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Abstract—In this paper, we investigate the effects of different
augmentation strategies in self-supervised representation learning
from electrocardiograms. Our study examines the impact of ran-
dom resized crop and time out on downstream performance. We
also consider the importance of the signal length. Furthermore,
instead of using two augmented copies of the sample as a positive
pair, we suggest augmenting only one. The second signal is kept
as the original signal. These different augmentation strategies are
investigated in the context of pre-training and fine-tuning, fol-
lowing the different self-supervised learning frameworks BYOL,
SimCLR, and VICReg. We formulate the downstream task as a
multi-label classification task using a public dataset containing
ECG recordings and annotations. In our experiments, we demon-
strate that self-supervised learning can consistently outperform
classical supervised learning when configured correctly. These
findings are of particular importance in the medical domain, as
the medical labeling process is particularly expensive, and clinical
ground truth is often difficult to define. We are hopeful that our
findings will be a catalyst for further research into augmentation
strategies in self-supervised learning to improve performance in
the detection of cardiovascular disease.

Index Terms—self-supervised, representation learning, ECG,
electrocardiogram, augmentation, pre-processing

I. INTRODUCTION

Cardiovascular diseases are the leading cause of death
worldwide, increasing yearly. However, many abnormalities
in heart cycles can be discovered and treated years before
the onset of diseases, using a preventive approach. There
have been several attempts to produce automated ECG-based
heartbeat classification methods over the last few decades, but
their performance is hindered by limited access to high-quality
labeled data, restricting their usage to secondary diagnostic
purposes. In this regard, the development of self-supervised
learning frameworks is important.

The application of machine learning to electrocardiograms
(ECG) is an example of the ongoing development of artifi-
cial intelligence in cardiovascular medicine. State-of-the-art
solutions mainly follow convolutional neural network-based
architectures trained in a supervised manner [1]-[4] and offer
valuable insights into cardiovascular health and disease detec-
tion. Current systems are highly dependent on large amounts
of labeled data and further development of clinical Al-based
ECG disease detection systems is hindered by its scarcity.

Given recent achievements of self-supervised learning in
other fields, present research in the domain of cardiovascu-
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Fig. 1: Image of the self-supervised learning framework. In the
self-supervised step, the encoder fy and method-specific layers
gy are trained using unlabeled data. The encoder network is
then fine-tuned for the downstream task using labeled data.

lar disease detection aims to apply self-supervised learning
methods to decouple system performance from the need for
excessive amounts of labeled data. Mehari and Strodthoff
[5] apply a selection of self-learning methods to 12-lead
ECG data and evaluate their representational performance in
a multi-label classification task setting. They find an adjusted
version of the contrastive predictive coding, CPC [6], and the
SimCLR approach to show the highest performance results.
Research presented by [7] also considers BYOL and Sim-
CLR approaches for ECG representation learning, but used
a very shallow encoder network architecture with only five
convolutional layers. Work by [8] highlights the potential for
using self-supervised learning methods in ECG representation
learning by presenting a careful comparison of the effects of
different self-supervised learning methods on linear evaluation
and fine-tuning evaluation.

In this paper, we present an assessment of self-supervised
representation learning on 12-lead clinical ECG data to ex-
amine the importance of pre-processing and augmentation
for self-supervised learning methods applied to ECG signals.
The main contribution of this paper is a new augmentation
strategy for self-supervised learning for cardiovascular disease
detection. Specifically, we show that the performance on a
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Fig. 2: Sample x, transformed into positive pair (X,X') is
encoded by f into y, y’. These are projected by g to lower di-
mension representations z, ' in SImCLR, BYOL, or expanded
in VICReg. The loss applies to z, z’. FNorm and EMA stand
for feature-normalized embeddings and exponential moving
average, respectively. InfoNCE is the loss function in [16] and
¢, v, and s are covariance, variance, and similarity functions.

multi-label classification ECG task depends heavily on how
the self-supervised learning setup is configured and that im-
proved performance over classical supervised learning can be
obtained by 1) increased input signal segment length; 2) data
augmentation applied to only one of the two signal paths; and
3) tuned strength of the applied data augmentation.

II. SELF-SUPERVISED REPRESENTATION LEARNING

Self-supervised learning [9], was first introduced to the
field of natural language processing, where self-supervised
trained models such as BERT [10] entailed significant perfor-
mance improvements without the increasing need for labeled
data. State-of-the-art self-supervised learning methods form
representations through joint-embedding architectures, called
Siamese networks. Representations are learnt by maximizing
agreement between embeddings of different augmented copies
of the same data example, also referred to as views, via a
loss function in the latent space [11]-[14]. In general, data
views are constructed by applying different augmentations
(modifications) to the input data.

In self-supervised learning, we usually distinguish between
the pretext task and the downstream task as displayed in
Figure 1. A pretext task is a self-supervised learning prob-
lem in which the model constructs feature representations
from unlabeled data inputs. By forcing a model to solve a
deliberately designed pretext task it learns to extract task-
agnostic feature representations of the data. Commonly, the
unsupervised learning phase is followed by the supervised fine-
tuning process. This is often the primary task to be solved and
uses few labeled data samples [15].

In the context of self-supervised learning on ECG signals
for the detection of cardiovascular diseases, and specifically in
this paper, the downstream task is formulated as a multi-label
classification problem targeting various diagnostic statements,
such as normal or abnormal QRS complex and arrhythmia.

TABLE I: Size of the pre-training and fine-tuning datasets.

# ECG recordings in  Pre-training  Fine-tuning

Training set 34763 17441
Validation set 14899 2193
Test set - 2203

Furthermore, in this paper, we use both contrastive and
non-contrastive learning methods. Contrastive self-supervised
learning methods are based on the idea of instance discrimi-
nation. Instead of predicting the exact class of a data sample,
the objective is to predict whether pairs of inputs belong
to the same class or not. Specifically, contrastive learning
has recently become a dominant component in computer
vision with self-supervised learning methods such as Sim-
CLR, MoCo, and CPC [6], [11], [16] being developed. Non-
contrastive learning methods, unlike contrastive methods, learn
non-trivial representations using only positive sample pairs.
Non-contrastive approaches include methods such as BYOL
and VICReg [14], [17]. Instead of explicitly defining negative
samples, they introduce asymmetry in the network architecture
to solve the representation problem. BYOL uses two neural
networks to learn, the online and the target network, while
VICReg introduces instance contrasting in the loss function.

This paper examines the importance and effects of different
augmentation strategies using SimCLR, BYOL, and VICReg,
which we present with an architectural overview in Figure 2.
SimCLR and BYOL are investigated due to their demonstrated
potential in the work conducted by [5] and [8], while the
exploration of VICReg is motivated by its novelty, simplicity,
and theoretical transparency.

III. DATASETS

All ECG recordings used in this paper have been obtained
from publicly accessible databases. All datasets consist of
short-duration (7-10 seconds) standard 12-lead ECG record-
ings. The datasets also contain some metadata, but in this
paper, only the ECG has been used. A collection of three
datasets were used for the pre-training process: CinC2020
[18], Ribeiro [19], and Zheng [20]. Fine-tuning was carried
out exclusively on the PTB-XL dataset [21]. Table I shows
the number of recordings used for each section. All ECG
recordings and associated annotations are obtained from in-
clinic exams conducted by clinical cardiologists. As each
ECG recording is annotated with a subset of the 71 labels
in the PTB-XL dataset [21], these labels form the multi-label
classification downstream task. The labels cover a wide variety
of diagnostic, form, and rhythm statements that can be used
for a comprehensive evaluation of ECG analysis algorithms.

IV. AUGMENTATION STRATEGIES

In self-supervised learning, the choice of views controls
the information captured in the representation. Self-supervised
techniques encourage representations to discard information
regarding the augmentations applied to the input data, thereby
becoming invariant to the set of chosen augmentations. The
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pre-training phase serves to decouple the correlations of irrel-
evant features between the representations of positive samples.
Recent research, though not extensively studied, has shown
that the ideal transformations to use are indeed dependent
on the downstream task [22]. Throughout the experiments in
this paper, the data transformation module is constructed to
sequentially apply random resized crop augmentation followed
by time out augmentation, following the experiments carried
out by [5].

A. Random Resized Crop

Random resized crop cuts a random contiguous segment
of the signal and rescales it to its original size. A crop
parameter p is sampled uniformly from the range (I,m). In
our experiments, we define original augmentation strength
as (I,m) = (0.5,1.0), which corresponds to the values sug-
gested by [5]. Additionally, we extend the experimental space
by further investigating the effect of various augmentation
strengths. In order to do this, we add another augmentation
setting which we refer to as stronger augmentation and is
defined as (I,m) = (0.3,1.0). This means that we crop a
portion p (p being between 50% and 100%, or 30% and 100%,
respectively) from the signal and upsample to the original size.

B. Time Out

The temporal specific transformation, time out augmentation
[23], sets a random contiguous segment of the signal to
zero. The range of the cutout window is determined by the
parameters (t;,t,), from which the time out parameter ¢ is
uniformly sampled. The parameter describes how much of the
original signal will be set to zero. Throughout our experiments,
the augmentation setting referred to as original augmentation
strength sets the parameters (¢;,t,) = (0.0,0.5) and follows
the implementation described by [5]. Thereby a stochastically
chosen window with a maximum length of 50% of the original
signal is set to zero. As with the random resized crop, we aim
to increase our understanding of the augmentation strength’s
effect on downstream performance. Thus, we define a stronger
augmentation, to allow the time out parameter ¢ to take on
values in the range (¢;,t,) = (0.2,0.6).

V. SINGLE AUGMENTATION IN PAIRS

The first phase of the learning pipeline consists of a
stochastic data transformation module, as described in Section
IV. This module randomly transforms any given data sample
to produce two correlated views of this same data instance.
Current state-of-the-art approaches define a positive pair as
two augmented copies of a data sample [11], [13], [14], [16],
[17], making this the current approach for defining positive
pairs. Through our work, we refer to our implementation
of this approach as double augmentation. With the aim of
making meaningful contributions to the field of research, we
investigate how different formulations of positive pairs affect
the downstream performance of the learned representations. To
this end, we introduce an alternative approach that we refer
to as single augmentation. Here, positive pairs are defined

such that one augmented copy is paired with the original
signal, giving a positive pair with only one transformed view,
retaining more original signal information.

VI. LENGTH OF ECG SIGNALS

For a healthy heart with a typical heart rate of 70 to 75 beats
per minute, each cardiac cycle, or heartbeat, lasts for more or
less 0.8 seconds [24]. Therefore, 2.5 seconds of an ECG signal
as used in [5] entails about three complete cardiac cycles.
This may not contain sufficient information for a classifier,
given that some cardiovascular diseases, such as arrhythmia,
can only be detected sporadically. To investigate the impact
of ECG signal length on model performance, we extend the
experiments by also introducing 10-second long ECG signals.

VII. EXPERIMENTAL SETUP

All our adopted self-supervised learning frameworks follow
the same procedure, starting with the pre-processing of data.
During the self-supervised pre-text task, data augmentation
is applied to each input sample to form multiple views of
the data. The data views are then passed through an encoder
network and mapped to a latent representation space. Fol-
lowing this step, the representation will either be projected
into a lower dimensional space or expanded into a higher
dimensional space, depending on the method currently in use.
During the last step of the pre-text task, a loss function is
minimized in this final representation space. After the pre-text
task, the encoder network is fine-tuned using labeled data with-
out augmentations and evaluated on a multi-label classification
task. This is the downstream task of our procedure.

A. Data Preparation and Augmentation

The self-supervised learning pre-text task begins with the
data augmentation module. An ECG signal x is uniformly
sampled from the dataset and when performing a double
augmentation, two data transformations 7 and 7’ are sampled
from the transformation distribution 7. Each data transfor-
mation 7 ~ 7,7 ~ T is applied to the ECG signal x,
producing two different signal views, X = 7(x),x = 7/(x)
that form a positive pair with double augmentation. For some
of the experiments, positive pairs are defined using the single
augmentation strategy where one augmented copy X = 7(X)
is paired with the original signal x, giving a positive pair as
(X, x). The transformations are stochastic resizing crops of the
signal, followed by time out augmentation, as described in
Section IV. Following the work of [5] and [25], the ECG
recordings used throughout these experiments are restricted to
ECG data at a sampling rate of 100 Hz. Signals are segmented
into windows of length 7, where T' = 250 or 7' = 1000
depending on whether the used signal length is 2.5 seconds or
10 seconds.

B. Self-Supervised Training

Following current state-of-the-art methods [5] the ResNet-
50 architecture [26] is chosen as the encoder network for all
three self-supervised learning approaches implemented in this
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work. For the Siamese network architectures used in SimCLR
[16] and VICReg [14], the encoders on both branches share
the same set of weights, while BYOL [17] updates the encoder
weights of the target branch according to a moving average
of the online branch. The architectural implementations of the
three methods follow those described in their original papers
but are adjusted to one-dimensional inputs. Apart from the
number of training epochs, which we set to 2000, and, batch
size which is set to either 2048 or 512 depending on ECG sig-
nal length, our training regime and network hyperparameters
also follow the methods’ original implementations.

C. Multi-Label Classification Task

For the downstream task, we use a 1-dimensional ResNet-
50 model extended with a fully connected classification layer
for the 71 labels. In the case of the pre-trained models, this is
equivalent to adding a classification layer on top of the ResNet-
50 encoder. After fine-tuning, we compare their downstream
performance with that of a model that is randomly initialized
but architecturally identical and trained using labeled data. For
both fine-tuning and supervised training, we employ a standard
binary cross-entropy loss. During fine-tuning of the pre-trained
models, and supervised training for the baseline model, a
constant learning rate of 0.008 is used to optimize a binary
cross-entropy loss. Furthermore, we use an AdamW optimizer
in combination with a weight decay regularization of 0.001
[27]. When training the network using ECG recordings of 10
seconds in length, the batch size is set to 512, whereas a batch
size of 2048 is used for networks trained with ECG recordings
of length 2.5 seconds. Addressing class imbalance, model
performance is measured using macro-AUC, as described in
[25], computed from the 71 labels on the most fine-grained
level in PTB-XL [21].

The model selected for evaluation is the one that during
training obtained the highest macro-AUC score when evalu-
ated on the validation data. Reported metrics are the respective
test set score of this selected model. Moreover, five runs of
fine-tuning were performed on the same set of data, each with
stochastically sampled data augmentations.

VIII. RESULTS

The macro-AUC scores for the three different models
(SimCLR, BYOL, and VICReg) using different pre-processing
and augmentation strategies are presented in Table II. The
results are evaluated after fine-tuning using 100% of the
labeled data. The table presents results for all combinations of
signal length, double/single augmentations, and augmentation
strength previously presented, where stronger augmentation
refers to stronger both in the sense of random resized crop
and time out. The presented values are averaged over the five
different fine-tuned models and the standard deviation of these
are presented in parenthesis. The asterisk refers to results that
follow the same strategy as [5]. The best results are achieved
on pre-training on BYOL with 10-second long signals, and
single, stronger augmentation.
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Fig. 3: Performance as a function of % labeled fine-tuning
data for models pre-trained using the BYOL method. Note
the non-linearity of the x-axis.

As BYOL showed the most promising results we also
present the macro-AUC scores as a function of how much
of the fine-tuning data is used, for the different augmentation
strategies, in Figure 3. The 2.5s double original aug. refers to
the previously published augmentation strategies in [5] (same
as asterix in Table II). The plot shows that all our augmenta-
tions outperform both this and the supervised network at all
levels of labeled data, while [5] only performs better than the
supervised network for 1% and 10%. Again, we see that both
stronger augmentation, single augmentation, and increased
signal length improve the performance, with 10s single strong
aug. performing best. The 10s double original and strong aug.
have been left out of the plot as they performed similarly
to their corresponding versions with single augmentation.
However, it is still important to note that it improves the
performance to use single augmentation instead of double for
the 2.5-second signals. This shows that the performance still
can be boosted even if only shorter signals are available.

IX. CONCLUSIONS

In this study, we present an assessment of augmentation
strategies for self-supervised representation learning on 12-
lead clinical ECG data. Although self-supervised algorithms
have been applied successfully in other data domains, the
ECG signal is of a different data modality on which the
applications of self-supervised learning have not yet been
extensively examined. Published experiments mostly follow
frameworks presented in the computer vision domain, though
direct policy adoption could lead to weaker generalization
on downstream tasks. With this in mind, we implement
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TABLE II: Macro-AUC scores for SimCLR, BYOL, and VICReg using different augmentation strategies. Mean and std.
macro-AUC are computed on the test data over five evaluation runs, fine-tuned for 100 epochs on 100% of the labeled data. A
supervised network (no pretraining) obtained 0.9157(.0037) with 2.5-second signals and 0.9165(.0032) with 10-second signals.

2.5 sec | 10 sec
Double | Single | Double | Single
Method | Orig. |  Strong | Orig. |  Strong | Orig. |  Strong | Orig. |  Strong
SimCLR  .9150(.0035)*  .9184(.0053)  .9175(.0047)  .9198(.0055)  .9224(.0030)  .9254(.0032)  .9246(.0021)  .9258(.0081)
BYOL 9139(.0047)*  .9257(.0022)  .9162(.0019)  .9270(.0015)  .9263(.0037)  .9269(.0036)  .9270(.0050)  .9304(.0063)
VICReg 9153(.0033)*  .9152(.0097)  .9195(.0022)  .9179(.0067)  .9154(.0035) .9186(.0037)  .9168(.0023)  .9263(.0025)

and analyze the effect of different augmentation strategies
on three major self-supervised learning methods: SimCLR,
BYOL, and VICReg. Among the insights obtained, the most
crucial led to further insights into the importance of data
pre-processing and augmentation for improved performance
results on the downstream task. By increasing the length of
the ECG signal, downstream performance results are improved
for most methods. Also, augmenting only a single copy in
the positive pairs has a positive effect. Combining this single
augmentation and increased signal length with a stronger data
augmentation strategy, the self-supervised pre-trained models
performed better than previous methods using shorter signals
and double, less strong, augmentation. Our models also outper-
formed their supervised counterparts in all evaluation settings.
This highlights that defining a suitable augmentation protocol
is crucial for improved performance results on downstream
tasks related to cardiovascular health. This study’s findings add
valuable insights into the importance of formulating an optimal
strategy for self-supervised ECG representation learning.
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