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Abstract—Inter-Beat Interval (IBI) is a clinically established
proxy indicator of Heart Rate Variability (HRV), as well as
a number of cardiac rhythm abnormalities. Its relevance for
healthcare continuous monitoring solutions has called for pre-
cise, yet lightweight IBI estimators, compatible with real-time
applications on resource-constrained devices, such as wearables.
While the increasing relevance of Deep Learning-based models,
with their advantageous automatic feature extraction properties,
has also made its way onto the healthcare technology domain,
the design of IBI estimators using such an approach would
typically involve extensive handcrafted architectures. To mitigate
the manual effort of finding satisfactory models for many tasks,
automatic search methods for these neural Machine Learning
models have been proposed. In the present work, we propose a
Neural Architecture Search (NAS) approach to discover compact
neural models for IBI estimation. In this work, we report the
best-found models that outperform the current state-of-the-art
(SOTA). The reported models were obtained under such strict
memory-performance trade-off considerations in a standardized
medical database of photoplethysmographic sensor data.

Index Terms—Inter-beat Interval, Neural Architecture Search,
Peak Detection, Signal Quality

I. INTRODUCTION

Wearable healthcare devices have received increasing public
interest from the consumer electronics industry these days and
play a crucial part in human life, notably, in Health Monitoring
Applications (HMA) [1]. Among the diverse wearable-based
HMA domains, cardiovascular monitoring applications are one
of the most important ones, mostly motivated by various
reports indicating that Cardiovascular Diseases (CVDs) have
become the leading cause of death worldwide [2]. For instance,
in 2012, the World Health Organization (WHO) reported that
17.6 million deaths occurred worldwide due to CVD causes,
a growth since 2000 [3]. Moreover, in addition to mortality
rates, CVDs also leads to infirmity and decreased quality-of-
life [3]. Thus, to provide a better life for people, continuous
cardiac monitoring is essential in preventing and managing
CVDs.

The conventional cardiac monitoring methods commonly
employ Electrocardiogram (ECG) to monitor various physi-
ological parameters, especially Heart Rate (HR). HR is a key
indicator of cardiac health and it is computed as the average
value of heart contractions during a determined time frame. Its
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Fig. 1: Inter-Beat Interval (IBI) estimation using RR Interval
(RRI) from ECG signals and the corresponding Peak-to-Peak
Interval (PPI) from Photoplethysmography (PPG) sinals.

variation, i.e., the HRV, is one of the most important factors in
identifying cardiac status, and heart conditions, and it serves
as a guide to the assessment of cardiac wellness. HRV is
the physiological measure of variations between consecutive
heartbeats that can be measured via IBI [2].

IBI is traditionally computed using ECG signals, which is
still the gold standard for HR and heart rhythm analysis [4].
Because of its unique signature, ECG provides detailed in-
formation about the heart’s function due to its characteristic
waveform. Considering the ECG waveform, IBI can be esti-
mated by computing the difference between R peaks. The R
peak is typically the largest spike in a period of the ECG signal
and it corresponds to the depolarization and contraction of the
left ventricle. Usually, ECG signals are measured considering
the electrical activity of the heart, using multiple electrodes,
which can be a big hindrance for some applications, especially
on wrist-worn wearable devices.

Photoplethysmography (PPG) is another common physio-
logical signal used in medical applications that can be used
to measure IBI. It is an optical measurement of an organ’s
blood flow volume by illuminating the skin and subcutaneous
tissue with light of a specific wavelength. This light is either
absorbed, passed through, or reflected back. A photodiode then
converts the measured lights (before and after reflection) into
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Fig. 2: The two-stage framework for IBI peak classification.

an electrical signal, which produces a characteristic waveform.
Considering the PPG waveform, IBI can be estimated by com-
puting the difference between the largest peaks of consecutive
periods, the Peak-to-Peak Interval (PPI). PPG compares to
ECG as depicted in Figure 1. Notice how both signals have
the same period, meaning that either one can be studied to
determine IBI.

PPG usage presents some advantages for wearable appli-
cations, especially on wrist-worn or forefinger devices. It is
easy to set up, convenient, simple, and economically efficient.
Modern PPG devices use a single optical sensor, with a near-
infrared emitter and detector integrated into a mechanically
robust, reusable, and comfortable to wear, which can be
readily integrated with computational resources. This allows
continuous measurements, which is advantageous to enable
continuous monitoring solutions for wearable electronics, like
fitness trackers and smartwatches. Because of these aforemen-
tioned advantages, this paper is focused on IBI estimation
using PPG signals.

In the context of using PPG for measuring IBI, some
researchers propose techniques for enabling the production of
feasible wearable health applications. Most of these studies
rely on rule-based methods for guiding the decision on whether
to retain or remove candidate systolic peaks from signal [5]
Regularly, these rule-based method employs threshold func-
tions based on the amplitude value and the time gap to the
latest peak position. Since these methods employ only a set of
thresholds functions (i.e., a series of if and elses), they have
the remarkable advantage of being computationally simple and
suitable for being employed in embedded devices with severe
memory restriction and computational constraints. Nonethe-
less, because rule-based methods usually define their threshold
functions and parameters experimentally or throughout brute-
force searches, the performance of such methods does not
perform well when the amplitude of the PPG signal is subject
to wide variations.

Recently, solutions based on Machine Learning (ML) and
Deep Learning (DL) approaches have enjoyed increasing vis-
ibility due to their enhanced robustness to more challenging
scenarios [6] .The learning-based methods, despite having the
advantage of enhanced robustness in challenging scenarios,
still carry the need for extensive handcrafted parameters
and manual decisions over architectures. Furthermore, these
methods are customarily computationally costly and demand
considerable hardware resources.

In this paper, we propose an approach that combines the
advantages of learning-based with the advantages of rule-based

methods. In other words, we employ ML to generate robust
and well-performing models to classify PPG peaks for IBIs
estimation purposes. We make use of NAS [7] techniques
for finding lightweight neural solutions of competitive per-
formance under strict memory and computational constraints.

II. PROPOSED METHOD

Figure 2 depicts the overall steps employed during this
study. It includes five main stages, namely (1) Preprocessing,
(2) Signal Quality Assessment, (3) Signal Quality Classifier,
(4) Peak detector, and (5) IBI estimator. The Preprocessing
step is responsible for preprocessing the raw sensed data
to reduce noise from the raw PPG sensor. We implemented
an algorithm inspired by Khalak & Wiggins [8], where we
used a Butterworth filter of second-order whose pass-band
frequencies are 0.8Hz and 4.5Hz to filter the green channel of
the PPG signal and the three-axis (i.e., x, y, and z) of inertial
sensors. Then, a cascaded Least-Mean-Square (LMS) filter
is employed for reducing motion artifacts using the inertial
sensors data.

The Signal Quality Assessment and Signal Quality Clas-
sifier steps are responsible for analyzing the quality of the
PPG signal and classifying it as ‘reliable’ or ‘unreliable’,
respectively. These steps can be implemented separately (as
illustrated in Figure 2) or jointly (e.g., as in a neural network).
Since there is a vast literature proposing signal quality evalua-
tion methods [9], and since all these methods could be virtually
used for signal quality classification tasks in our study, we will
not detail the algorithms used for signal quality in the next
sections. Details about the algorithms are described in [10].
The ‘IBI Estimator’ step just gets the peak positions detected
by the ‘Peak Detector’ step and their corresponding instants
to compute the difference between consecutive peak instants.
This difference corresponds to the IBI. Therefore, the main
scope of this paper comprises the Peak Detector step, which
is detailed in the next section.

A. Peak Detector

Let a PPG sensor data reading discretely captured over a
session of time range [0, T ], with sampling frequency fppg

s ,
defined as a monotonically increasing vector

x[0,T ] = {x0, x1, ..., xN} xi ∈ [0, T ], (1)

and an equally monotonically increasing reference ECG vec-
tor, simultaneously captured with sampling frequency fecg

s ,
defined as

e[0,T ] = {e0, e1, ..., eNecg
} ei ∈ [0, T ]. (2)
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The goal of IBI estimation is to extract a set of tuples

p[0,T ] = {(pi, Ii)} i ∈ {0, 1, ..., Np}, (3)

where pi ∈ x[0,T ], and Ii is an indicator function, with

Ii =

{
1, if peak pi is classified as a true peak;
0, if peak pi is classified as a false peak.

(4)

The correctness of the estimation is then computed peak-
by-peak, by checking if, for each peak pi, there is a single
corresponding peak pej ∈ e[0,T ] subject to ||pi − pej || < δ,
where pej is the jth peaks previously labeled as either ‘true’ or
‘false’ by human experts.

The peak detection of all the candidate peaks uses the
derivative of the PPG signal computed by taking the dif-
ference between consecutive preprocessed signal samples. If
its derivative sign switches from positive to negative, it is
detected as a ‘candidate peak’. A given candidate peak, pi,
is identified using the three-point sliding window method, i.e.,
x[ti − 1] < x[ti] > x[ti +1]. On the other hand, finding zero-
crossing points in which the derivative sign switches from
negative to positive indicates a signal valley point. Valley
points are identified whenever the zero crossing points vi lie
on x[vi − 1] > x[vi] < x[vi + 1].

After detecting the peaks and their corresponding instants,
we use this information to extract features to classify which
peaks are systolic or not. The features are extracted directly
from the signal using the relative signal amplitudes and the
relative time gaps between the peak of interest t, a and the
previous and the following fiducial points (i.e., peaks and
valleys). These features and fiducial points are illustrated in
Figure 3, where the peak indicated as “?” denotes a peak
of interest whose extracted features are associated with it.
The features are calculated from the predecessor and the fol-
lowing coordinates, which are associated with fiducial points
in the neighborhood of the candidate peak. The scalar a
refers to the amplitude of the peak of interest. The relative
amplitude features of neighbor peaks app and anp refer
to the amplitude difference between a and the previously
detected peak, app, or the following peak, anp. We follow
the same reasoning for the relative valley amplitude features,
i.e., apv and anv . The remaining features fetch the time
gaps between the peak under assessment and its neighbor
peaks and valleys, i.e., dpp, dpv , dnv and dnp. Therefore,
in summary, the feature vector α ∈ A ⊆ R9 is given as
α = [app, apv, anv, anp, a, dpp, dpv, dnv, dnp]

⊺.
Detecting whether a peak is systolic or not is essential

because the IBI is actually the time difference between two
consecutive systolic peaks, as illustrated in Figure 1. Any
classifier model receiving the feature vector α as input and
mapping it into binary label can be used for this task (e.g.,
Support Vector Classifier, Random Forests, etc). However,
since we are interested in develop techniques for wearable
devices with severe hardware restrictions, considering the
constraints of low hardware consumption and high predictive
efficiency, we adopted a NAS-based strategy to produce a set
of neural networks that met them.

Fig. 3: Coordinates of fiducial points used as features.

Formally, our goal is to design a NAS method for finding
a binary peak classifier model PK ∈ MPK(·) : A → {0, 1}
aiming to label a peak as a truly systolic peak (1) or a false
one (0). In this case, the model space M is composed as the
set of all Multilayer Perceptrons (MLPs) which can be defined
by the following three parameters:

• h ∈ {0, 1, ..., 3}, number of hidden layers
• l ∈ {1, ..., 10}h, number of neurons in each hidden layer,
• and σ ∈ Σh, where Σ is the activation functions

set, which contains the Sigmoid, Tanh, ReLU, Mish,
LeakyRely, and Softplus functions.

The last layer of the sampled model is always fixed to one
hidden neuron and Sigmoid activation function, for generating
the one-dimensional binary label as output. The NAS then
works through the following steps:

1) Initially, all possible combinations of hidden layers are
initialized with equal probability;

2) Next, for each NAS epoch, a batch of models is com-
posed by generating architectures following the con-
straints of h, l, and σ;

3) Each model of the batch is trained on the training
samples and its validation accuracy is obtained after a
predefined number of training epochs;

4) After obtaining the performance of each model in
the batch, a Long Short-Term Memory (LSTM) net-
work [12], denominated controller, is trained with a
Policy Gradient method with the reward of each model
sampled set as its corresponding validation accuracy.
That way, layer configurations with better performance
tend to be sampled more often in the next NAS epochs;

5) Steps 2, 3, and 4 are repeated until the predefined
maximum number of NAS epochs is reached.

Besides these steps, a weight-transferring strategy is em-
ployed to speed up the training of architectures with layers
that overlap with those of previously sampled models. In this
case, if a given hidden layer of a model can be found in
an already trained model, its final weights are re-used in the
corresponding layer of the new model.

III. RESULTS

We used a dataset collected for this study that includes
46 volunteer subjects. These subjects include 9 volunteers
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Fig. 4: Neural network architectures discovered via Neural Architecture Search (NAS). In the above diagrams, D(x) denotes
a dense/linear layer with x units/neurons. The blocks A(t), A(L), A(S+), A(R), A(M), and A(s) represent the Hyperbolic
Tangent (Tanh), Leaky version of a Rectified Linear Unit (LeakyReLU), Softplus, Rectified Linear Unit (ReLU), Mish [11],
and Sigmoid activation functions, respectively.

with permanent Atrial Fibrillation (AF), 16 volunteers with
Normal Sinus Rhythm (NSR), and 21 volunteers with other
non-specified arrhythmias. The majority of these volunteers
are older than 60 years, with a mean age of 66 years old and
a median age of 70 years. The dataset used throughout this
study was collected using a Samsung Galaxy Watch Active 2
at 25Hz.

We assessed the performance of the proposed architectures
depicted in Figure 4 by comparing the found neural classifier
models with SOTA ML models using the same proposed
features. The performance was evaluated in terms of the Ac-
curacy, Precision, Recall, and F-measure classification scores.
Additionally, we defined

Ψ(z) =
z

# of parameters
× 100%, (5)

where {Ψ(z)} is the “Metric-Parameters Efficiency Ra-
tio (MPER)”, a proposed way of evaluating the memory-
performance trade-off of all models, and z is a classification
metric, such as Accuracy, Precision, Recall, etc.

The performance of models illustrated in Figure 4 is shown
in Table I. From this table, we can verify that these models
surpass or achieve competitive performance in comparison
with several SOTA algorithms which require significantly
more parameters. Moreover, from Table I, it is possible to
see that, for the Accuracy metric, the highest performing
NAS model (M2) achieves 0.9724, very close to the top-
performing baseline BaggingModel, while using about 17000x
fewer parameters. For Precision and Recall, the top-performing
methods are NAS Models 15 and 8, respectively. For the f1-
Score, the highest performing NAS model (M2) achieves a
performance of 0.9811, comparable to the top baseline Ex-

1088



TABLE I: Performance metrics for NAS top-performing candidates and baseline comparison methods.

Model Accuracy Precision Recall F1-Score Size (kB) Parameters Ψ(Accuracy)

Pr
op

os
ed

ne
ur

al
m

od
el

s

M1 0.9704 0.9779 0.9816 0.9798 18 79 12.284
M2 0.9724 0.9776 0.9846 0.9811 18 135 7.203
M3 0.9703 0.9780 0.9813 0.9796 16 171 5.674
M4 0.9695 0.9764 0.9819 0.9791 16 77 12.591
M5 0.9696 0.9739 0.9848 0.9793 18 151 6.421
M6 0.9704 0.9765 0.9831 0.9798 18 255 3.805
M7 0.9701 0.9730 0.9863 0.9796 16 109 8.900
M8 0.9699 0.9779 0.9809 0.9794 16 190 5.105
M9 0.9714 0.9790 0.9818 0.9804 18 310 3.134
M10 0.9702 0.9784 0.9807 0.9796 15 179 5.420
M11 0.9708 0.9746 0.9856 0.9801 16 100 9.708
M12 0.9701 0.9771 0.9820 0.9795 16 89 10.900
M13 0.9696 0.9775 0.9809 0.9792 16 93 10.426
M14 0.9707 0.9759 0.9840 0.9800 18 211 4.600
M15 0.9698 0.9800 0.9785 0.9794 16 171 5.671

SO
TA

M
L

m
od

el
s

AdaBoost 0.9695 0.9756 0.9827 0.9791 29 29376 0.033
Bagging 0.9727 0.9781 0.9846 0.9813 2317 2371708 0.000410
Extra Trees 0.9732 0.9772 0.9863 0.9817 107763 110349210 0.00000882
GBM 0.9731 0.9769 0.9863 0.9816 172 175763 0.00554
KNN 0.9580 0.9629 0.9802 0.9715 9201 9420890 0.000102
LDA 0.9606 0.9786 0.9671 0.9728 2 1662 0.578
QDA 0.9569 0.9799 0.9605 0.9701 3 2732 0.350
RFC 0.9724 0.9769 0.9854 0.9811 2833 2900430 0.000335
SVC 0.9469 0.9640 0.9632 0.9636 1206 1234473 0.000767

TABLE II: Performance comparison of the top-performing
found model (M2) and state-of-the-art using ICON dataset.

Method Accuracy Precision Recall F1-Score
Heartpy [13] 0.6611 0.7479 0.8507 0.7960
Elgendi [14] 0.5403 0.9407 0.5593 0.7015
Li et. al. [5] 0.6157 0.7663 0.7581 0.7622
Heo et. al. [15] 0.4388 0.9559 0.4479 0.6100
M2 (Ours) 0.9724 0.9776 0.9846 0.9811

traTreesModel, while using about 800000x fewer parameters.
From the MPER column, it is possible to verify that the
proposed neural models perform much better in many orders
of magnitude higher than all the SOTA models. As shown
in Table II, M2 also outperforms several state-of-the-art peak
detection methods, as well as traditional ones.

IV. CONCLUSIONS

This paper describes an approach for generating efficient
neural network architectures to classify whether a given peak
of PPG signals is systolic or not. The difference between
two consecutive truly systolic peaks corresponds to a IBI
measurement. Using NAS-based techniques, we found a set of
architectures that are tiny enough to be deployed in embedded
devices, enabling real-time wearable applications for cardiac
monitoring. Therefore, the main goal of this paper is to report
the discovered neural models to the biomedical engineering
and signal processing communities to help the advancement of
continuous cardiac monitoring solutions running on embedded
devices such as smartphones and smartwatches.
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