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Abstract—Severity-level classification of dysarthria helps in
diagnosing a patient and choosing an appropriate course of
treatment. This would also aid in redirecting the speech to an
appropriate dysarthric Automatic Speech Recognition (ASR), as
traditional ASR does not perform well on dysarthric speech.
In the recent past, several approaches have been used to study
the severity-level classification of dysarthria using state-of-the-
art features, such as Short-Time Fourier Transform (STFT)
and Mel Frequency Cepstral Coefficients (MFCC). This study
investigates novel auditory transform-based Cochlear Filter Cep-
stral Coefficients (CFCC) features for dysarthric severity-level
classification. Three DNN-based classifiers, namely, Convolutional
Neural Network (CNN), Light-CNN (LCNN), and Residual Neu-
ral Network (ResNet) were employed on UA-Speech Corpus
and TORGO corpus. Our proposed CFCC feature set yields an
improved classification accuracy of 97.46% (98.99%), 94.92%
(94.97%), and 96.66% (98.93%) on UA (Torgo)-corpus using
CNN, LCNN and ResNet classifiers respectively. Furthermore,
performance metrics, such as the Jaccard index, Matthew’s
Correlation Coefficient (MCC), F1-score, and Hamming loss
are used to examine feature discrimination power of CFCC.
Finally, latency period of CFCC was also analysed for practical
deployment of system.

Index Terms—Dysarthria, UA-Speech Corpus, TORGO Cor-
pus, CFCC, LFCC, MFCC, CNN.

I. INTRODUCTION

The speech production mechanism in humans requires
proper co-ordination between the brain and the muscles that
produce intelligible speech [1]. This co-ordination is affected
due to disorders, such as cerebral palsy, muscular dystrophy,
stroke, brain infection, brain injury, facial paralysis, tongue or
throat muscular weakness, and nervous system disorders. In
such unfortunate cases, one may suffer from speech disorders,
such as dysarthria, stuttering, apraxia, and dysprosody. Out
of these, one of the prevalent speech disorders is dysarthria,
wherein the dynamic movements of the articulators, and the
upper respiratory system are affected. This leads to difficulty
in production of natural speech.

The course of treatment for dysarthric patients is recom-
mended based on their severity-level. Thus, there is active re-
search to develop techniques for classifying dysarthric severity
[2]. Therefore, the investigation of severity-level of dysarthria
aids in determining the course of treatment to be chosen. In
the literature, a considerable use of the Short-Time Fourier
Transform (STFT) [3], and numerous acoustical parameters to
classify the severity-levels of dysarthria has been made [4].
The state-of-the-art feature sets, such as MFCC were used
because of their capacity to capture global spectral envelope

information [5]. Along with perceptually justified state-of-the-
art feature sets, such as the MFCC, glottal excitation source
parameters from quasi-periodic sampling of the vocal tract
system were implemented in [6]. Speech signals are non-
stationary signals, particularly due to the dynamic range of the
multi-frequency components present in them. During natural
speech production, the dynamic motion of articulators causes
the frequency content to alter rapidly. This rapid change of
frequency content is all the more vivid in dysarthric patients,
due to irregular movement of the articulators, which also
depends on the severity-level of dysarthria.

Furthermore, the desired performance is not obtained, when
the acoustic training and testing environments are mismatched.
Due to the observed resilience of the human hearing system
to mismatched conditions [7], we propose a feature extrac-
tion technique based on the fundamental signal processing
processes in the ear, utilizing Auditory Transform (AT). An
auditory-based time-frequency transform, is the foundation
for Cochlear Filter Cepstral Coefficients (CFCC) [8]–[10]. In
this work, we propose CFCC to classify the severity-level of
dysarthria, made the following contributions in this paper:

• We propose the use of auditory transform-based features,
namely, CFCC, for the severity-level classification of
dysarthric speech.

• We have experimentally analysed the effects of the
cochlear filter parameters, namely, α and β, on the
performance of the classifier used.

• Analysis of impact of frequency resolution on the perfor-
mance of the classifiers has been done through varying
the number of subband filters.

• Since the works on dysarthria requires high performance,
it is important to analyze the precision for retraining of
the model. The experiments for the same are reported in
this work.

• Given that the course of treatment for dysarthria is
determined based on the accuracy of the diagnosis of
the severity-level, it is important to be able to accurately
diagnose the disease even for shorter durations of speech.
Hence, we have also included the latency period analysis
and also compared it with the state-of-the-art feature sets.

II. COCHLEAR FILTER CEPSTRAL COEFFICIENTS (CFCC)

The CFCC feature set extraction steps for dysarthric
severity-level classification are described in this Section.
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Fig. 1. Functional Block Diagram of the Proposed CFCC Feature Set. After
[?], [9].

1) Cochlear Filtering: There are three main regions of
human ear, namely, the outer ear, the middle ear, and the inner
ear. The outer region of the human ear consists of the visible
part of the ear called pinna, which captures sound waves that
are funneled into the middle ear. The sound wave is converted
to mechanical energy by three bones located in the middle ear.
Out of the three bones, the last bone is called as stapes. Stapes
sets the fluid in cochlea into motion resulting into waves in
the Basilar Membrane (BM). In order to decompose the input
speech signal to the cochlea into a set of subbands signals, the
Auditory Transform (AT) is used. The AT W (a, b) of a signal
s(t) w.r.t. a cochlear filter ψ(t) is given by [9]:

W (a, b) = ⟨s(t), ψa,b(t)⟩,

=

∫ +∞

−∞
s(t)ψ∗

a,b(t)dt,

=

∫ +∞

−∞
s(t)

1√
a
ψ∗

(
t− b

a

)
dt,

(1)

where ∗ and < . > denote complex conjugate and inner prod-
uct operation, respectively. The wavelet transform involves two
parameters, a and b, both of which are real-valued, where
a ∈ R+ and b ∈ R. The a parameter determines the scale
and dilation of the mother wavelet. The center frequency of
the impulse response function depends on the value of a
being chosen. Multiple values of a are chosen to generate
subband filters having desired center frequencies, forming up
the filterbank. The parameter b determines the time shift of
the wavelet and shift the wavelet by amount b along the
time-axis. As an example, Fig. 2 (a) shows the time-domain
representation of one of the baby wavelets with a specified
center frequency, and Fig. 2 (b) shows frequency response of
10 such baby wavelets each with a different center frequency.
The number of subbands is determined by the number of
subband filters in a filterbank.

Fig. 2. (a) Impulse Response of 2nd Subband (Cochlear) Filter, and (b)
Frequency Response of Cochlear Filterbank Comprising Ten Subband Filters.

2) Hair Cell Representation: Due to the waves generated
by stapes in the BM, the hair cells in the cochlea are displaced

in one direction. This unidirectional hair movement results in
neural excitation. The neural excitation ceases if the hair cell
displacement is in the opposite direction. This motion of hair
cells can be expressed mathematically as [10]:

H(a, b) =W (a, b)2; ∀W (a, b), (2)

where W (a, b) is the filterbank output.
3) Nerve Spike Density (NSD): In addition, the hair cell

output for each subband is quantified as an NSD count. This
count is obtained by estimating the average of the hair cell
output within each frame, which is of length 20 ms and with
a shift of 8 ms. For the ith subband and jth frame, the NSD
count is computed as follows:

NSD(i, j) =
1

l

n+l−1∑
b=n

H(i, b), n = 1, N, 2N, ...; ∀i, j, (3)

where the l denotes the frame length, b is the sample number,
and the frame duration is denoted by N . Overall, the feature
extraction process consists of selecting Q center frequencies
from the frequency range of [0, Fs

2 ], divided into Q frequencies
evenly-spaced, which would be the center frequencies of our
subband filters. A series of values of the parameter a are
chosen accordingly to generate the wavelet function ψ(t),
keeping the value of b = 0. W (a, b) is generated for the given
signal s(t) for each subband. Then, the hair cell and nerve
spike density of the subband outputs are calculated. Finally,
in order to decorrelate the feature dimension and compaction
of energy, Discrete Cosine Transform (DCT) is applied to
extract the CFCC feature vector. Fig. 1 shows the functional
block diagram representation of the proposed CFCC feature
set, where 14 static coefficients are taken as input features
along with ∆ and ∆∆ features to form 42-D feature vector.

Fig. 3 shows the comparative analysis of the four levels
of dysarthric severity for the word ‘yes’ taken from the UA
corpus. To that effect, spectrographic analysis is shown in
Panel-I, followed by the contour plots of the proposed CFCC
feature set in Panel-II. It can be observed that as opposed to the
spectrogram, the CFCC feature set shows more discriminating
information, as the severity-level increases. In particular, the
density of the isolines of the contour plots shown in Panel-II
can be observed to be the highest for high severity-level class.

III. EXPERIMENTAL SETUP

A. Datasets Used

In this work, we use the Universal Access Dysarthric Speech
(UA-Speech) corpus [11]. Each speaker’s microphone arrays
M3, M5, and M6 were used for the extraction of CFCC
features. Apart from this, 465 word utterances out of 765
utterances were used. For training, we used 90% of data, which
comprises 837, 837, 833, and 676 utterances. Similarly, for
evaluation of the classification system, 10% of the data was
used, consisting of total 354 utterances. We have also made
use of the TORGO dataset taking a total of 1982 utterances
from all classes out of which 10% is used for testing [12].
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Fig. 3. Comparative analysis of dysarthric severity-levels captured by Panel I: spectrogram vs. Panel II: CFCC feature set. For severity-level of (a) very low,
(b)low, (c) medium, (d) high.

TABLE I
CLASS-WISE PATIENT DETAILS

UA Corpus [11] TORGO [13]
High F03, M01, M04, M12 -

Medium F02, M07, M16 M01, M04
Low F04, M05, M11 F01, M05

Very Low F05, M08, M09, M10, M14 F04, M03

B. Feature Sets Used
In this study, the performance of CFCC is compared with

STFT as baseline as in [3]. Further, the performance is
also compared with the state-of-the-art feature sets, such as
MFCC and Linear Frequency Cepstral Coefficients (LFCC).
The parametric details of these features are given in Table II.

TABLE II
DETAILS OF PARAMETERS OF THE VARIOUS FEATURE SETS USED

Parameters STFT MFCC LFCC
Frequency Scale Linear Mel Linear
Subband Filter - 40 40

Window Length 2 ms 25ms 15ms
Window Shift 0.5 ms 25ms 15ms

Feature Dimension 512×512 42 120

C. Classifiers Used
In this work, initial experiments are reported on Convolu-

tional Neural Network (CNN) classifier [5]. The CNN model
used in this work consists of four convolutional layers, and
one fully-connected (FC) layer. The kernel size is set to be
3 × 3, 4 × 4, 5 × 5, and 5 × 5 for each layers, respectively.
Rectified Linear Activation (ReLU) [14] and a max-pool layer
are used. The CNN model was trained using the Stochastic-
Gradient-Descent (SGD) optimizer algorithm [15]. A learning
rate of 0.003 and cross-entropy loss are used to estimate loss
[16]. In order to reinforce our findings, we conducted similar
experiments utilizing ResNet and LCNN classifier architec-
tures with comparable depth, while maintaining a consistent
learning rate for SGD.

D. Performance Evaluation
In this work, various performance evaluation metrics, such

as the F1− Score, which is a widely used statistical method

for evaluating a model’s performance [17], Mathew’s Correla-
tion Coefficient (MCC), which shows the degree of association
between the expected and actual class [18], Jaccard’s Index,
which measures the similarity and dissimilarity of two classes
[19], and Hamming loss, which takes into account the classes
that are inaccurately predicted are used [20].

IV. EXPERIMENTAL RESULTS

A. Fine-Tuning Cochlear Filter Parameters
This Section shows the various experimental results on UA

corpus, using CNN as the classifier, w.r.t. fine-tuning of the
cochlear filter parameters, namely, α, β, and the number of
subband filters Q. The parameter fine-tuning involved varying
of one parameter while keeping the other two parameters
constant. To that effect, first the number of subband filters (Q)
was varied from 40 to 160 in the steps of 20, while keeping α
= 3 and β = 0.02. Fig. 4 shows the results obtained by varying
the number of subband filters, and therby implicitly varying
the frequency resolution. It can be observed that the highest
performance is achieved for 120 number of subbands.

Fig. 4. Effect of Number of Subband Filters in Cochlear Filterbank.

The next set of experiments is done by varying the cochlear
filter parameter α, and keeping β and Q as 0.02 and 120,
respectively. To that effect, Figure 5 shows the performance
when α is varied from 2 to 4 in the steps of 0.5. It can be
observed that for α = 3, we obtain the highest performance,
which has also been the optimal value of α for various other
applications of cochlear filter based feature sets [21], [22].

Furthermore, the parameter β was varied from 0.016 to
0.024 in the steps of 0.002, keeping Q = 120 and α = 3.
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Fig. 5. Effect of Parameter α

The corresponding results are shown Fig.6, where the optimal
value of β obtained is 0.018, giving the accuracy of 97.46%.

Fig. 6. Effect of Parameter β

B. Comparison with Existing Feature Sets

For further experiments, we have used the CFCC features
with these optimal parameter values and compared it with
the existing features, such as STFT, MFCC, and LFCC in
Table III and Table IV. It can be observed that CFCC has
lesser false predictions compared to the other non-auditory
transform-based features. Given that the CFCC feature set
is specially designed to mimic the human auditory system
by exploiting auditory transform-based filtering, it is more
susceptible to the changes and variations caused in speech
[7]. Furthermore, the formant structure of dysarthric speech
is often distorted due to neuromotor coordination issues,
making acoustic signals better captured by cochlear modelling.
Therefore, the CFCC feature set is able to capture the unique
characteristics of dysarthric speech necessary for dysarthric
severity-level classification (such as pitch (Fo), loudness, and
articulation) and thus, performs better than other non-auditory
transform-based feature sets.

TABLE III
PERFORMANCE EVALUATION FOR VARIOUS FEATURE SETS

Feature Set Accuracy F1-Score MCC Jaccard
Index

Hamming
Loss

STFT 91.53 0.87 0.83 0.78 0.124
MFCC 95.20 0.91 0.88 0.84 0.087
LFCC 96.05 0.96 0.96 0.93 0.034
CFCC 97.46 0.97 0.97 0.95 0.025

TABLE IV
CONFUSION MATRIX OF BASELINE MFCC, LFCC, AND CFCC

MFCC High Medium Low Very Low
High 70 2 2 1

Medium 1 88 3 1
Low 1 1 88 3

Very Low 1 1 0 91

LFCC High Medium Low Very Low
High 68 4 3 0

Medium 2 88 2 1
Low 0 2 91 0

Very Low 0 0 0 93

CFCC High Medium Low Very Low
High 72 1 1 1

Medium 2 88 3 0
Low 0 1 92 0

Very Low 0 0 0 93

C. Effect of Classifier

To further evaluate the robustness of the CFCC feature set
we have tested it on three architectures, namely CNN, LCNN,
and ResNet.. It is observed in Fig.7 (a) that on the UA corpus,
the CNN architecture performs the best for all the feature sets.
Furthermore, the proposed CFCC feature set outperforms the
existing features on all the three architectures. For the case of
the TORGO corpus as shown in Fig.7 (b), similar behaviour
is observed except for the LCNN architecture.

Fig. 7. Effect of classifier using two datasets, namely a) UA Speech Corpus,
and b) TORGO Corpus.

D. Analysis of Precision

Furthermore, to analyze the precision for retraining of the
model, experiments were conducted using the CNN model on
the datasets, the results remained consistent across 5 trials. A

Fig. 8. Analysis of precision for retraining. Best viewed in colour
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minor variation in accuracy was observed, which may be due
to randomness in the DNN and seed values, as shown in Fig.8.
This indicates that the models are robust to quoted precision,
should they be retrained.

E. Analysis of Latency

In this study, performance of CFCC was also investigated
against STFT, MFCC, and LFCC by analysing the latency
period as showed in Figure 9. Latency period was estimated
by evaluating % classification for varying test speech segment
duration. Test segment of 500 to 3000 ms was considered
for analysis of latency period. It is evident from figure 9 that
CFCC features gave increased % classification accuracy, for
speech segment as small as 800 ms, however other features sets
gave increased % classification accuracy for speech segments
of duration > 1500 ms. In the context of these results, the
sustainability of CFCC for deployment of practical system is
evident.

Fig. 9. Analysis of Latency Period for Various Feature Sets.

V. SUMMARY AND CONCLUSIONS

This study represents the first detailed analysis of CFCC for
dysarthric severity-level classification. To that effect, auditory
transform-based CFCC feature set is proposed for classifying
the severity-level of dysarthric speech on two corpora, UA-
Speech and TORGO. The performance is evaluated using
three different classifiers: CNN, LCNN, and ResNet. The
CFCC feature set is observed to outperform the existing non-
auditory transform-based features, such as MFCC and LFCC.
In addition to this, analysis of precision is done, to evaluate the
robustness of the system towards the quoted precision, if the
model is retrained. Furthermore, we also analysed the latency
period w.r.t. MFCC and LFCC, which indicates the potential of
CFCC for practical deployment of severity-level classification
system. In future, the performance of the proposed feature set
can be evaluated under cross-database scenarios.
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definiteness of the Jaccard index matrix,” International Journal of
Approximate Reasoning, vol. 54, no. 5, pp. 615–626, 2013.
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