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Abstract—The mismatch between training and testing 

conditions is a known problem in the machine learning 

community. In this work, we outline a process of how a model 

which was trained under one set of conditions can be adapted to 

a new set of conditions by means of pseudo labeling. This is 

shown for the domain area of neonatal seizure detection. A 

previously developed deep learning architecture is first trained 

on a publicly available source dataset. It is then evaluated on 

another target dataset which was recorded in a different center, 

with different equipment, and annotated by a different expert. 

This model is then used to create pseudo labels on a sample of 

the target dataset, fine-tuned with the created pseudo labels, and 

re-evaluated on the target dataset. The results show a relative 

improvement of 13.5%  and  28.8% in AUC and the number of 

seizures detected respectively.  Various factors of the pseudo 

labeling procedure such as the amount of data vs confidence in 

pseudo labels are analyzed and presented.  

Keywords—pseudo labeling, training and testing conditions 

mismatch, EEG, neonatal seizure detection, deep learning 

I. INTRODUCTION 

Deep learning models are known to be data hungry. 
Leveraging all available data while assuring data quality is 
part of a usual recipe to improve the accuracy in many 
domain areas [1], [2], [3].  In the context of machine learning 
challenges, even the right usage of unlabeled data can give a 
competitive advantage. In numerous recent Kaggle 
competitions pseudo labeling is a key component of the 
winning solutions, in particular computer vision [4] and NLP 
competitions [5].   

In pseudo labeling, a model is first constructed by training 
it on the available labeled data. This teacher model is then 
utilized to create pseudo labels for the unlabeled database. 
Pseudo labeling can be used for knowledge distillation where 
a single powerful teacher model (or more often an ensemble 
of models) create soft labels (probabilistic output) from 
which a simpler student model can learn to perform the task 
at a smaller computational cost while preserving a similar 
level of performance [6].  

Soft labels, i.e. probabilities produced by the pseudo 
labeling process, can also be hardened (converted to 0-1 for 
binary classification) to gain extra labeled data which can 
then be used to fine-tune the original model. Where the 
teacher and student model are the same, as is the case here 
this label hardening process creates extra information from 
which the model can learn. It is worth noting that without 
label hardening, i.e. by utilizing only soft labels (probabilistic 
output) the model gains no new information and will not 

improve.  Usually, confidence considerations are 
incorporated in the process so that only datapoints that are 
more likely to be correct are used.  

Pseudo labeling can also help with the issue of 
performance reduction due to source-target mismatched 
conditions. It has been shown that model performance often 
degrades when it is trained on a source database from one 
center/location/domain and tested on a target database from a 
different center/location/domain. In the domain area of 
biomedical signal processing such as EEG classification this 
performance reduction is primarily due to source-target 
differences in recording equipment, local operating 
procedures, and annotation quality/subjectivity [7]. This 
source of performance reduction is also  seen in other domain 
areas such as medical imaging applications [8], cross 
language models in NLP [9] and microbiology [10]. This 
limits the usefulness of off-the-shelf available models and 
hinders the use of large annotated databases in many inter-
related domain areas.  

In this work, we show how the performance of a model 
trained on a publicly available dataset can be improved with 
a sample of target data without annotations. Here a pseudo 
labeling technique is used for the area of neonatal seizure 
detection, to attenuate the mismatch between source 
(training) database, and the target (testing) database that 
come from different centers. 

This proposed research answers the following questions: 
 

• Can pseudo labeling help with the source-target 
mismatch for the problem of neonatal seizure 
detection? 

• What are the main parameters to consider in pseudo 
labeling? 

• What are the means to improve the quality of pseudo 
labels? 
 
 

II. MATERIALS AND METHODS 

A. Pseudo labeling technique using hard labels 

Pseudo labeling works by using a teacher model trained 
on an annotated source database to label an unannotated 
database. Variants of pseudo labeling techniques include loss 
function adjustments [1], graph-based similarity [3], 
knowledge distillation[6], and iterative curriculum labeling 
[11].  In this research, a teacher model to detect neonatal 
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seizures is created using a publicly available dataset (source 
conditions) as training data. 

This teacher model is evaluated on a large internal dataset 
(target conditions) of continuous EEG to establish the 
baseline performance. The teacher model is then used to 
pseudo label  a sample dataset from target conditions which 
is also publicly available. The source and target conditions 
are very different (source-target mismatch) as the datasets 
come from different centers, recorded using different 
equipment, annotated by different experts etc. Additionally, 
the source dataset is composed of many short (1h) segments 
whereas in contrast the target conditions are represented by 
real-life monitoring scenario of continuous (over 24h) EEG 
recordings.  

The teacher model produces soft pseudo labels for the 
unlabeled dataset, i.e. probabilistic outputs for seizure/non-
seizure.  A threshold is applied to these probabilities, in order 
to divide them for a given class into two categories – high 
confidence and low confidence decisions. Here the high 
confidence probabilities for the non-seizure class are 
converted to hard labels-0, and thus a new labeled (non-
seizure) dataset is formed. This new labeled dataset is added 
to the source conditions dataset to form a bigger training 
dataset. Retraining with only non-seizure pseudo labeled data 
was preferred here since the sample dataset does not contain 
any confident representation of the seizure class of the target 
condition. The student model is retrained or fine-tuned on this 
bigger dataset. 

It is important to perform hard labeling if the teacher and 
student models are the same as is the case in this study. 
Without hard labeling, retraining will have no effect since the 
output of the model will be equal to the soft labels this same 
model has produced earlier. The error (the difference between 
the output and the soft labels) on these new datapoints will be 
then zero and no learning will occur. Hard labeling is the only 
process that creates new information for the system from 
which the student model can learn. It is worth noting that the 
process can be different when the teacher and student models 
are not the same, e.g. when a teacher model is represented by 
an ensemble of powerful heavy models whereas a student 
model is relatively small. In this case soft labels can be used 
for the student model and the process, well known as 

knowledge distillation [6], aims also to reduce computational 
complexity of the inference by using the smaller student 
model while preserving the performance of the ensemble.  

The effect of the confidence threshold on probabilistic 
outputs is studied in this work using the performance 
obtained on the large target database. Fig. 1 shows the 
schematic of the pseudo labeling process.  

B. Deep learning model for seizure detection 

Seizures in neonates are seen in EEG signal data by a 
repetitive pattern that can evolve in amplitude and/or in 
frequency over time, see Fig. 2 where examples of a seizure 
and non-seizure are given. 

A deep learning model for detection of neonatal seizure is 
designed and used here for both the teacher and student 
model. It is trained on a 16s sliding windows of raw 
multichannel EEG signal with a 1s shift, with no hand-crafted 
feature engineering used. 

A high and low pass filter of 0.5Hz and 12.8Hz 
respectively are used to pre-process the EEG signal, 

 
Figure 1.  Pseudo labeling technique.  A model, trained using the source labeled database (DB), is used to create probabilities for the sample unlabeled DB.  
The probabilities are thresholded and hard labeled for the non-seizure class to create a pseudo labeled DB that is combined with the source labeled DB to make 

a new training DB for the model.  The model used here is the same for the teacher and the student model. 

 

 
Figure 2. A segment of 80s of multichannel neonatal EEG with a seizure 

annotation.  Source: Adapted from [12] 
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removing noise and unwanted artefacts followed by 
downsampling to 32Hz. The information content of neonatal 
seizures is known to be mostly concentrated in the range 
between 0.5 and 12Hz [13]. 

This model uses a fully convolutional architecture that 
allows it to run on any number of EEG channels and any 
length of the input. In addition, the model does not require 
strong labels (per channel annotations) and can be trained 
with weak labels (overall across-channel annotations).  

This model training uses the latest architectural advances 
in training convolutional models [14] such as residual 
connections [15], data augmentation (e.g. Mixup and random 
adjustment of the amplitude of the EEG signal), depth-wise 
convolutions, and bottleneck layers. The total no. of trainable 
parameters is 45k.  

The model consists of four feature extraction blocks 
(FEB) followed by a classification block.  The first FEB has 
three convolutional layers with a filter of small sample size 
(3,1), followed by batch normalization and average pooling 
that downsamples the feature maps.   

The subsequent FEBs are three similar blocks that consist 
of a depth-wise convolutional first layer that extracts further 
information at the feature maps’ level using a larger filter of 
size (5,1).  This is followed by two convolutional layers one 
with a filter of (3,1) followed by one with a filter of (1,1); 
these two layers also have an inverted bottle neck design that 
takes as input an expanded 64 feature maps and then 
condenses it to 32.  Similar to the first FEB this is followed 
by batch normalization and average pooling. 

The effect of the design of these three similar FEBs that 
use depth-wise convolutions, the convolutions with the 
varying kernel sizes, and the inverted bottleneck is to extract 
a variety of representations at different layers of the network 
thus boosting its ability to extract detailed knowledge of the 
difference between seizure and non-seizure from the inputted 
EEG signal.  

The fifth block of the network is a classification block that 
funnels the networks representations into seizure and non-
seizure paths using average pooling in time followed by max 
pooling in EEG channel. 

Residual connections [15] at each FEB are used that 
enable the network to train efficiently and utilize all the layers 
of the network.  Residual connections add the input mapping 
of the block to the output mapping of the block, thus requiring 
the block to learn this difference/residual mapping during 
training.  Thus the block at a minimum learns the input 
mapping and also is more capable of learning more efficiently 
from this starting residual mapping position. Architectural 
details are given in Fig. 3.  

The model weights were randomly initialized using glorot 
uniform and training was run three separate times, achieving 
three weight-variants of the same model.  For inference, the 
average probabilistic output of the three models was used.  
The Rectified Adam (RAdam) optimizer, a variant of Adam, 
was used to adjust the weights during training. 

Three postprocessing steps to reduce the number of false 
alarms are applied as in [16], i.e. a moving average smoothing 
filter of ~1 min on the probabilistic outputs, per patient 
adjustment by averaging the previous ~ 10 minutes of non-
seizure EEG activity, and lastly all seizures detected were 
extended on both sides by a  collar of 30 seconds. 

C. Databases 

A publicly available database [17] is used as the source 
database in this study. This database consists of short 1-2h 
excerpts from 79 neonates who were admitted to the NICU of 
Helsinki University Hospital. This database comprises of 112 
hours of EEG recordings with 11 hours of seizure activity 
from 342 seizure events. Eighteen channels of EEG were 
recorded at 256Hz. 

The target conditions are represented by an internal 
database of continuous multichannel EEG, comprising data 
from 78 neonates with 23 experiencing seizure events 
recorded at NICU, Cork University Hospital. This database 
consists of 4,570 hours of unedited EEG recordings, with 
57.7 hours of seizure activity from 1,704 seizure events. It 
has an 8-channel bipolar montage and was recorded at 256Hz 
or 200Hz. 

A publicly available sample dataset [18] that represents 
target conditions is used. It consists of EEG recordings from 
53 neonates who were diagnosed with hypoxic-ischemic 

 
Figure 3. Model architectural details with feature extraction blocks (FEB) and a classification block (CB). 
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encephalopathy totaling 169 hours.. This database was 
released for the purpose of background EEG grading and 
does not have seizure annotations.  This database could be 
used as representation of the non-seizure (background EEG) 
class straightaway, however it was noted by the authors in 
[18] that a small number of seizure events might be present 
in the database. For this reason, it is safer to extract only non-
seizure representations from this database. A pseudo labeling 
technique was used to extract these representations. The soft 
pseudo labels (probabilities) obtained with the teacher model 
were thresholded with percentile thresholds and the chosen 
percentage of the database was then hard labeled all as non-
seizure and combined with the source database to form a new 
training database from which the student model can learn. 
This attenuated the mismatch between source and target 
conditions.  As the source database has originally 18-channel 
bipolar montage, a similar montage was created for the 
sample database using the 9 referential EEG channels 
available so that both public databases can be combined for 
efficient training. 

III. RESULTS 

A. Performance metrics 

Area under the Receiver Operator Characteristic Curve 
(AUC) is used as the primary performance metric. This 
calculates the area under the curve when the sensitivity of the 
binary classifier is plotted against the specificity (or 1- 
specificity) at various classification threshold levels, where 
sensitivity is the percentage of seizure epochs correctly 
labeled as seizure by the model; specificity is the percentage 
of non-seizure epochs correctly labeled as non-seizure by the 
model. While AUC is a commonly used metric to compare 
the performances of binary classification algorithms, the 
AUC90 metric gives the area under the curve where 
Specificity>0.9.  AUC90 is a representative metric of the 
level of false alarms which is crucial in a clinical setting and 
is also reported here. 

While AUC/AUC90 are informative evaluation metrics 
that jointly measures the percentage of seizures epochs 
detected and the percentage of non-seizures epochs detected 
across a wide range of operating levels it is also beneficial to 
report the event metrics.  These measure seizure events, 
namely the percentage of actual seizures detected and the 
percentage of seizures incorrectly detected per hour, i.e. a 
false alarm rate.  Event metrics show the performance across 
various operating points and similar to the AUC90 allow 
comparisons across the resulting clinically appropriate low 
false alarm rate levels.   

The relative percentage increase is also given for 
comparison purposes, e.g. an AUC improved from 0.95 to 
0.96 represents a 20% relative percentage increase in AUC, 
(0.96 – 0.95)/(1 – 0.95).  

B. Performance results 

Table I shows the performance of the 3 models, baseline 
trained on the source database and evaluated on the target 
database, baseline plus 98.5% of the sample database defined 
by pseudo labeling, and baseline plus 100% of the sample 
database where all data is added as non-seizure. It can be seen 
that the model that utilizes the pseudo labels outperforms the 
models that were trained on the source database alone or 
simple combination of both datasets, with the AUC  

increasing from 96.3% to 96.8%, a 13.5% relative percentage 
increase.  

The event metrics were calculated for each of the 
individual 23 nenonates that experience seizures from the 
target database, which in total comprises of 57.7 hours of 
seizure activity from 1,704 seizure events.  These 23 
individual event metrics were then averaged to give a 
representative event metric in a clinical setting, see Fig 4.  
The model that employs the pseudo labels surpasses the 
model without pseudo labels at all operating points for the 
event metrics. Taking a suitable clinical operating point of 0.2 
false detections per hour, the model employing the pseudo 
labels detect 57.8% of seizure events while the model without 
pseudo labels detects 40.7%, a relative percentage increase of 
28.8% in seizures detected.   

To evaluate the impact of the quality of pseudo labels on 
the performance, a stronger (better performing) teacher 
model was obtained by training on another large continuous 
internal database from target conditions. This database 
consists of 72 neonates, with 18 experiencing seizure, 77.7 
hours of annotated seizure, 889 hours of continuous EEG. 
The same pseudo labeling technique was used where a certain 
threshold on the probability of non-seizure was chosen and 
all signal data greater than this threshold was annotated as 
non-seizure. This pseudo labeled dataset was added to the 
source dataset and the model was retrained.  It was observed 
that with a stronger teacher, a similar level of performance 
could be obtained with the addition of only 33% of the sample 
dataset, reaching an AUC of 96.8%. 

IV. DISCUSSION 

This research shows that the source-target mismatch can 
be overcome by pseudo labeling. An unannotated sample 
database from one center is pseudo labeled and then 

 
Figure 4.  Event metrics comparison for the baseline model 

without pseudo labels and with pseudo labels. 

 

TABLE I.  Comparison of the results of adding pseudo labeled data on the 

target dataset. 

 AUC|AUC90 

(%) 

Relative increase 

over baseline in % 

Baseline (without pseudo 

labels or sample DB) 
96.3|72.3 0.0|0.0 

Baseline with pseudo labels 
+98.5% of sample DB  

96.8|78.3 13.5|21.7 

Baseline without pseudo 

labels + 100% of sample DB  
96.4|77.6 2.7|19.1 
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combined with an annotated database from another center to 
train and fine-tune a deep learning model. The AUC relative 
performance increases by 13.5%. It can be seen from Table I, 
that the usage of all sample data without pseudo labels, i.e. 
assuming that all the data within is fully non-seizure data 
improves the performance already. This shows the robustness 
of the developed model. However, when the sample dataset 
is subjected to pseudo labeling and a small portion of the data 
(1.5%) with the highest probability of seizure is discarded 
from consideration, the performance increases even further, 
which is reflected in AUC and further in both AUC90 and the 
event metrics which represent the clinically important 
operating points. With pseudo labeling, there is always a 
trade-off between the amount of data that can be taken and 
the quality of the associated labels. It appears that by 
discarding 1.5% of the data, most seizures and seizure-like 
looking activities are removed and the quality of the 
additional dataset is increased.  

An alternative is to utilize a stronger teacher. With the 
better quality pseudo labels coming from the stronger model, 
a similar level of performance was reached with only 33% of 
the data.  This quality of the pseudo labels is influenced by 
the quality and quantity of the data used to train the stronger 
teacher. The stronger teacher is trained on a large database 
from the target conditions whereas the weaker teacher is 
trained on a smaller database from the source conditions.  
Thus less pseudo labels from the stronger teacher are required 
to reduce the source-target mismatch as they are created using 
target data and so are of higher quality.  Regarding quantity 
the stronger teacher was built using a training database that is 
7 times larger in terms of annotated seizure and 8 times larger 
in total EEG recording when compared to the training 
database for the weaker teacher model.  As the percentage of 
pseudo labeled data added to the training database is 
increased the confidence in the annotations decreases as the 
likelihood of annotating seizure signal data as non-seizure 
increases.  Thus the smaller the percentage of pseudo label 
data added to the training the better. 

Fine-tuning the model using only the pseudo labeled 
database is common [1] but here it is not appropriate as there 
are no seizure events in the new pseudo labeled database.  
Instead the model is fully retrained from scratch using the 
combined pseudo labeled and source labeled databases.  As 
the source labeled database is quite small we had the luxury 
of retraining from scratch.   

Larger performance increases can be expected if both 
classes of interest are more comprehensively represented in 
the sample database.  

V. CONCLUSION 

This study outlined the procedure that enables a model 
trained on a publicly available dataset to adapt to new testing 
conditions. It has been shown that by using the pseudo 
labeling method on a relatively small unannotated sample of 
target conditions the model performance can be marginally 
improved.  

The outlined techniques can lead to more widespread 
usage of publicly available models and allows the developer 
to benefit from datasets that represent other testing conditions 
to lead to more generalizable cross-center models. 
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