ Zm×n×3 represents all the generated synthetic
prostate histology patches and θg the model weights.

The objective of the discriminator model is to classify
input patches as fake (0) or real (1). We define X =
{x1, ..., xi, ..., xN}, where xi represents the i-th instance of
real prostate histology patches. The input to the discriminator
is B = X ∪G. The main objective is to predict Ŷ , which can
be expressed as follows:

Ŷb = f(B,P ; θd) (2)

where θd denotes the discriminator model weights.

A. Minibatch standard deviation

Given the inherent tendency of GANs to learn only a
subset of the training set, we incorporated the ”minibatch
discrimination” technique as outlined in [19]. This approach
involves computing the standard deviation for each feature in
each spatial location across the minibatch, and incorporating
this information into the discriminator. While the method does
not require any learnable parameters or hyperparameters, we
observed improved performance when the information was
inserted towards the end of the discriminator.

B. Pixel Normalisation

Sometimes, the competition between the generator and the
discriminator can cause the magnitudes of the generated values
to become disproportionate. In order to address these issues,
we applied feature vector normalization to ensure unit length
in the generator after each convolution layer. To accomplish
this, we utilized a modification of the ”local response nor-
malization” technique proposed in [20]. Equation 3 provides
the expression for pixel normalization, where S denotes the
number of feature maps, (ajx,y) represents the pixel being
normalized, and ϵ denotes a small constant to avoid division
by zero.

bx,y =

√√√√ 1

S
·
S−1∑
j=0

(ajx,y)2 + ϵ (3)

C. Loss function

We used the Wasserstein GAN with Gradient Penalty
(WGAN-GP) loss function [21] to optimize the performance of
our proposal. Initially, the learning rate η, the ρ value which
determines the maximum oscillation range of the gradients
within [-ρ,ρ], and the batch size n were set. Then, a batch
containing both real data x(i) and synthetic data G(z(i)) was
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Fig. 2. Method overview. To train generator and discriminator models, we utilized histological prostate patches that exhibit both non-cancerous and malignant
patterns. In order to effectively learn the morphology and properties of these patterns, we progressively increased the output resolution from 42 to 2562. Both
the generator and discriminator models received conditional information obtained by transforming input labels into an embedding vector of fixed size 512.

sampled. The loss function of the discriminator was formulated
as Equation

lossD =
1

n
·

n∑
i=1

(D(x(i)))− 1

n
·

n∑
i=1

(D(G(z(i)))) (4)

After computing the gradients, the weights of the discriminator
are updated. Then, we define the loss function of the generator
as follows:

lossG =
1

n
·

n∑
i=1

(D(G(z(i)))) (5)

Our method: A progressive training approach was
adopted to overcome the difficulty of synthesizing patches
with a resolution of 2562 in the CGAN framework. Increasing
the network size gradually while increasing the resolution
has several benefits. Starting from 42 resolution patches and
adding new resolution layers progressively, the network learns
high-level features of the image distribution first and then
gradually increases the complexity of the details. This method
allows the model to learn a simpler problem step by step rather
than learning the entire information at once. The Progressive
Growing GAN architecture was modified to incorporate condi-
tional information on the cancerous pattern. During training,
the generator and the discriminator receive this information
without any additional term in the loss function.

IV. EXPERIMENTS

A. Experimental setting

Datasets: The dataset utilized in this study was pre-
viously introduced in [22] and is publicly available at the
SICAPv2 dataset website. This dataset represents the most
comprehensive public collection of prostate Hematoxylin and
Eosin (H&E) biopsies with patch-level annotations of different
Gleason grades.

Implementation Details: The optimal combination of
hyperparameters for the training process consisted of 100
epochs using the Adam optimizer with a β1 value of 0 and a β2

value of 0.99, a learning rate of 0.001, and the WGAN-GP loss
function. The batch size was set to 64 for image resolutions
ranging from 42 to 1282 and 32 for 2562. The optimal size
for the generator input was determined to be 512.

Evaluation Metrics: To assess the effectiveness of the
proposed model, we utilized the Frechet Inception Distance
(FID) metric [23]. We assessed the difference between the
extracted features from synthetic and real patches using the In-
ception V3 model, which was trained on the ImageNet dataset
[24]. We denote the feature distribution of synthetic and real
patches as N (µ,C) and N (µw, Cw), respectively. The FID
expression is presented in Equation 6, where Tr corresponds
to the trace of the matrix. Note that FID ∈ [0,+∞], being 0
the optimal value.

FID =∥ µ− µw ∥2 +Tr(C + Cw − 2(C · Cw)
1
2 ) (6)

We computed a weighted average, assigning to the non-
cancerous class a weight of 0.3656, while for the second class,
we assigned a weight of 0.6344. We assigned the weights
based on the varying number of samples present in the dataset
for each class, which leads to different representations for each
one.

B. Results

Quantitative evaluation: Table I presents the weighted
FID results for all the frameworks considered in this study, in-
cluding CGAN, ProGAN, and our method. Our results demon-
strate that progressive training using the ProGAN framework
offers a significant performance improvement compared to
the CGAN approach. However, as noted earlier, the Pro-
GAN architecture lacks conditional synthesis capacity. Our
proposed conditional progressive framework provides the most
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promising results for the FID metric evaluation. Notably, after
applying the staining normalization process suggested in [25],
our proposed method offers the best performance, with a
35.2% improvement in the weighted FID metric.

TABLE I
WEIGHTED FID RESULTS FOR ALL THE FRAMEWORKS CONSIDERED IN
THIS WORK: CGAN, PROGAN AND OUR METHOD. ADDITIONALLY, WE
PROVIDE THE METRICS OBTAINED AFTER THE STAIN NORMALISATION

PROCESS.

FID
CGAN 160.55

ProGAN 126.51
Ours 120.14

Ours + Stain Norm 77.85

In Table II, we present the results of the FID metric for
each class (benign and malignant)

TABLE II
FID FOR CONDITIONAL EXPERIMENTS. NC FOR NON-CANCEROUS AND M

FOR MALIGNANT PATTERNS.

Test
NC M

CGAN 198.45 159.71
Ours 92.14 132.35

Ours + Stain Norm 88.85 73.06

The results demonstrate that the CGAN architecture under-
performs compared to the proposed model, as the network’s
complexity is insufficient to learn the features of the input
images.

Qualitative evaluation: To qualitatively evaluate the
proposed method, we generated patches using the CGAN,
ProGAN, and our framework. The synthesized patches using
the CGAN approach are displayed in Figure 3. While this
framework successfully captures colour properties and spatial
distribution, it cannot learn morphology and distinct features
for non-cancerous and malignant patterns. As a result, it cannot
produce complex structures such as glands or nuclei.

Fig. 3. Synthetic patches generated with CGAN framework. (a) Non-
cancerous; (b) Malignant

Figure 4 displays several patches produced using the Pro-
GAN framework. While this approach can generate samples
that accurately reflect the morphology and distribution of
real patches, it cannot distinguish between non-cancerous and
malignant patches.

The results of our framework after the stain normalization
post-processing are presented in Figure 5. After introducing

Fig. 4. Synthetic patches generated with the ProGAN framework.

conditional information, synthetic samples exhibited greater
homogeneity and coherence with real data as non-cancerous
images display well-differentiated glands, while malignant
patches demonstrate an increase in gland density and the
emergence of irregularities. This indicates that the proposed
model can identify and represent each pattern’s intrinsic char-
acteristics.

Fig. 5. Synthetic patches generated with our framework. (a) Non-cancerous;
(b) Malignant.

Data augmentation strategy validation: This section
shows the validation of the proposed method as a data
augmentation strategy. For this purpose, we compare the
classification model used in [22] trained with SICAPv2 and
SICAPv2 augmented with the proposed model. Specifically,
the non-cancerous class was augmented by 50%. The results
obtained are shown in Table III. The proposed model improves
the classification model performance. This fact supports the
effectiveness and validity of the proposed work as a patch
synthesis method and data augmentation strategy.

TABLE III
RESULTS FOR THE TEST SET FOR THE MODEL PROPOSED IN [22] WITH
THE ORIGINAL SICAPV2 DATASET (S) AND UPSAMPLING WITH OUR

PROPOSED DATA AUGMENTATION METHOD (S+P). THE METRICS
PRESENTED ARE PRECISION, F1-SCORE, COMPUTED PER CLASS, AND

GLOBAL ACCURACY.

Precision F1-S ACC
S S+P S S+P S S+P

NC 0.6506 0.7067 0.7073 0.7233 - -
C 0.8930 0.8846 0.8542 0.8752 - -

Avg 0.8194 0.8306 0.8096 0.8291 0.8054 0.8280

V. CONCLUSIONS

This research proposes a novel framework for generating
high-quality synthetic prostate tissue patches that accurately
represent both non-cancerous and malignant tissue types. Our
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proposed framework used a conditional Progressive Growing
GAN and achieved a significantly better weighted FID met-
ric of 77.85 than the CGAN and ProGAN models, which
obtained 160.55 and 120.14, respectively. Furthermore, we
trained a classification model using the synthetic images
generated by our framework and the SICAPv2 dataset. Our
proposed method achieved an increased classification accu-
racy of 2.3%. These results confirm the effectiveness of our
ProstatePatchGAN-generated images for accurately represent-
ing both non-cancerous and malignant prostate tissue types
and their potential application in various clinical settings.
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